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In this paper, we are concerned with the following nonlinear third-order m-point boundary value
problem: u′′′(t) + f(t, u(t), u′′(t)) = 0, t ∈ [0, 1], u(0) = A, u′(1) −∑m−2

i=1 aiu′(ξi) = B, u′′(0) = C. Some
existence criteria of solution and positive solution are established by using the Schauder fixed
point theorem. An example is also included to illustrate the importance of the results obtained.

1. Introduction

Third-order differential equations arise in a variety of different areas of applied mathematics
and physics, for example, in the deflection of a curved beam having a constant or varying
cross-section, a three-layer beam, electromagnetic waves, or gravity-driven flows and so on
[1].

Recently, third-order two-point or three-point boundary value problems (BVPs) have
received much attention from many authors; see [2–10] and the references therein. In
particular, Yao [10] employed the Leray-Schauder fixed point theorem to prove the existence
of solution and positive solution for the BVP

u′′′(t) + f
(
t, u(t), u′′(t)

)
= 0, t ∈ [0, 1],

u(0) = A, u(1) = B, u′′(0) = C.
(1.1)

Although there are many excellent results on third-order two-point or three-point
BVPs, few works have been done for more general third-order m-point BVPs [11–13]. It is
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worth mentioning that Jin and Lu [12] studied some third-order differential equation with
the following m-point boundary conditions:

u(0) = 0, u′(1) =
m−2∑

i=1

aiu
′(ξi), u′′(0) = 0. (1.2)

The main tool used was Mawhin’s continuation theorem.
Motivated greatly by [10, 12], in this paper, we investigate the following nonlinear

third-orderm-point BVP:

u′′′(t) + f
(
t, u(t), u′′(t)

)
= 0, t ∈ [0, 1],

u(0) = A, u′(1) −
m−2∑

i=1

aiu
′(ξi) = B, u′′(0) = C.

(1.3)

Throughout, we always assume that ai ≥ 0 (i = 1, 2, . . . , m−2) and 0 < ξ1 < ξ2 < · · · < ξm−2 < 1.
The purpose of this paper is to consider the local properties of f on some bounded sets and
establish some existence criteria of solution and positive solution for the BVP (1.3) by using
the Schauder fixed point theorem. An example is also included to illustrate the importance of
the results obtained.

2. Main Results

Lemma 2.1. Let
∑m−2

i=1 ai /= 1. Then, for any v ∈ C[0, 1], the BVP

u′′(t) = v(t), t ∈ [0, 1],

u(0) = A, u′(1) −
m−2∑

i=1

aiu
′(ξi) = B

(2.1)

has a unique solution

u(t) =
B −∑m−2

i=1 ai

∫1
ξi
v(s)ds

1 −∑m−2
i=1 ai

t +A −
∫1

0
G(t, s)v(s)ds, t ∈ [0, 1], (2.2)

where

G(t, s) =

⎧
⎨

⎩

s, 0 ≤ s ≤ t ≤ 1,

t, 0 ≤ t ≤ s ≤ 1.
(2.3)

Proof. If u is a solution of the BVP (2.1), then we may suppose that

u(t) = Mt +N −
∫1

0
G(t, s)v(s)ds, t ∈ [0, 1]. (2.4)
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By the boundary conditions in (2.1), we know that

M =
B −∑m−2

i=1 ai

∫1
ξi
v(s)ds

1 −∑m−2
i=1 ai

, N = A. (2.5)

Therefore, the unique solution of the BVP (2.1)

u(t) =
B −∑m−2

i=1 ai

∫1
ξi
v(s)ds

1 −∑m−2
i=1 ai

t +A −
∫1

0
G(t, s)v(s)ds, t ∈ [0, 1]. (2.6)

In the remainder of this paper, we always assume that
∑m−2

i=1 ai /= 1. For convenience,
we denote

R = (−∞,+∞), R+ = [0,+∞), R− = (−∞, 0],

σ =
2
∣
∣
∣1 −∑m−2

i=1 ai

∣
∣
∣

2
∑m−2

i=1 ai +
∣
∣
∣1 −∑m−2

i=1 ai

∣
∣
∣
, η = max

{

|A|,
∣
∣
∣
∣
∣

B

1 −∑m−2
i=1 ai

∣
∣
∣
∣
∣
,
|C|
σ

}

.
(2.7)

The following theorem guarantees the existence of solution for the BVP (1.3).

Theorem 2.2. Assume that f : [0, 1] × R × R → R is continuous and there exist c > 0 and
1/4 ≤ k ≤ 1/2 such that

max
{∣
∣f(t, u, v)

∣
∣ : t ∈ [0, 1], |u| ≤ 4η + c, |v| ≤ σk

(
4η + c

)} ≤ σ
[
(4k − 1)η + kc

]
. (2.8)

Then the BVP (1.3) has one solution u0 satisfying

|u0(t)| ≤ 4η + c, t ∈ [0, 1],
∣
∣u′′

0(t)
∣
∣ ≤ σk

(
4η + c

)
, t ∈ [0, 1].

(2.9)

Proof. Let E = C[0, 1] × C[0, 1] be equipped with the norm ‖(u, v)‖ = max{‖u‖∞, ‖v‖∞/σk},
where ‖u‖∞ = maxt∈[0,1]|u(t)|. Then E is a Banach space.

Let v(t) = u′′(t), t ∈ [0, 1]. Then the BVP (1.3) is equivalent to the following system:

u′′(t) = v(t), t ∈ [0, 1],

v′(t) = −f(t, u(t), v(t)), t ∈ [0, 1],

u(0) = A, u′(1) −
m−2∑

i=1

aiu
′(ξi) = B, v(0) = C.

(2.10)
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Furthermore, it is easy to know that the system (2.10) is equivalent to the following system:

u(t) =
B −∑m−2

i=1 ai

∫1
ξi
v(s)ds

1 −∑m−2
i=1 ai

t +A −
∫1

0
G(t, s)v(s)ds, t ∈ [0, 1],

v(t) = C −
∫ t

0
f(s, u(s), v(s))ds, t ∈ [0, 1].

(2.11)

Now, if we define an operator F : E → E by

F(u, v) = (F1(u, v), F2(u, v)), (2.12)

where

F1(u, v)(t) =
B −∑m−2

i=1 ai

∫1
ξi
v(s)ds

1 −∑m−2
i=1 ai

t +A −
∫1

0
G(t, s)v(s)ds, t ∈ [0, 1],

F2(u, v)(t) = C −
∫ t

0
f(s, u(s), v(s))ds, t ∈ [0, 1],

(2.13)

then it is easy to see that F : E → E is completely continuous and the system (2.11) and so
the BVP (1.3) is equivalent to the fixed point equation

F(u, v) = (u, v), (u, v) ∈ E. (2.14)

Let V = {(u, v) ∈ E : ‖(u, v)‖ ≤ 4η+ c}. Then V is a closed convex subset of E. Suppose
that (u, v) ∈ V . Then ‖u‖∞ ≤ 4η + c and ‖v‖∞ ≤ σk(4η + c). So,

|u(t)| ≤ 4η + c, t ∈ [0, 1], (2.15)

|v(t)| ≤ σk
(
4η + c

)
, t ∈ [0, 1], (2.16)

which implies that

∣
∣f(t, u(t), v(t))

∣
∣ ≤ σ

[
(4k − 1)η + kc

]
, t ∈ [0, 1]. (2.17)
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From (2.16) and 1/4 ≤ k ≤ 1/2, we have

‖F1(u, v)‖∞ ≤ max
t∈[0,1]

⎛

⎝

∣
∣
∣
∣
∣

B

1 −∑m−2
i=1 ai

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

∑m−2
i=1 ai

∫1
ξi
v(s)ds

1 −∑m−2
i=1 ai

∣
∣
∣
∣
∣
∣

⎞

⎠t + |A| + max
t∈[0,1]

∫1

0
G(t, s)|v(s)|ds

≤
∣
∣
∣
∣
∣

B

1 −∑m−2
i=1 ai

∣
∣
∣
∣
∣
+
σk

(
4η + c

)∑m−2
i=1 ai

∣
∣
∣1 −∑m−2

i=1 ai

∣
∣
∣

+ |A| + σk
(
4η + c

)

2

≤ 2η +
2
∑m−2

i=1 ai +
∣
∣
∣1 −∑m−2

i=1 ai

∣
∣
∣

2
∣
∣
∣1 −∑m−2

i=1 ai

∣
∣
∣

σk
(
4η + c

)

= 4η
(

k +
1
2

)

+ kc.

(2.18)

On the other hand, it follows from (2.17) that

‖F2(u, v)‖∞ = max
t∈[0,1]

∣
∣
∣
∣
∣
C −

∫ t

0
f(s, u(s), v(s))ds

∣
∣
∣
∣
∣

≤ |C| +
∫1

0

∣
∣f(s, u(s), v(s))

∣
∣ds

≤ ση + σ
[
(4k − 1)η + kc

]

= σk
(
4η + c

)
.

(2.19)

In view of (2.18) and (2.19), we know that

‖(F1(u, v), F2(u, v))‖ = max
{

‖F1(u, v)‖∞,
‖F2(u, v)‖∞

σk

}

≤ 4η + c,

(2.20)

which shows that F : V → V . Then it follows from the Schauder fixed point theorem that
F has a fixed point (u0, v0) ∈ V . In other words, the BVP (1.3) has one solution u0, which
satisfies

|u0(t)| ≤ 4η + c, t ∈ [0, 1],
∣
∣u′′

0(t)
∣
∣ ≤ σk

(
4η + c

)
, t ∈ [0, 1].

(2.21)

On the basis of Theorem 2.2, we now give some existence results of nonnegative
solution and positive solution for the BVP (1.3).
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Theorem 2.3. Assume that A ≥ 0, B ≥ 0, C ≤ 0,
∑m−2

i=1 ai < 1, f : [0, 1] × R+ × R− → R+ is
continuous, and there exist c > 0 and 1/4 ≤ k ≤ 1/2 such that

max
{
f(t, u, v) : t ∈ [0, 1], 0 ≤ u ≤ 4η + c, −σk(4η + c

) ≤ v ≤ 0
} ≤ σ

[
(4k − 1)η + kc

]
.
(2.22)

Then the BVP (1.3) has one solution u0 satisfying

0 ≤ u0(t) ≤ 4η + c, t ∈ [0, 1],

−σk(4η + c
) ≤ u′′

0(t) ≤ 0, t ∈ [0, 1].
(2.23)

Proof. Let

f1(t, u, v) =

⎧
⎨

⎩

f(t, u, v), (t, u, v) ∈ [0, 1] × R+ × R−,

f(t, u, 0), (t, u, v) ∈ [0, 1] × R+ × R+,

f2(t, u, v) =

⎧
⎨

⎩

f1(t, u, v) (t, u, v) ∈ [0, 1] × R+ × R,

f1(t, 0, v) (t, u, v) ∈ [0, 1] × R− × R.

(2.24)

Then f2 : [0, 1] × R × R → R+ is continuous and

max
{∣
∣f2(t, u, v)

∣
∣ : t ∈ [0, 1], |u| ≤ 4η + c, |v| ≤ σk

(
4η + c

)}

= max
{
f(t, u, v) : t ∈ [0, 1], 0 ≤ u ≤ 4η + c, −σk(4η + c

) ≤ v ≤ 0
}

≤ σ
[
(4k − 1)η + kc

]
.

(2.25)

Consider the BVP

u′′′(t) + f2
(
t, u(t), u′′(t)

)
= 0, t ∈ [0, 1],

u(0) = A, u′(1) −
m−2∑

i=1

aiu
′(ξi) = B, u′′(0) = C.

(2.26)

By Theorem 2.2, we know that the BVP (2.26) has one solution u0 satisfying

|u0(t)| ≤ 4η + c, t ∈ [0, 1],
∣
∣u′′

0(t)
∣
∣ ≤ σk

(
4η + c

)
, t ∈ [0, 1].

(2.27)

Since C ≤ 0, we get

u′′
0(t) = C −

∫ t

0
f2
(
s, u0(s), u′′

0(s)
)
ds ≤ 0, t ∈ [0, 1]. (2.28)
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In view of (2.28) and u′
0(1) −

∑m−2
i=1 aiu

′
0(ξi) = B, we have

u′
0(t) ≥ u′

0(1) ≥
B

1 −∑m−2
i=1 ai

≥ 0, t ∈ [0, 1], (2.29)

which implies that

u0(t) ≥ u0(0) = A ≥ 0, t ∈ [0, 1]. (2.30)

It follows from (2.28), (2.30), and the definition of f2 that

f2
(
t, u0(t), u′′

0(t)
)
= f

(
t, u0(t), u′′

0(t)
)
, t ∈ [0, 1]. (2.31)

Therefore, u0 is a solution of the BVP (1.3) and satisfies

0 ≤ u0(t) ≤ 4η + c, t ∈ [0, 1],

−σk(4η + c
) ≤ u′′

0(t) ≤ 0, t ∈ [0, 1].
(2.32)

Corollary 2.4. Assume that all the conditions of Theorem 2.3 are fulfilled. Then the BVP (1.3) has
one positive solution if one of the following conditions is satisfied:

(i) A + B > 0;

(ii) C < 0;

(iii) f(t, 0, 0)/≡ 0, t ∈ [0, 1].

Proof. Since it is easy to prove Cases (ii) and (iii), we only prove Case (i). It follows from
Theorem 2.3 that the BVP (1.3) has a solution u0, which satisfies

0 ≤ u0(t) ≤ 4η + c, t ∈ [0, 1],

−σk(4η + c
) ≤ u′′

0(t) ≤ 0, t ∈ [0, 1].
(2.33)

Suppose that A + B > 0. Then for any t ∈ (0, 1), we have

u0(t) =
B −∑m−2

i=1 ai

∫1
ξi
u′′
0(s)ds

1 −∑m−2
i=1 ai

t +A −
∫1

0
G(t, s)u′′

0(s)ds

≥ Bt

1 −∑m−2
i=1 ai

+A

≥ Bt +A

≥ (B +A)t

> 0,

(2.34)

which shows that u0 is a positive solution of the BVP (1.3).
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Example 2.5. Consider the BVP

u′′′(t) + f
(
t, u(t), u′′(t)

)
= 0, t ∈ [0, 1],

u(0) = 1, u′(1) − 1
2
u′
(
1
2

)

= 0, u′′(0) = −1,
(2.35)

where f(t, u, v) = u2/189 + (1 − t)v2/14 + 1/9, (t, u, v) ∈ [0, 1] × R+ × R−.
A simple calculation shows that σ = 2/3 and η = 3/2. Thus, if we choose k = 1/3 and

c = 1, then all the conditions of Theorem 2.3 and (i) of Corollary 2.4 are fulfilled. It follows
from Corollary 2.4 that the BVP (2.35) has a positive solution.
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