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1. Introduction

Meir and Keeler in [1] considered an extension of the classical Banach contraction theorem
on a complete metric space. Kirk et al. in [2] extended the Banach contraction theorem for a
class of mappings satisfying cyclical contractive conditions.

Eldred and Veeramani in [3] introduced the following definition. Let A and B be
nonempty subsets of a metric space X. A map T : A ∪ B → A ∪ B, is a cyclic contraction
map if it satisfies

(1) T(A) ⊆ B and T(B) ⊆ A, and

(2) for some k ∈ (0, 1), d(Tx, Ty) ≤ kd(x, y) + (1 − k)dist(A,B) for all x ∈ A, y ∈ B.

In this case, a point z ∈ A ∪ B such that d(z, Tz) = dist(A,B), called a best proximity point,
has been considered. This notion is more general in the sense that if the sets intersect, then
every best proximity point is a fixed point. In [3], sufficient conditions for the existence and
convergence of a unique best proximity point for a cyclic contraction on a uniformly convex
Banach space have been given. Further, in [4], this result is extended by Di Bari et al., where
the contraction condition of the map is of the Meir-Keeler-type. That is, in addition to the
cyclic condition, if the map satisfies the condition that for a given ε > 0, there exists a δ > 0
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such that d(x, y) < dist(A,B) + ε + δ implies that d(Tx, Ty) < dist(A,B) + ε, x ∈ A, y ∈ B.
Then, such a map is called a cyclic Meir-Keeler map. In [4], sufficient conditions are given to
obtain a unique best proximity point for such maps. One may refer to [5, 6] for similar types
of notion of best proximity points. A question that naturally arises is whether the main results
in [4] can be extended to p subsets, p ≥ 2? From a geometrical point of view, for the cyclic
Meir-Keeler contraction defined on the union of two sets, there is no question concerning the
position of the sets. But in the case of more than two sets, the map is defined on the union of
p sets, {Ai}pi=1 (Definition 3.5), so that the image of Ai is contained in Ai+1, and the image of
Ai+1 is contained in Ai+2 but not in Ai (1 ≤ i ≤ p and Ap+1 = A1). Hence, it is interesting to
extend the notion of the cyclic Meir-Keeler contraction to p sets, p ≥ 2, and we call this map a
p-cyclic Meir-Keeler contraction. In this paper, we give sufficient conditions for the existence
and convergence of a best proximity point for such a map (Theorem 3.13). Here, we observe
that the distances between the adjacent sets are equal under this map, and this fact plays an
important role in obtaining a best proximity point. Also, the obtained best proximity point is
a periodic point of T with period p. Moreover, if x ∈ Ai is a best proximity point in Ai, then
Tjx is a best proximity point in Ai+j for j = 0, 1, 2, . . . , p − 1.

2. Preliminaries

In this section, we give some basic definitions and concepts related to the main results. We
begin with a definition due to Lim [7].

Definition 2.1. A function φ : [0,∞) → [0,∞) is called an L-function if φ(0) = 0, φ(s) >
0 for s > 0, and for every s > 0, there exists δ > 0 such that φ(t) ≤ s for all t ∈ [s, s + δ].

Lemma 2.2 (see [7, 8]). Let Y be a nonempty set, and let f, g : Y → [0,∞). Then, the following
are equivalent.

(1) For each ε > 0, there exists δ > 0 such that x ∈ Y, f(x) < ε + δ ⇒ g(x) < ε.

(2) There exists an L-function φ (nondecreasing, continuous) such that x ∈ Y, f(x) > 0 ⇒
g(x) < φ(f(x)), and f(x) = 0 ⇒ g(x) = 0.

Lemma 2.3 (see [8]). Let φ be an L-function. Let {sn} be a nonincreasing sequence of nonnegative
real numbers. Suppose sn+1 < φ(sn) for all n ∈ N with sn > 0, then, sn → 0 as n → ∞.

It is well known that if X0 is a convex subset of a strictly convex normed linear space
X and x ∈ X, then a best approximation of x from X0, if it exists, is unique.

We use the following lemmas proved in [3].

Lemma 2.4. Let A be a nonempty closed and convex subset and B be a nonempty closed subset of a
uniformly convex Banach space. Let {xn} and {zn} be sequences in A, and let {yn} be a sequence in
B satisfying

(1) ‖zn − yn‖ → dist(A,B),

(2) for every ε > 0, there exists N0 ∈ N, such that for all m > n ≥ N0, ‖xm − yn‖ ≤
dist(A,B) + ε.

Then, for every ε > 0, there existsN1 ∈ N, such that for all m > n ≥ N1, ‖xm − zn‖ ≤ ε.
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Lemma 2.5. LetA be a nonempty closed and convex subsets and let B be a nonempty closed subset of
a uniformly convex Banach space. Let {xn}and{zn} be sequences in A and let {yn} be a sequence in
B satisfying

(1) ‖xn − yn‖ → dist(A,B),

(2) ‖zn − yn‖ → dist(A,B).

Then, ‖xn − zn‖ converges to zero.

3. Main Results

Definition 3.1. Let A1, . . . , Ap be nonempty subsets of a metric space. Then, T :
⋃p

i=1Ai →
⋃p

i=1Ai is called a p-cyclic mapping if

T(Ai) ⊆ Ai+1 for 1 ≤ i ≤ p, where Ap+1 = A1. (3.1)

A point x ∈ Ai is said to be a best proximity point if d(x, Tx) = dist(Ai,Ai+1).

Definition 3.2. Let A1, . . . , Ap be nonempty subsets of a metric space X, and T :
⋃p

i=1Ai →
⋃p

i=1Ai be a p-cyclic mapping. T is called a p-cyclic nonexpansive mapping if

d(Tx, Ty) ≤ d(x, y) ∀x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p. (3.2)

It is an interesting fact to note that the distances between the adjacent sets are equal
under the p-cyclic nonexpansive mapping.

Lemma 3.3. Let X,A1, . . . , Ap, T be as in Definition 3.2. Then, dist(Ai,Ai+1) = dist(Ai+1, Ai+2) =
dist(A1, A2) for all i, 1 ≤ i ≤ p.

Proof. For x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p, dist(Ai+1, Ai+2) ≤ d(Tx, Ty) ≤ d(x, y) implies
dist(Ai+1, Ai+2) ≤ dist(Ai,Ai+1). That is, dist(A1, A2) ≤ dist(Ap,A1) ≤ · · · ≤ dist(A1, A2).

Remark 3.4. If ξ ∈ Ai is a best proximity point, then since d(Tpξ, Tp−1ξ) ≤ d(Tp−1ξ, Tp−2ξ) ≤
· · · ≤ d(ξ, Tξ) and since the distances between the adjacent sets are equal, Tjξ is a best
proximity point of T in Ai+j for j = 0 to p − 1.

Definition 3.5. Let A1, . . . , Ap be nonempty subsets of a metric space X. Let T :
⋃p

i=1Ai →
⋃p

i=1Ai be a p-cyclic mapping. T is called a p-cyclic Meir-Keeler contraction if for every ε > 0,
there exists δ > 0 such that

d(x, y) < dist
(
Ai,Ai+1

)
+ ε + δ =⇒ d(Tx, Ty) < dist

(
Ai,Ai+1

)
+ ε (3.3)

for all x ∈ Ai, y ∈ Ai+1, for 1 ≤ i ≤ p.

Remark 3.6. From Lemma 2.2, we see that T is a p-cyclic Meir-Keeler contraction if and only
if there exists an L-function φ (nondecreasing and continuous) such that for all x ∈ Ai,
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y ∈ Ai+1, 1 ≤ i ≤ p, d(x, y) − dist(Ai,Ai+1) > 0 ⇒ d(Tx, Ty) − dist(Ai,Ai+1) < φ(d(x, y) −
dist(Ai,Ai+1)), d(x, y) − dist(Ai,Ai+1) = 0 ⇒ d(Tx, Ty) − dist(Ai,Ai+1) = 0.

Remark 3.7. From Remark 3.6, if T is a p-cyclic Meir-Keeler contraction, then for x ∈ Ai, y ∈
Ai+1, 1 ≤ i ≤ p, the following hold:

(1) d(Tx, Ty) − dist(Ai,Ai+1) ≤ φ(d(x, y) − dist(Ai,Ai+1)),

(2) d(Tx, Ty) ≤ d(x, y).

Hence, every p-cyclic Meir-Keeler contraction is a p-cyclic nonexpansive map.

Lemma 3.8. Let X,A1, . . . , Ap, T be as in Definition 3.5, where each Ai is closed. Then, for every
x, y ∈ Ai, for 1 ≤ i ≤ p,

(1) d(Tpnx, Tpn+1y) → dist(Ai,Ai+1) as n → ∞,

(2) d(Tp(n±1)x, Tpn+1y) → dist(Ai,Ai+1) as n → ∞.

Proof. To prove (1), Lemma 2.3 is used. Let sn = d(Tpnx, Tpn+1y) − dist(Ai,Ai+1). If sn = 0 for
some n, then d(Tp(n+k)x, Tp(n+k)+1y) ≤ d(Tpnx, Tpn+1y) for all k ∈ N. Since d(Tpnx, Tpn+1y) =
dist(Ai,Ai+1), we find that d(Tp(n+k)x, Tp(n+k)+1y) = dist(Ai,Ai+1) and this proves (1). Hence,
assume sn > 0 for all n. By Remark 3.7, sn+1 ≤ sn, and by Remark 3.6, there exists an L-function
φ such that

d
(
Tp(n+1)x, Tp(n+1)+1y

) − dist
(
Ai,Ai+1

)
< φ

(
d
(
Tp(n+1)−1x, Tp(n+1)y

) − dist
(
Ai,Ai+1

))

≤ d
(
Tp(n+1)−2x, Tp(n+1)−1y

) − dist
(
Ai,Ai+1

)

≤ · · ·
≤ d

(
Tpn+1x, Tpn+2y

) − dist
(
Ai,Ai+1

)

< φ
(
d
(
Tpnx, Tpn+1y

) − dist
(
Ai,Ai+1

))
.

(3.4)

Hence, sn+1 < φ(sn). Therefore, sn → 0 as n → ∞.
Similarly, (2) can easily be proved.

Remark 3.9. From Lemma 3.8, if X is a uniformly convex Banach space and if each Ai is
convex, then for x ∈ Ai, ‖Tpnx − Tpn+1x‖ → dist(Ai,Ai+1) as n → ∞, ‖Tp(n±1)x − Tpn+1x‖ →
dist(Ai,Ai+1), as n → ∞. Then, by Lemma 2.5, ‖Tpnx−Tp(n±1)x‖ → 0, as n → ∞. Similarly,
‖Tpn+1x − Tp(n±1)+1x‖ → 0, as n → ∞.

Theorem 3.10. Let X,A1, . . . , Ap, T be as in Definition 3.5. If for some i and for some x ∈ Ai, the
sequence {Tpnx} in Ai contains a convergent subsequence {Tpnj x} converging to ξ ∈ Ai, then ξ is a
best proximity point in Ai.
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Proof.

dist
(
Ai,Ai+1

) ≤ d(ξ, Tξ)

= lim
j→∞

d
(
Tpnj x, Tξ

)

≤ lim
j→∞

d
(
Tpnj−1x, ξ

)

= lim
j→∞

d
(
Tpnj−1x, Tpnj x

)

= dist
(
Ai−1, Ai

)

= dist
(
Ai,Ai+1

)
.

(3.5)

Therefore, d(ξ, Tξ) = dist(Ai,Ai+1).

Let X be a metric space. Let A1, . . . , Ap be nonempty subsets of X, and let T be a p-
cyclic map which satisfies the following condition. For given ε > 0, there exists a δ > 0 such
that

ε ≤ d(x, y) < ε + δ implies d(Tx, Ty) < ε (3.6)

for all x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p.
It follows from Lemma 2.2 that a p-cyclic map T satisfies the condition (3.6), if and

only if there exists an L-function φ (nondecreasing and continuous) such that for all x ∈ Ai,
y ∈ Ai+1 and for all i, 1 ≤ i ≤ p, d(x, y) > 0 ⇒ d(Tx, Ty) < φ(d(x, y)), d(x, y) = 0 ⇒
d(Tx, Ty) = 0, and T satisfies the p-cyclic nonexpansive property.

We use the following result due to Meir and Keeler [1] in the proof of Theorem 3.12.

Theorem 3.11. Let X be a complete metric space, and let T : X → X be such that for given ε > 0,
there exists a δ > 0 such that for all x, y ∈ X,

ε ≤ d(x, y) < ε + δ implies d(Tx, Ty) < ε. (3.7)

Then, T has a unique fixed point ξ ∈ X. Moreover, for any x ∈ X, the sequence {Tnx} converges to ξ.

Theorem 3.12. Let X be a complete metric space. Let A1, . . . , Ap be nonempty closed subsets of X.
Let T :

⋃p

i=1Ai → ⋃p

i=1Ai be a p-cyclic map satisfying (3.6). Then,
⋂p

i=1Ai is nonempty and for any
x ∈ Ai, 1 ≤ i ≤ p, the sequence {Tpnx} converges to a unique fixed point in ⋂p

i=1Ai.

Proof. Let x ∈ Ai. Let sn = d(Tnx, Tn+1x). If sn = 0, for some n, then by the p-cyclic
nonexpansive property of T , limnsn = 0. Therefore, assume sn > 0 for all n. We note that the
sequence {sn} is nonincreasing, and there exists an L-function φ such that sn+1 < φ(sn), sn > 0
and by Lemma 2.3, limnsn = 0. Now,

d
(
Tpnx, Tp(n+1)+1x

) ≤ {
d
(
Tpnx, Tpn+1x

)
+ d

(
Tpn+1x, Tpn+2x

)
+ · · · + d

(
Tpn+px, T (pn+1)+1x

)}

= spn + spn+1 + · · · + spn+p −→ 0 as n −→ ∞.

(3.8)
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Also, consider

d
(
Tpn+1x, Tp(n+1)x

) ≤ {
d
(
Tpn+1x, Tpn+2x

)
+ d

(
Tpn+2x, Tpn+3x

)
+ · · · + d

(
Tpn+p−1x, Tpn+px

)}

= spn+1 + spn+2 + · · · + spn+p−1 −→ 0 as n −→ ∞.

(3.9)

Fix ε > 0. By the definition of L-function, there exists δ ∈ (0, ε) such that φ(ε + δ) ≤ ε.
Choose an n0 ∈ N satisfying

d
(
Tp(n+1)+1x, Tpnx

)
<

δ

3
, ∀n ≥ n0, (3.10)

d
(
Tpnx, Tpn+1x

)
<

δ

3
, ∀n ≥ n0, (3.11)

d
(
Tp(n+1)x, Tpn+1x

)
<

δ

3
, ∀n ≥ n0. (3.12)

Let us show that

d
(
Tpmx, Tpn+1x

)
< ε + δ < 2ε, ∀m > n ≥ n0. (3.13)

Let us do this by themethod of induction. From (3.12), it is clear that (3.13) holds form = n+1.
Fix n ≥ n0. Assume that (3.7) is true for m > n. Now,

d
(
Tp(m+1)x, Tpn+1x) ≤ d

(
Tp(m+1)x, Tp(n+1)+1x

)
+ d

(
Tp(n+1)+1x, Tpnx

)
+ d

(
Tpnx, Tpn+1x

)

< φ
(
d
(
Tpmx, Tpn+1x

))
+
(
δ

3

)

+
(
δ

3

)

, by (3.11) and (3.12)

< φ(ε + δ) +
(
2
3

)

δ

≤ ε +
(
2
3

)

δ

< ε + δ

< 2ε.

(3.14)

By induction, (3.13) holds for all m > n ≥ n0. Now, for all m > n > n0,

d
(
Tpnx, Tpmx

) ≤ d
(
Tpnx, Tpn+1x

)
+ d

(
Tpn+1x, Tpmx

)

<

(
δ

3

)

+ ε + δ

< 3ε.

(3.15)



Fixed Point Theory and Applications 7

Therefore, {Tpnx} is a Cauchy sequence and converges to a point z ∈ ⋃p

i=1Ai. Consider

d(z, Tz) = lim
n

d
(
Tpnx, Tz

)

≤ lim
n

d
(
Tpn−1x, z

)

= lim
n

d
(
Tpn−1x, Tpnx

)

= lim
n

spn−1 −→ 0, as n −→ ∞.

(3.16)

Therefore, z = Tz. Since Tjz = z for all j, 1 ≤ j ≤ p, and since T(Ai) ⊆ Ai+1, z ∈ Ai for all i,
1 ≤ i ≤ p. Therefore, z ∈ ⋂p

i=1Ai is a fixed point. LetA =
⋂p

i=1Ai. Restricting T : A → A, we see
that T is a Meir-Keeler contraction on the complete metric space A. Hence, by Theorem 3.11,
z is the unique fixed point in A.

Now, we prove our main result.

Theorem 3.13. Let A1, . . . , Ap be nonempty, closed, and convex subsets of a uniformly convex
Banach space. Let T :

⋃p

i=1Ai → ⋃p

i=1Ai be a p-cyclic Meir-Keeler contraction. Then, for each i,
1 ≤ i ≤ p, there exists a unique zi ∈ Ai such that for any x ∈ Ai, the sequence {Tpnx} converges to
zi ∈ Ai, which is a best proximity point in Ai. Moreover, zi is a periodic point of period p, and Tjzi is
a best proximity point in Ai+j for j = 1, 2, . . . , p − 1.

Proof. If dist(Ai,Ai+1) = 0 for some i, then dist(Ai,Ai+1) = 0 for all i, and hence,
⋂p

i=1Ai is
nonempty. In this case, T has a unique fixed point in the intersection. Therefore, assume
dist(Ai,Ai+1) > 0 for all i. Let x ∈ Ai. There exists an L-function φ as given in Remark 3.6. Fix
ε > 0. Choose δ ∈ (0, ε) satisfying φ(ε + δ) ≤ ε. By Remark 3.9, limn‖Tpn+1x − Tp(n+1)+1x‖ = 0.
Hence, there exists n0 ∈ N such that

∥
∥Tpn+1x − Tp(n+1)+1x

∥
∥ < δ. (3.17)

Let us prove that

∥
∥Tpn+1x − Tpmx

∥
∥ − dist

(
Ai,Ai+1

)
< ε + δ < 2ε, ∀m ≥ n ≥ n0. (3.18)

Fix n ≥ n0. It is clear that (3.18) is true for m = n. Assume that (3.18) is true for m ≥ n. Now,

∥
∥Tpn+1x − Tp(m+1)x

∥
∥ − dist

(
Ai,Ai+1

) ≤ {∥
∥Tpn+1x − Tp(n+1)+1x

∥
∥ +

∥
∥Tp(n+1)+1x − Tp(m+1)x

∥
∥

− dist
(
Ai,Ai+1

)}

< δ + φ
(∥
∥Tpn+1x − Tpmx

∥
∥ − dist

(
Ai,Ai+1

))

< δ + φ(ε + δ)

≤ δ + ε < 2ε.
(3.19)
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Hence, (3.18) holds form + 1. Therefore, by induction, (3.18) is true for allm ≥ n ≥ n0.
Note that limn‖Tpnx − Tpn+1x‖ = dist(Ai,Ai+1). Now, by Lemma 2.4, for every ε > 0, there
exists n1 ∈ N such that for every m > n ≥ n1, ‖Tpnx − Tpmx‖ < ε. Hence, {Tpnx} is a Cauchy
sequence and converges to z ∈ Ai. By Theorem 3.10, z is a best proximity point in Ai. That
is, ‖z − Tz‖ = dist(Ai,Ai+1). Let y ∈ Ai such that y /=x and such that {Tpny} → z1. Then, by
Theorem 3.10, z1 is a best proximity point. That is, ‖z1 − Tz1‖ = dist(Ai,Ai+1). Let us show
that z1 = z. To do this,

∥
∥z − Tp+1z

∥
∥ = lim

n

∥
∥Tpnx − Tp+1z

∥
∥

≤ lim
n

∥
∥Tp(n−1)x − Tz

∥
∥

= ‖z − Tz‖
= dist

(
Ai,Ai+1

)
.

(3.20)

Since Ai+1 is a convex set and X is a uniformly convex Banach space, Tz = Tp+1z. Similarly,
we can prove that Tz1 = Tp+1z1. Now,

∥
∥Tpz − Tz

∥
∥ =

∥
∥Tpz − Tp+1z

∥
∥ ≤ ‖z − Tz‖ = dist

(
Ai,Ai+1

)
. (3.21)

Since Ai is convex, Tpz = z. Now, ‖z − Tz1‖ = ‖Tpz − Tp+1z1‖. If ‖z − Tz1‖ ≤ dist(Ai,Ai+1),
then there is nothing to prove. Therefore, let ‖z − Tz1‖ − dist(Ai,Ai+1) > 0. This implies that

∥
∥Tz − T2z1

∥
∥ − dist

(
Ai,Ai+1

)
< φ

(∥
∥z − Tz1

∥
∥ − dist

(
Ai,Ai+1

))

≤ ∥
∥z − Tz1

∥
∥ − dist

(
Ai,Ai+1

)

=
∥
∥Tpz − Tp+1z1

∥
∥ − dist

(
Ai,Ai+1

)

≤ ∥
∥Tz − T2z1

∥
∥ − dist

(
Ai,Ai+1

)
.

(3.22)

Thus, ‖Tz − T2z1‖ < ‖Tz − T2z1‖ a contradiction. Hence, ‖z − Tz1‖ = dist(Ai,Ai+1). Since
‖z1 − Tz1‖ = dist(Ai,Ai+1) and Ai is convex, z1 = z.
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