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We introduce composite iterative schemes by the viscosity iteration method for finding a zero of
an accretive operator in reflexive Banach spaces. Then, under certain differen control conditions,
we establish strong convergence theorems on the composite iterative schemes. The main theorems
improve and develop the recent corresponding results of Aoyama et al. (2007), Chen and Zhu
(2006, 2008), Jung (2010), Kim and Xu (2005), Qin and Su (2007) and Xu (2006) aswell as Benavides
et al. (2003), Kamimura and Takahashi (2000), Maingé (2006), and Nakajo (2006).

1. Introduction

Let E be a real Banach space and C a nonempty closed convex subset of E. Recall that a
mapping f : C → C is a contraction on C if there exists a constant k ∈ (0, 1) such that
‖f(x)−f(y)‖ ≤ k‖x−y‖, x, y ∈ C.We use ΣC to denote the collection of mappings f verifying
the above inequality. That is, ΣC = {f : C → C f is a contraction with constant k}. A
mapping T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, x, y ∈ C, and F(T)
denote the set of fixed points of T ; that is, F(T) = {x ∈ C : x = Tx}.

Recall that a (possibly multivalued) operator A ⊂ E × E with the domain D(A) and
the range R(A) in E is accretive if, for each xi ∈ D(A) and yi ∈ Axi (i = 1, 2), there exists
a j ∈ J(x1 − x2) such that 〈y1 − y2, j〉 ≥ 0. (Here J is the normalized duality mapping.) An
accretive operator A is said to satisfy the range condition if D(A) ⊂ R(I + rA) for all r > 0.
An accretive operator A is m-accretive if R(I + rA) = E for each r > 0. If A is an accretive
operator which satisfies the range condition, then we can define, for each r > 0 a mapping
Jr : R(I+rA) → D(A) defined by Jr = (I+rA)−1, which is called the resolvent ofA. We know
that Jr is nonexpansive and F(Jr) = A−10 for all r > 0, where A−10 = {z ∈ D(A) : 0 ∈ Az} is
the set of zeros of A. If A−10/= ∅, then the inclusion 0 ∈ Az is solvable.
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We consider an iterative scheme: for resolvent Jrn of m-accretive operator A,

xn+1 = Jrnxn, n ≥ 0, (1.1)

where the initial guess x0 ∈ E is chosen arbitrarily. The iterative scheme (1.1) has extensively
been studied over the last forty years for constructions of zeros of accretive operators (see,
e.g., [1–11] and the references contained therein).

Kim and Xu [12] in 2005 and Xu [13] in 2006 provided a simpler modification of Mann
iterative scheme in either a uniformly smooth Banach space ([12]) or a reflexive Banach space
having a weakly sequentially continuous duality mapping ([13]) for finding a zero of an m-
accretive operator A as follows: for resolvent Jrn of A, u ∈ D(A) and {αn} ⊂ [0, 1],

x0 = x ∈ E,

xn+1 = αnu + (1 − αn)Jrnxn, n ≥ 0,
(1.2)

(see also [14, 15]). They proved that the sequence {xn} generated by (1.2) converges to a zero
of an m-accretive operator A under the control conditions:

(C1) limn→∞αn = 0;

(C2)
∑∞

n=0 αn = ∞, or, equivalently,
∏∞

n=0(1 − αn) = 0;

(C3)
∑∞

n=0 |αn+1 − αn| < ∞;

(R1) rn ≥ ε for some ε > 0 and for all n ≥ 0 and
∑∞

n=0 |1 − rn/rn+1| < ∞; or

(R2) rn ≥ ε for some ε > 0 and for all n ≥ 0 and
∑∞

n=0 |rn+1 − rn| < ∞.

In 2007, Aoyama et al. [16] studied the following iterative scheme in a uniformly
convex Banach space having a uniformly Gâteaux differentiable norm: for resolvent Jrn of
an accretive operator A such that A−10/= ∅ and D(A) ⊂ C ⊂ ⋂

r>0R(I + rA) and {αn} ⊂ [0, 1],

x0 = x ∈ C,

xn+1 = αnx + (1 − αn)Jrnxn, n ≥ 0.
(1.3)

They proved that the sequence {xn} generated by (1.3) converges strongly to a zero of A
under the conditions (C1), (C2), and (C3) and the condition (R2) on {rn}. In 2006, under
the conditions (C1), (C2), and (C3) on {αn} and the condition (R2)′lim infn→∞rn > 0 and
∑∞

n=0 |rn+1 − rn| < ∞ on {rn}, Nakajo [17] also studied the strong convergence of iterative
scheme (1.3) in the same Banach space. In case that C is a compact convex subset of a Banach
space having a uniformly Gâteaux differentiable norm, Miyake and Takahashi [18] proved
the convergence of the sequence {xn} generated by (1.3) to a zero of an accretive operator A
such that D(A) ⊂ C ⊂ ⋂

r>0R(I + rA) under conditions (C1) and (C2) and limn→∞rn = ∞.
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In 2007, Qin and Su [19] also considered the following iterative scheme in either a
uniformly smooth Banach space or a reflexive Banach space having a weakly sequentially
continuous duality mapping, which is a simpler modification of the iterative scheme (1.2):
for resolvent Jrn of an m-accretive operator A, u ∈ D(A) and {αn}, {βn} ⊂ [0, 1],

x0 = x ∈ E,

yn = βnxn +
(
1 − βn

)
Jrnxn,

xn+1 = αnu + (1 − αn)yn, n ≥ 0.

(1.4)

They proved that the sequence {xn} generated by (1.4) converges strongly to a zero of an
m-accretive operator A under the conditions (C1), (C2), and (C3) on {αn} and the condition

(B1) for n ≥ 0, βn ∈ [0, a) for some a ∈ (0, 1) and
∑∞

n=0 |βn+1 − βn| < ∞
on {βn}, and the condition (R2) on {rn}.

On the other hand, as the viscosity iteration method ([20, 21]), in 2006 and 2008, Chen
and Zhu [22, 23] considered the following iterative scheme: for resolvent Jrn of anm-accretive
operator A, f ∈ ΣC (C = D(A)) and {αn} ⊂ [0, 1],

x0 = x ∈ C,

xn+1 = αnf(xn) + (1 − αn)Jrnxn, n ≥ 0.
(1.5)

Under conditions (C1), (C2), and (C3) on {αn} and (R2) on {rn}, they showed in either a
reflexive Banach space having a weakly sequentially continuous duality mapping [22] or a
uniformly smooth Banach space [23] that the sequence {xn} generated by (1.5) converges
strongly to a zero of A, which is a solution of a certain variational inequality. By using the
following conditions:

(P1) limn→∞(αn/αn−1) = 1,
∑∞

n=0 αn = ∞, limn→∞(1/αn)(1 − rn−1/rn) = 0,

(P2) rn ≥ ε (for some positive ε),

in 2006, Maingé [24] also studied in a uniformly smooth Banach space the strong convergence
of the sequence {xn} generated by (1.5) to the unique fixed point ofQ◦f , whereQ: E → A−10
is the sunny nonexpansive retraction.

Very recently, Jung [25] also studied the following iterative scheme as the viscosity
iteration method: for resolvent Jrn of an accretive operator A such that A−10/= ∅ and D(A) ⊂
C ⊂ ⋂

r>0R(I + rA), f ∈ ΣC and {αn}, {βn} ⊂ [0, 1],

x0 = x ∈ C,

yn = βnxn +
(
1 − βn

)
Jrnxn,

xn+1 = αnf(xn) + (1 − αn)yn, n ≥ 0,

(1.6)

and proved under the conditions (C1), (C2), and (C3) (or

(C4) |αn+1 − αn| ≤ o(αn+1) + σn,
∑∞

n=0 σn < ∞ (the perturbed control condition))
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on {αn}, (B2) on {βn}, and (R2) on {rn} that the sequence {xn} generated by (1.6) converges
strongly to a zero of A, which is a solution of a certain variational inequality, in a reflexive
Banach space having a uniformly Gâteaux differentiable norm such that every weakly
compact convex subset of E has the fixed point property for nonexpansive mappings.

Question. Are conditions (C1) limn→∞αn = 0 and (C2)
∑∞

n=0 αn = ∞ sufficient for the strong
convergence of iterative schemes (1.2)–(1.6) for all resolvent Jrn with different condition from
(R1) or (R2) on {rn}?

In this paper, motivated by the above-mentioned results, we consider the composite
iterative scheme (1.6) as the viscosity iteration method and prove under certain different
control conditions on {αn}, {βn}, and {rn} in reflexive Banach spaces that the sequence
{xn} generated by (1.6) converges strongly to a zero of A, which is a solution of a certain
variational inequality. Moreover, we study the strong convergence of the iterative scheme
(1.6) with the weakly contractive mapping instead of the contraction f . By removing the
condition (C3)

∑∞
n=0 |αn+1 − αn| < ∞ (or (C4) |αn+1 − αn| ≤ o(αn+1) + σn,

∑∞
n=0 σn < ∞) on {αn},

the condition
∑∞

n=0 |βn+1 − βn| < ∞ in (B1) on {βn}, the condition
∑∞

n=0 |1 − rn/rn+1| < ∞ in
(R1) and the condition

∑∞
n=0 |rn+1 − rn| < ∞ in (R2), the main results improve and develop

the corresponding results of Aoyama et al. [16], Chen and Zhu [22, 23], Jung [25], Kim, and
Xu [12], Maingé [24], Nakajo [17], Qin and Su [19] and Xu [13]. Consequently, we give an
affirmative answer to the above question. Our results also complement the corresponding
results of Benavides et al. [14] and Kamimura and Takahashi [15].

2. Preliminaries and Lemmas

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be its dual. The value of f ∈ E∗ at x ∈ E
will be denoted by 〈x, f〉. When {xn} is a sequence in E, then xn → x (resp., xn ⇀ x) will
denote strong (resp., weak) convergence of the sequence {xn} to x.

By a gauge function we mean a continuous strictly increasing function ϕ defined on
R

+ := [0,∞) such that ϕ(0) = 0 and limr→∞ϕ(r) = ∞. The mapping Jϕ : E → 2E
∗
defined by

Jϕ(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖∥∥f∥∥, ∥∥f∥∥ = ϕ(‖x‖)} ∀ x ∈ E (2.1)

is called the duality mapping with gauge function ϕ. In particular, the duality mapping with
gauge function ϕ(t) = t denoted by J is referred to as the normalized duality mapping. The
following property of duality mapping is well known ([26]):

Jϕ(λx) = sign λ

(
ϕ(|λ| · ‖x‖)

‖x‖
)

J(x) ∀ x ∈ E \ {0}, λ ∈ R, (2.2)

where R is the set of all real numbers; in particular, J(−x) = −J(x) for all x ∈ E.
We say that a Banach space E has a weakly sequential continuous duality mapping

if there exists a gauge function ϕ such that the duality mapping Jϕ is single valued and
continuous from the weak topology to the weak∗ topology, that is, for any {xn} ∈ E with
xn ⇀ x, Jϕ(xn)

∗
⇀ Jϕ(x). For example, every lp space (1 < p < ∞) has a weakly sequentially

continuous duality mapping with gauge function ϕ(t) = tp−1.
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The norm of E is said to be Gâteaux differentiable (and E is said to be smooth) if

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.3)

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. The norm is said to be uniformly
Gâteaux differentiable if for y ∈ U, the limit is attained uniformly for x ∈ U. The space E is
said to have a uniformly Fréchet differentiable norm (and E is said to be uniformly smooth) if
the limit in (2.3) is attained uniformly for (x, y) ∈ U ×U. It is known that E is smooth if and
only if the normalized duality mapping J is single-valued. Also, it is well known that if E has
a uniformly Gâteaux differentiable norm, then J is norm to weak∗ uniformly continuous on
each bounded subsets of E.

LetC be a nonempty closed convex subset of E.C is said to have the fixed point property
for nonexpansive mappings if every nonexpansive mapping of a bounded closed convex
subset D of C has a fixed point in D. Let D be a subset of C. Then Q : C → D is called a
retraction from C ontoD ifQx = x for all x ∈ D. A retractionQ : C → D is said to be sunny if
Q(Qx + t(x −Qx)) = Qx for all x ∈ C and t ≥ 0 whenever x + t(x −Qx) ∈ C. A subset D of C
is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction
of C onto D, for more details, see [27]. In a smooth Banach space E, it is known [27, page 48]
that Q : C → D is a sunny nonexpansive retraction if and only if the following condition
holds:

〈x −Qx, J(z −Qx)〉 ≤ 0, x ∈ C, z ∈ D. (2.4)

(Note that this fact still holds by (2.2) if the normalized duality mapping J is replaced by a
general duality mapping Jϕ with gauge function ϕ.)

We need the following lemmas for the proof of our main results. We refer [26] for
Lemma 1. Lemma 2 was found in [28] and Lemma 3 is essentially Lemma 2 of [29].

Lemma 1. Let E be a real Banach space and ϕ a continuous strictly increasing function on R
+ such

that ϕ(0) = 0 and limr→∞ϕ(r) = ∞. Define

Φ(t) =
∫ t

0
ϕ(τ)dτ ∀ t ∈ R

+. (2.5)

Then the following inequality holds:

Φ
(∥
∥x + y

∥
∥
) ≤ Φ(‖x‖) + 〈

y, jϕ
(
x + y

)〉 ∀ x, y ∈ E, (2.6)

where jϕ(x + y) ∈ Jϕ(x + y). In particular, if E is smooth, then one has

∥
∥x + y

∥
∥2 ≤ ‖x‖2 + 2

〈
y, J

(
x + y

)〉 ∀ x, y ∈ E. (2.7)



6 Fixed Point Theory and Applications

Lemma 2. Let {xn} and {zn} be bounded sequences in a Banach space E and {γn} a sequence in [0, 1]
which satisfies the following condition:

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1. (2.8)

Suppose that xn+1 = γnxn + (1 − γn)zn, n ≥ 0, and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (2.9)

Then limn→∞‖zn − xn‖ = 0.

Lemma 3. Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1 − λn)sn + λnδn + γn, n ≥ 0, (2.10)

where {λn}, {δn}, and {γn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and
∑∞

n=0 λn = ∞;

(ii) lim supn→∞δn ≤ 0 or
∑∞

n=1 λnδn < ∞;

(iii) γn ≥ 0 (n ≥ 0),
∑∞

n=0 γn < ∞.

Then limn→∞sn = 0.

Lemma 4 (demiclosedness principle). Let E be a reflexive Banach space having a weakly
sequentially continuous duality mapping, C a nonempty closed convex subset of E, and T : C → E a
nonexpansive mapping. Then the mapping I − T is demiclosed on C, where I is the identity mapping;
that is, xn ⇀ x in E and (I − T)xn → y imply that x ∈ C and (I − T)x = y.

We need the resolvent identity (see [26], where more details on accretive operators can
be founded).

Lemma 5 (resolvent identity). For λ > 0, μ > 0 and x ∈ E,

Jλx = Jμ
(μ

λ
x +

(
1 − μ

λ

)
Jλx

)
. (2.11)

Recall that a mapping g : C → C is said to be weakly contractive [30, 31] if

∥
∥g(x) − g

(
y
)∥
∥ ≤ ∥

∥x − y
∥
∥ − ψ

(∥
∥x − y

∥
∥
)
, ∀ x, y ∈ C, (2.12)

where ψ : [0,+∞) → [0,+∞) is a continuous and strictly increasing function such that ψ is
positive on (0,∞) and ψ(0) = 0. As a special case, if ψ(t) = (1 − k)t for t ∈ [0,+∞), where
k ∈ (0, 1), then the weakly contractive mapping g is a contraction with constant k. Rhoades
[32] obtained the following result for weakly contractive mapping (see also [31]).
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Lemma 6. Let (X, d) be a complete metric space and g a weakly contractive mapping on X. Then g
has a unique fixed point p in X.

The following lemma was given in [33, 34].

Lemma 7. Let {sn} and {γn} be two sequences of nonnegative real numbers and {λn} a sequence of
positive numbers satisfying the conditions:

(i)
∑∞

n=0 λn = ∞;

(ii) limn→∞(γn/λn) = 0.

Let the recursive inequality

sn+1 ≤ sn − λnψ(sn) + γn, n ≥ 0, (2.13)

be given, where ψ(t) is a continuous and strict increasing function on [0,+∞) with ψ(0) = 0. Then
limn→∞sn = 0.

3. Main Results

Now, we study the strong convergence results for the composite iterative scheme in reflexive
Banach spaces.

For T : C → C a nonexpansive mapping, t ∈ (0, 1) and f ∈ ΣC, tf + (1 − t)T : C → C
defines a contraction. Thus, by the Banach contraction principle, there exists a unique fixed
point xf

t satisfying

x
f
t = tf(xt) + (1 − t)Txf

t . (3.1)

For simplicity we will write xt for x
f
t provided that no confusion occurs.

The following result for the existence of qwhich is a solution of a variational inequality

〈(
I − f

)(
q
)
, J
(
q − p

)〉 ≤ 0, f ∈ ΣC, p ∈ F(T) (3.2)

was obtained by Jung [35–37] (see also [21, 22] ).

Theorem J. Let E be a Banach space, C a nonempty closed convex subset of E, and T nonexpansive
mapping from C into itself with F(T)/= ∅. If one of the following assumptions holds:

(H1)E is a reflexive Banach space, the norm of E is uniformly Gâteaux differentiable, and every
weakly compact convex subset of E has the fixed point property for nonexpansive mappings;

(H2)E is a reflexive and strictly convex Banach space and the norm of E is uniformly Gâteaux
differentiable;
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(H3)E is a reflexive Banach space having a weakly sequentially continuous duality mapping
Jϕ with gauge function ϕ;
then {xt} defined by (3.1) converges strongly to a point in F(T). If one defines Q : ΣC → F(T) by

Q
(
f
)
= q := lim

t→ 0
xt, f ∈ ΣC, (3.3)

then q is the unique solution of the variational inequality

〈(
I − f

)(
q
)
, J
(
q − p

)〉 ≤ 0, f ∈ ΣC, p ∈ F(T). (3.4)

Remark 8. (1) In the case when assumption (H3) in Theorem J holds, (3.4) still holds by (2.2)
if the normalized duality mapping J is replaced by a general duality mapping Jϕ with gauge
function ϕ, that is,

〈(
I − f

)(
q
)
, Jϕ

(
q − p

)〉 ≤ 0, f ∈ ΣC, p ∈ F(T). (3.5)

(2) In Theorem J, if f(x) = u, x ∈ C, is a constant, then it follows from (2.4) that (3.3)
is reduced to a sunny nonexpansive retraction from C onto F(T),

〈
Qu − u, J

(
Qu − p

)〉 ≤ 0, u ∈ C, p ∈ F(T), (3.6)

(see also [38]). Namely, F(T) is a sunny nonexpansive retract of C.

Using Theorem J, we have the following result.

Theorem 1. Let E be a reflexive Banach space having a weakly sequentially continuous duality
mapping Jϕ with gauge function ϕ. Let C be a nonempty closed convex subset of E and A ⊂ E × E

an accretive operator in E such that F := A−10/= ∅ and D(A) ⊂ C ⊂ ⋂
r>0R(I + rA). Let {αn},

{βn} ⊂ [0, 1] and {rn} ⊂ R
+ be sequences which satisfy the following conditions:

(C1) limn→∞αn = 0;

(C2)
∑∞

n=0 αn = ∞;

(B) 0 < lim infn→∞βn ≤ lim supn→∞βn ≤ a < 1 for some constant a ∈ (0, 1);

(R) rn ≥ ε > 0 for n ≥ 0 and limn→∞|rn+1 − rn| = 0.

Let f ∈ ΣC and x0 ∈ C be chosen arbitrarily. Let {xn} be the sequence generated by

x0 = x ∈ C,

yn = βnxn +
(
1 − βn

)
Jrnxn,

xn+1 = αnf(xn) + (1 − αn)yn, n ≥ 0.

(IS)

Then {xn} converges strongly to q ∈ F, where q is the unique solution of the variational inequality

〈(
I − f

)(
q
)
, Jϕ

(
q − p

)〉 ≤ 0, f ∈ ΣC, p ∈ F. (3.7)
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Proof. Note that the definition of the weak sequential continuity of duality mapping Jϕ
with gauge function ϕ implies that E is smooth. First, we notice that by Theorem J and
Remark 8(1), there exists the unique solution q of the variational inequality

〈(
I − f

)(
q
)
, Jϕ

(
q − p

)〉 ≤ 0, f ∈ ΣC, p ∈ F, (3.8)

where q = limt→ 0xt and xt is defined by xt = tf(xt) + (1 − t)Jrxt for each r > 0 and 0 < t < 1.
We divide the proof into several steps.

Step 1. We show that ‖xn−p‖ ≤ max{‖x0−p‖, (1/(1−k))‖f(p)−p‖} for all n ≥ 0 and all p ∈ F.
Indeed, let p ∈ F and d = max{‖x0 − p‖, (1/(1 − k))‖f(p) − p‖}. Noting that

∥
∥yn − p

∥
∥ ≤ βn

∥
∥xn − p

∥
∥ +

(
1 − βn

)∥
∥Jrnxn − p

∥
∥ ≤ ∥

∥xn − p
∥
∥, (3.9)

we have

∥
∥x1 − p

∥
∥ ≤ (1 − α0)

∥
∥y0 − p

∥
∥ + α0

∥
∥f(x0) − p

∥
∥

≤ (1 − α0)
∥
∥x0 − p

∥
∥ + α0

(∥
∥f(x0) − f

(
p
)∥
∥ +

∥
∥f

(
p
) − p

∥
∥
)

≤ (1 − (1 − k)α0)
∥
∥x0 − p

∥
∥ + α0

∥
∥f

(
p
) − p

∥
∥

≤ (1 − (1 − k)α0)d + α0(1 − k)d = d.

(3.10)

Using an induction, we obtain ‖xn+1−p‖ ≤ d.Hence {xn} is bounded, and so are {yn}, {Jrnxn},
and {f(xn)}.

Step 2. We show that limn→∞‖xn+1 − xn‖ = 0. To this end, set γn = (1 − αn)βn, n ≥ 0. Then it
follow from (C1) and (B) that

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1. (3.11)

Define

xn+1 = γnxn +
(
1 − γn

)
zn. (3.12)

Observe with the resolvent identity (2.11) in Lemma 5 that

zn+1 − zn =
xn+2 − γn+1xn+1

1 − γn+1
− xn+1 − γnxn

1 − γn

=
αn+1f(xn+1) + (1 − αn+1)yn+1 − γn+1xn+1

1 − γn+1
− αnf(xn) + (1 − αn)yn − γnxn

1 − γn
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=
(
αn+1f(xn+1)
1 − γn+1

− αnf(xn)
1 − γn

)

− (1 − αn)
[
βnxn +

(
1 − βn

)
Jrnxn

] − γnxn

1 − γn

+
(1 − αn+1)

[
βn+1xn+1 +

(
1 − βn+1

)
Jrn+1xn+1

] − γn+1xn+1

1 − γn+1

=
(
αn+1f(xn+1)
1 − γn+1

− αnf(xn)
1 − γn

)

+
(1 − αn+1)

(
1 − βn+1

)
Jrn+1xn+1

1 − γn+1

− (1 − αn)
(
1 − βn

)
Jrnxn

1 − γn

=
(
αn+1f(xn+1)
1 − γn+1

− αnf(xn)
1 − γn

)

+ (Jrn+1xn+1 − Jrnxn) − αn+1

1 − γn+1
Jrn+1xn+1 +

αn

1 − γn
Jrnxn

=
(
αn+1f(xn+1)
1 − γn+1

− αnf(xn)
1 − γn

)

+ (Jrn+1xn+1 − Jrn+1xn)

+
(

Jrn

(
rn
rn+1

xn +
(

1 − rn
rn+1

)

Jrn+1xn

)

− Jrnxn

)

− αn+1

1 − γn+1
Jrn+1xn+1 +

αn

1 − γn
Jrnxn.

(3.13)

It follows from (3.13) that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ αn+1

1 − γn+1

(∥
∥f(xn+1)

∥
∥ + ‖Jrn+1xn+1‖

)
+

αn

1 − γn

(∥
∥f(xn)

∥
∥ + ‖Jrnxn‖

)

+
∥
∥
∥
∥

(
rn
rn+1

xn +
(

1 − rn
rn+1

)

Jrn+1xn

)

− xn

∥
∥
∥
∥

=
αn+1

1 − γn+1

(∥
∥f(xn+1)

∥
∥ + ‖Jrn+1xn+1‖

)
+

αn

1 − γn

(∥
∥f(xn)

∥
∥ + ‖Jrnxn‖

)

+
∣
∣
∣
∣1 −

rn
rn+1

∣
∣
∣
∣L,

(3.14)

where ‖Jrn+1xn − xn‖ ≤ L. Since {f(xn)} and {Jrnxn} are bounded, by (C1), (R), (3.11), and
(3.14)we obtain that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.15)

Hence by Lemma 2, we have

lim
n→∞

‖zn − xn‖ = 0. (3.16)

It then follows from (3.11), (3.12), and (3.16) that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1 − γn

)‖zn − xn‖ = 0. (3.17)
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Step 3. We show that limn→∞‖xn − Jrnxn‖ = 0. Indeed, by (IS) ‖yn − Jrnxn‖ = βn‖xn − Jrnxn‖,
and hence we have

‖xn − Jrnxn‖ ≤ ‖xn − xn+1‖ +
∥
∥xn+1 − yn

∥
∥ +

∥
∥yn − Jrnxn

∥
∥

= ‖xn − xn+1‖ +
∥
∥xn+1 − yn

∥
∥ + βn‖xn − Jrnxn‖.

(3.18)

Simplifying it and using Step 2, we have

(1 − a)‖xn − Jrnxn‖ ≤ (
1 − βn

)‖xn − Jrnxn‖
≤ ‖xn − xn+1‖ +

∥
∥xn+1 − yn

∥
∥

= ‖xn − xn+1‖ + αn

∥
∥f(xn) − yn

∥
∥ −→ 0 (as n −→ ∞).

(3.19)

This implies that

‖xn − Jrnxn‖ −→ 0 (as n −→ ∞). (3.20)

Step 4. We show that ‖xn − Jrxn‖ → 0 for a fixed number r such that ε > r > 0. Indeed, from
the resolvent identity (2.11) in Lemma 5, we obtain

‖Jrnxn − Jrxn‖ =
∥
∥
∥
∥Jr

(
r

rn
xn +

(

1 − r

rn

)

Jrnxn

)

− Jrxn

∥
∥
∥
∥

≤
(

1 − r

rn

)

‖xn − Jrnxn‖ ≤ ‖xn − Jrnxn‖.
(3.21)

Therefore, from (3.21)we have

‖xn − Jrxn‖ ≤ ‖xn − Jrnxn‖ + ‖Jrnxn − Jrxn‖
≤ ‖xn − Jrnxn‖ + ‖xn − Jrnxn‖ = 2‖xn − Jrnxn‖.

(3.22)

Hence by Step 3 we obtain ‖xn − Jrnxn‖ → 0.

Step 5. We show that lim supn→∞〈(I − f)(q), Jϕ(q − xn)〉 ≤ 0. Since E is reflexive and {xn} is
bounded, there exists a subsequence {xnj} of {xn} such that xnj ⇀ p ∈ E and

lim sup
n→∞

〈(
I − f

)(
q
)
, Jϕ

(
q − xn

)〉
= lim

j→∞

〈(
I − f

)(
q
)
, Jϕ

(
q − xnj

)〉
. (3.23)

From Step 4. it follows that

∥
∥
∥Jrxnj − xni

∥
∥
∥ −→ 0

(
as j −→ ∞)

. (3.24)
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By Lemma 4, we have p = Jrp for each r ∈ R
+ and so p ∈ F. Thus by the weakly sequentially

continuity of the duality mapping Jϕ and (3.4), we have

lim sup
n→∞

〈(
I − f

)(
q
)
, Jϕ

(
q − xn

)〉
= lim

j→∞

〈(
I − f

)(
q
)
, Jϕ

(
q − xnj

)〉

=
〈(
I − f

)(
q
)
, Jϕ

(
q − p

)〉 ≤ 0.
(3.25)

Step 6. We show that limn→∞‖xn − q‖ = 0. By using (IS), we have

xn+1 − q = αn

(
f(xn) − q

)
+ (1 − αn)

(
yn − q

)

= αn

(
f(xn) − f

(
q
))

+ (1 − αn)
(
yn − q

)
+ αn

(
f
(
q
) − q

)
.

(3.26)

As a consequence, since Φ is an increasing convex function with Φ(0) = 0, by applying
Lemma 1, we obtain from (3.9)

Φ
(∥
∥xn+1 − q

∥
∥
) ≤ Φ

(∥
∥αn

(
f(xn) − f

(
q
))

+ (1 − αn)
(
yn − q

)∥
∥
)
+ αn

〈
f
(
q
) − q, Jϕ

(
xn+1 − q

)〉

≤ Φ
(
kαn

∥
∥xn − q

∥
∥ + (1 − αn)

∥
∥yn − q

∥
∥
)
+ αn

〈
f
(
q
) − q, Jϕ

(
xn+1 − q

)〉

≤ Φ
(
(1 − (1 − k)αn)

∥
∥xn − q

∥
∥
)
+ αn

〈
f
(
q
) − q, Jϕ

(
xn+1 − q

)〉

≤ (1 − (1 − k)αn)Φ
(∥
∥xn − q

∥
∥
)
+ αn

〈(
I − f

)(
q
)
, Jϕ

(
q − xn+1

)〉
.

(3.27)

Put

λn = (1 − k)αn δn =
1

1 − k

〈(
I − f

)(
q
)
, Jϕ

(
q − xn+1

)〉
. (3.28)

From (C1), (C2), and Step 5, it follows that λn → 0,
∑∞

n=0 λn = ∞ and lim supn→∞δn ≤ 0.
Since (3.27) reduces to

Φ
(∥
∥xn+1 − q

∥
∥
) ≤ (1 − λn)Φ

(∥
∥xn − q

∥
∥
)
+ λnδn, (3.29)

from Lemma 3, we conclude that limn→∞Φ(‖xn − q‖) = 0, and thus limn→∞xn = q. This
completes the proof.

Theorem 2. Let E be a Banach space, C a nonempty closed convex subset of E, and A ⊂ E × E be
an accretive operator in E such that F := A−10/= ∅ and D(A) ⊂ C ⊂ ⋂

r>0R(I + rA). Let {αn},
{βn} ⊂ [0, 1] and {rn} ⊂ R

+ be sequences which satisfy the following conditions:

(C1) limn→∞αn = 0;

(C2)
∑∞

n=0 αn = ∞;

(B) 0 < lim infn→∞βn ≤ lim supn→∞βn ≤ a < 1 for some constant a ∈ (0, 1);

(R) rn ≥ ε > 0 for n ≥ 0 and limn→∞|rn+1 − rn| = 0.
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Let f ∈ ΣC and x0 ∈ C be chosen arbitrarily. Let {xn} be the sequence generated by (IS). If one of the
following assumptions holds:

(H1)E is a reflexive Banach space, the norm of E is uniformly Gâteaux differentiable, and every
weakly compact convex subset of E has the fixed point property for nonexpansive mappings;

(H2)E is a reflexive and strictly convex Banach space and the norm of E is uniformly Gâteaux
differentiable;
then {xn} converges strongly to q ∈ F, where q is the unique solution of the variational inequality

〈(
I − f

)(
q
)
, J
(
q − p

)〉 ≤ 0, f ∈ ΣC, p ∈ F. (3.30)

Proof. We also notice that by Theorem J, there exists the unique solution q of the variational
inequality

〈(
I − f

)(
q
)
, J
(
q − p

)〉 ≤ 0, f ∈ ΣC, p ∈ F, (3.31)

where q = limt→ 0xt and xt is defined by xt = tf(xt) + (1 − t)Jrxt for each r > 0 and 0 < t < 1.
We only give proofs of differences.

Now, by the proof of Theorem 1, we also have the following.

Step 1. ‖xn − p‖ ≤ max{‖x0 − p‖, (1/(1 − k))‖f(p) − p‖} for all n ≥ 0 and all p ∈ F and so {xn},
{yn}, {Jrnxn}, and {f(xn)} are bounded.

Step 2. limn→∞‖xn+1 − xn‖ = 0.

Step 3. limn→∞‖xn − Jrnxn‖ = 0.

Step 4. ‖xn − Jrxn‖ → 0 for a fixed number r such that ε > r > 0.

Step 5. We show that lim supn→∞〈(I − f)(q), J(q − xn)〉 ≤ 0. To prove this, let a subsequence
{xnj} of {xn} be such that xnj ⇀ p for some p ∈ E and

lim sup
n→∞

〈(
I − f

)(
q
)
, J
(
q − xn

)〉
= lim

j→∞

〈(
I − f

)(
q
)
, J
(
q − xnj

)〉
. (3.32)

Now let xt be defined by xt = tf(xt) + (1 − t)Jrxt for each r > 0 and 0 < t < 1. Then

xt − xn = (1 − t)(Jrxt − xn) + t
(
f(xt) − xn

)
. (3.33)

Applying Lemma 1, we have

‖xt − xn‖2 ≤ (1 − t)2‖Jrxt − xn‖2 + 2t
〈
f(xt) − xn, J(xt − xn)

〉
. (3.34)
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Putting

aj(t) = (1 − t)2
∥
∥
∥Jrxnj − xnj

∥
∥
∥
(
2
∥
∥
∥xt − xnj

∥
∥
∥ +

∥
∥
∥Jrxnj − xnj

∥
∥
∥
)
−→ 0

(
j → ∞)

(3.35)

by Step 4 and using Lemma 1, we obtain

∥
∥
∥xt − xnj

∥
∥
∥
2 ≤ (1 − t)2

∥
∥
∥Jrxt − xnj

∥
∥
∥
2
+ 2t

〈
f(xt) − xnj , J

(
xt − xnj

)〉

≤ (1 − t)2
(∥
∥
∥Jrxt − Jrxnj

∥
∥
∥ +

∥
∥
∥Jrxnj − xnj

∥
∥
∥
)2

+ 2t
〈
f(xt) − xt, J

(
xt − xnj

)〉
+ 2t

∥
∥
∥xt − xnj

∥
∥
∥
2

≤ (1 − t)2
∥
∥
∥xt − xnj

∥
∥
∥
2
+ aj(t)

+ 2t
〈
f(xt) − xt, J

(
xt − xnj

)〉
+ 2t

∥
∥
∥xt − xnj

∥
∥
∥
2
.

(3.36)

The last inequality implies

〈
xt − f(xt), J

(
xt − xnj

)〉
≤ t

2

∥
∥
∥xt − xnj

∥
∥
∥
2
+

1
2t
aj(t). (3.37)

It follows that

lim
j→∞

〈
xt − f(xt), J

(
xt − xnj

)〉
≤ t

2
M, (3.38)

where M > 0 is a constant such that M ≥ ‖xt − xn‖2 for all n ≥ 0 and t ∈ (0, 1). Taking the
lim sup as t → 0 in (3.38) and noticing the fact that the two limits are interchangeable due to
the fact that J is uniformly continuous on bounded subsets of E from the strong topology of
E to the weak∗ topology of E∗, we have

lim
j→∞

〈(
I − f

)(
q
)
, J
(
q − xnj

)〉
≤ 0. (3.39)

Step 6. We show that limn→∞‖xn − q‖ = 0. By using (IS), we have

xn+1 − q = αn

(
f(xn) − q

)
+ (1 − αn)

(
yn − q

)
. (3.40)
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Applying Lemma 1, we obtain

∥
∥xn+1 − q

∥
∥2 ≤ (1 − αn)2

∥
∥yn − q

∥
∥2 + 2αn

〈
f(xn) − q, J

(
xn+1 − q

)〉

≤ (1 − αn)2
∥
∥xn − q

∥
∥2 + 2αn

〈
f(xn) − f

(
q
)
, J
(
xn+1 − q

)〉

+ 2αn

〈
f
(
q
) − q, J

(
xn+1 − q

)〉

≤ (1 − αn)2
∥
∥xn − q

∥
∥2 + 2kαn

∥
∥xn − q

∥
∥
∥
∥xn+1 − q

∥
∥

+ 2αn

〈
f
(
q
) − q, J

(
xn+1 − q

)〉

≤ (1 − αn)2
∥
∥xn − q

∥
∥2 + kαn

(∥
∥xn − q

∥
∥2 +

∥
∥xn+1 − q

∥
∥2

)

+ 2αn

〈
f
(
q
) − q, J

(
xn+1 − q

)〉
.

(3.41)

It then follows that

∥
∥xn+1 − q

∥
∥2 ≤ 1 − (2 − k)αn + α2

n

1 − kαn

∥
∥xn − q

∥
∥2 +

2αn

1 − kαn

〈(
I − f

)(
q
)
, J
(
q − xn+1

)〉

≤ 1 − (2 − k)αn

1 − kαn

∥
∥xn − q

∥
∥2 +

α2
n

1 − kαn
M

+
2αn

1 − kαn

〈(
I − f

)(
q
)
, J
(
q − xn+1

)〉
,

(3.42)

where M = supn≥0‖xn − q‖2. Put

λn =
2(1 − k)αn

1 − kαn
δn =

Mαn

2(1 − k)
+

1
1 − k

〈(
I − f

)(
q
)
, J
(
q − xn+1

)〉
. (3.43)

From (C1), (C2), and Step 5, it follows that λn → 0,
∑∞

n=0 λn = ∞ and lim supn→∞δn ≤ 0.
Since (3.42) reduces to

∥
∥xn+1 − q

∥
∥2 ≤ (1 − λn)

∥
∥xn − q

∥
∥2 + λnδn, (3.44)

from Lemma 3, we conclude that limn→∞‖xn − q‖ = 0. This completes the proof.

Corollary 1. Let E be a uniformly smooth Banach space. Let A be an m-accretive operator in E such
that C = D(A) is convex. Let F := A−1(0)/= ∅. Let f ∈ ΣC and x0 ∈ C be chosen arbitrarily. Let
the sequences {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ R

+ satisfy the conditions (C1), (C2), (B), and (R) in
Theorem 2. Let {xn} be the sequence generated by (IS). Then {xn} converges strongly to q ∈ F, where
q is the unique solution of the variational inequality

〈(
I − f

)(
q
)
, J
(
q − p

)〉 ≤ 0, f ∈ ΣC, p ∈ F. (3.45)
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Remark 9. (1) By removing the condition
∑∞

n=0 |αn+1 − αn| < ∞ on {αn}, the condition
∑∞

n=0 |βn+1 − βn| < ∞ on {βn}, and the condition
∑∞

n=0 |1 − rn/rn+1| < ∞ and the condition
∑∞

n=0 |rn+1 − rn| < ∞ on {rn}, Theorems 1 and 2 improve the corresponding results of Aoyama
et al. [16], Chen and Zhu [22, 23], Kim and Xu [12], Nakajo [17], Qin and Su [19], and Xu
[13] (i.e., Theorem 4.3 in [16], Theorem 3.4 in [22], Theorem 3.2 of [23], Theorem 2 in [12],
Theorem 4.2 in [17], Theorems 2.1 and 2.2 in [19] and Theorem 4.2 in [13]) in several aspects.

(2) Corollary 1 generalizes Corollary 3.2 of Jung [25]. Also Corollary 1 develops
Theorem 2 of Kim and Xu [12], Theorems 2.1 and 2.2 of Qin and Su [19], and Theorem 4.2 of
Xu [13] to the viscosity iteration method.

Next, we consider the viscosity iteration method with the weakly contractive mapping
for zeros of accretive operators.

Theorem 3. Let E be a Banach space, C a nonempty closed convex subset of E, and A ⊂ E × E an
accretive operator in E such that F := A−10/= ∅ and D(A) ⊂ C ⊂ ⋂

r>0R(I + rA). Let the sequences
{αn}, {βn} ⊂ [0, 1] and {rn} ⊂ R

+ satisfy the conditions (C1) (C2), (B), (R) in Theorem 1. Let
g : C → C be a weakly contractive mapping with the function ψ and let x0 ∈ C be chosen arbitrarily.
Let {xn} be a sequence generated by

x0 = x ∈ C,

yn = βnxn +
(
1 − βn

)
Jrnxn,

xn+1 = αng(xn) + (1 − αn)yn, n ≥ 0.

(3.46)

If one of the following assumptions holds:
(H1)E is a reflexive Banach space, the norm of E is uniformly Gâteaux differentiable, and every

weakly compact convex subset of E has the fixed point property for nonexpansive mappings;
(H2)E is a reflexive and strictly convex Banach space and the norm of E is uniformly Gâteaux

differentiable;
(H3)E is a reflexive Banach space having a weakly sequentially continuous duality mapping

Jϕ with gauge function ϕ;
then {xn} converges strongly to Q(g(x∗)) = x∗ ∈ F, where Q is the sunny nonexpansive retraction
from C onto F.

Proof. It follows from Remark 8(2) that F is the sunny nonexpansive retract of C. Denote by
Q the sunny nonexpansive retraction ofC onto F. ThenQ◦g is a weakly contractive mapping
of C into itself. Indeed, for all x, y ∈ C,

∥
∥Q

(
g(x)

) −Q
(
g
(
y
))∥
∥ ≤ ∥

∥g(x) − g
(
y
)∥
∥ ≤ ∥

∥x − y
∥
∥ − ψ

(∥
∥x − y

∥
∥
)
. (3.47)

Lemma 6 assures, that there exists a unique element x∗ ∈ C such that x∗ = Q(g(x∗)). Such a
x∗ ∈ C is an element of F.

Now we define a iterative scheme as follows:

zn = βnwn +
(
1 − βn

)
Jrnwn,

wn+1 = αng(x∗) + (1 − αn)zn, n ≥ 0.
(3.48)
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Let {wn} be the sequence generated by (3.48). Then Theorems 1 and 2 with f = g(x∗) a
constant assures that {wn} converges strongly to Q(g(x∗)) = x∗ as n → ∞. For any n, we
have

‖xn+1 −wn+1‖ ≤ αn

∥
∥g(xn) − g(x∗)

∥
∥ + (1 − αn)‖Jrnxn − Jrnwn‖

≤ αn

(∥
∥g(xn) − g(wn)

∥
∥ +

∥
∥g(wn) − g(x∗)

∥
∥
)
+ (1 − αn)‖xn −wn‖

≤ ‖xn −wn‖ − αnψ(‖xn −wn‖) + αn

(‖wn − x∗‖ − ψ(‖wn − x∗‖))

≤ ‖xn −wn‖ − αnψ(‖xn −wn‖) + αn‖wn − x∗‖.

(3.49)

Thus, we obtain for sn = ‖xn −wn‖ the following recursive inequality:

sn+1 ≤ sn − αnψ(sn) + αn‖wn − x∗‖. (3.50)

Since ‖wn − x∗‖ → 0, it follows from Lemma 7 that limn→∞‖xn −wn‖ = 0. Hence

lim
n→∞

‖xn − x∗‖ ≤ lim
n→∞

(‖xn −wn‖ + ‖wn − x∗‖) = 0. (3.51)

This completes the proof.

Remark 10. Theorem 3 also improves and develops the corresponding results of Aoyama et
al. [16], Benavides et al. [14], Chen and Zhu [22, 23], Jung [25], Kim and Xu [12], Maingé
[24], Nakajo [17], and Xu [13].
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