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18000 Niŝ, Serbia
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We introduce the concept of aw-compatible mapping to obtain a coupled coincidence point and a
coupled point of coincidence for nonlinear contractive mappings in partially orderedmetric spaces
equipped withw-distances. Related coupled common fixed point theorems for such mappings are
also proved. Our results generalize, extend, and unify several well-known comparable results in
the literature.

1. Introduction and Preliminaries

In 1996, Kada et al. [1] introduced the notion of w-distance. They elaborated, with the help
of examples, that the concept of w-distance is general than that of metric on a nonempty set.
They also proved a generalization of Caristi fixed point theorem employing the definition of
w-distance on a complete metric space. Recently, Ilić and Rakočević [2] obtained fixed point
and common fixed point theorems in terms ofw-distance on complete metric spaces (see also
[3–9]).

Definition 1.1. Let (X, d) be a metric space. A mapping p : X × X → [0,∞) is called a w-
distance on X if the following are satisfied:

(w1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X,

(w2) for any x ∈ X,p(x, ·) : X → [0,∞) is lower semicontinuous,
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(w3) for any ε > 0 there exists δ(ε) > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply
p(x, y) ≤ ε, for any x, y, z ∈ X.

The metric d is a w-distance on X. For more examples of w-distances, we refer to [10].

Definition 1.2. Let X be a nonempty set with a w-distance on X. Ones denotes the w-closure
of a subset B of X by clω(B) which is defined as

clω(B) =
{
x ∈ X : p(xn, x) −→ 0 for some sequence {xn} in B

} ∪ B. (1.1)

The next Lemma is crucial in the proof of our results.

Lemma 1.3 (see [1]). Let (X, d) be a metric space, and let p be a w-distance on X. Let {xn} and
{yn} be sequences in X, let αn and βn be sequences in [0,∞) converging to 0, and let x, y, z ∈ X.
Then the following hold.

(1) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then y = z. In particular, if p(x, y) =
0, p(x, z) = 0 then y = z.

(2) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then yn converges to z.

(3) If p(xn, xm) ≤ αn for any m,n ∈ N with n ≺ m, then xn is a Cauchy sequence.

(4) If p(y, xn) ≤ αn for any n ∈ N, then xn is a Cauchy sequence.

Bhaskar and Lakshmikantham in [11] introduced the concept of coupled fixed point
of a mapping F : X×X → X and investigated some coupled fixed point theorems in partially
ordered sets. They also discussed an application of their result by investigating the existence
and uniqueness of solution for a periodic boundary value problem. Sabetghadam et al. in [12]
introduced this concept in cone metric spaces. They investigated some coupled fixed point
theorems in cone metric spaces. Recently, Lakshmikantham and Ćirić [13] proved coupled
coincidence and coupled common fixed point theorems for nonlinear contractive mappings
in partially ordered complete metric spaces which extend the coupled fixed point theorem
given in [11]. The following are some other definitions needed in the sequel.

Definition 1.4 (see [12]). Let X be any nonempty set. Let F : X × X → X and g : X → X be
two mappings. An ordered pair (x, y) ∈ X ×X is called

(1) a coupled fixed point of a mapping F : X ×X → X if x = F(x, y) and y = F(y, x),

(2) a coupled coincidence point of hybrid pair {F, g} if g(x) = F(x, y) and g(y) =
F(y, x) and (gx, gy) is called coupled point of coincidence,

(3) a common coupled fixed point of hybrid pair {F, g} if x = g(x) = F(x, y) and
y = g(y) = F(y, x).

Note that if (x, y) is a coupled fixed point of F, then (y, x) is also a coupled fixed point of the
mapping F.

Definition 1.5. Let X be any nonempty set. Mappings F : X × X → X and g : X → X are
called w-compatible if g(F(x, y)) = F(gx, gy) whenever g(x) = F(x, y) and g(y) = F(y, x).
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Definition 1.6. Let (X, d) be a metric space with w-distance p. A mapping F : X × X → X
is said to be w-continuous at a point (x, y) ∈ X × X with respect to mapping g : X → X
if for every ε > 0 there exists a δ(ε) > 0 such that p(gu, gx) + p(gv, gy) < δ implies that
p(F(x, y), F(u, v)) < ε for all u, v ∈ X.

Definition 1.7. Let X be a partially ordered set. Mapping g : X → X is called strictly
monotone increasing mapping if

x � y ⇐⇒ gx � gy or equivalentlyx � y ⇐⇒ gx � gy. (1.2)

Definition 1.8. Let X be a partially ordered set. A mapping F : X × X → X is said to be a
mixed monotone if F(x, y) is monotone nondecreasing in x and monotone nonincreasing in
y, that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 � x2 =⇒ F
(
x1, y

)
� F

(
x2, y

)
,

y1, y2 ∈ X, y1 � y2 =⇒ F
(
x, y1

)
� F

(
x, y2

)
.

(1.3)

Kada et al. [1] gave an example to show that p is not symmetric in general. We denote by
M(X) and M1(X), respectively, the class of all w-distances on X and the class of all w-
distances on X which are symmetric for comparable elements in X. Also in the sequel, we
will consider that (x, y) and (u, v) are comparable with respect to ordering in X ×X if x � u
and y � v.

2. Coupled Coincidence Point

In this section, we prove coincidence point results in the frame work of partially ordered
metric spaces in terms of a w-distance.

Theorem 2.1. Let (X, d) be a partially ordered metric space with a w-distance p and g : X → X a
strictly monotone increasing mapping. Suppose that a mixed monotone mapping F : X × X → X is
w-continuous with respect to g such that

p
(
F
(
x, y

)
, F(u, v)

) ≤ a1p
(
gu, gx

)
+ a2p

(
gv, gy

)
, (2.1)

for all x, y, u, v ∈ X with x � u, y � v or x � u, y � v and a1 + a2 < 1. Let F(X ×X) ⊆ g(X) and
p(y, x) = 0 whenever p(x, y) = 0, for some x, y ∈ clω(F(X ×X)). If g(X) is complete and there exist
x0, y0 ∈ X such that gx0 � F(x0, y0) and F(y0, x0) � gy0, then F and g have a coupled coincidence
point.

Proof. Let gx1 = F(x0, y0) and gy1 = F(y0, x0) for some x1, y1 ∈ X; this can be done since
F(X × X) ⊆ g(X). Following the same arguments, we obtain gx2 = F(x1, y1) and gy2 =
F(y1, x1). Put

F1(x0, y0
)
= gx1, F2(x0, y0

)
= F

(
x1, y1

)
= gx2,

F2(y0, x0
)
= F

(
y1, x1

)
= gy2.

(2.2)
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Similarly for all n ∈ N,

gxn+1 = Fn+1(x0, y0
)
, gyn+1 = Fn+1(y0, x0

)
. (2.3)

Since g is strictly monotone increasing and F has the mixed monotone property, we have

gx2 = F2(x0, y0
)
= F

(
x1, y1

)
� F

(
x0, y0

)
= gx1, gy2 � gy1. (2.4)

Similarly

gx0 � F
(
x0, y0

)
= gx1 � F2(x0, y0

)
= gx2 � · · ·

� Fn+1(x0, y0
)
= gxn+1 � · · · ,

gy0 � F
(
y0, x0

)
= gy1 � F2(y0, x0

)
= gy2 � · · ·

� Fn+1(y0, x0
)

� · · · .

(2.5)

Now for all n ≥ 2, using (2.1), we get

p
(
Fn(x0, y0

)
, Fn+1(x0, y0

))

= p
(
F
(
xn−1, yn−1

)
, F

(
xn, yn

))

≤ a1p
(
gxn, gxn−1

)
+ a2p

(
gyn, gyn−1

)

= a1

[
p
(
Fn(x0, y0

)
, Fn−1(x0, y0

))]
+ a2

[
p
(
Fn(y0, x0

)
, Fn−1(y0, x0

))]
,

p
(
Fn(y0, x0

)
, Fn+1(y0, x0

))

≤ a1

[
p
(
Fn(y0, x0

)
, Fn−1(y0, x0

))]
+ a2

[
p
(
Fn(x0, y0

)
, Fn−1(x0, y0

))]
.

(2.6)

From (2.6),

p
(
Fn(x0, y0

)
, Fn+1(x0, y0

))
+ p

(
Fn(y0, x0

)
, Fn+1(y0, x0

))

≤ h
[
p
(
Fn(x0, y0

)
, Fn−1(x0, y0

))
+ p

(
Fn(y0, x0

)
, Fn−1(y0, x0

))]
,

(2.7)

where h = a1 + a2. Continuing, we conclude that

p
(
Fn(x0, y0

)
, Fn+1(x0, y0

))
+ p

(
Fn(y0, x0

)
, Fn+1(y0, x0

))

≤ hn(p
(
gx1, gx0

))
+ p

(
gy1, gy0

))
= hnδ1

(2.8)
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if n is odd, where δ1 = p(gx1, gx0) + p(gy1, gy0). Also,

p
(
Fn(x0, y0

)
, Fn+1(x0, y0

))
+ p

(
Fn(y0, x0

)
, Fn+1(y0, x0

))

≤ hn(p
(
gx0, gx1

)
+ p

(
gy0, gy1

))
= hnδ2

(2.9)

if n is even, where

δ2 = p
(
gx0, gx1

)
+ p

(
gy0, gy1

)
. (2.10)

Let δn = p(Fn(x0, y0), Fn+1(x0, y0))+p(Fn(y0, x0), Fn+1(y0, x0)); then for every n inN we have

δn ≤ hnδ0, (2.11)

where

δ0 = max{δ1, δ2}. (2.12)

Hence,

p
(
Fn(x0, y0

)
, Fn+1(x0, y0

)) −→ 0, p
(
Fn(y0, x0

)
, Fn+1(y0, x0

)) −→ 0 as n −→ ∞. (2.13)

For m > n, we get

p
(
Fn(x0, y0

)
, Fm(x0, y0

))
+ p

(
Fn(y0, x0

)
, Fm(y0, x0

))

≤ p
(
Fn(x0, y0

)
, Fn+1(x0, y0

))
+ p

(
Fn+1(x0, y0

)
, Fn+2(x0, y0

))
+ · · ·

+ p
(
Fm−1(x0, y0

)
, Fm(x0, y0

))

+ p
(
Fn(y0, x0

)
, Fn+1(y0, x0

))
+ p

(
Fn+1(y0, x0

)
, Fn+2(y0, x0

))
+ · · ·

+ p
(
Fm−1(y0, x0

)
, Fm(y0, x0

))

= δn + δn+1 + · · · + δm−1 ≤ hnδ0 + hn+1δ0 + · · · + hm−1δ0 ≤ hn

1 − h
δ0

(2.14)

which further implies that

p
(
Fn(x0, y0

)
, Fm(x0, y0

)) ≤ hn

1 − h
δ0

p
(
Fn(y0, x0

)
, Fm(y0, x0

)) ≤ hn

1 − h
δ0.

(2.15)
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Lemma 1.3(3) implies that {Fn(x0, y0)} = {gxn} and {Fn(y0, x0)} = {gyn} are Cauchy
sequences in g(X). Since g(X) is complete, there exist x, y ∈ X such that gxn → gx and
gyn → gy. Since p(gxn, ·) is lower semicontinuous, we have

p
(
Fn(x0, y0

))
, gx

) ≤ lim inf
m→∞

p
(
gxn, gxm

) ≤ hn

1 − h
δ0 (2.16)

which implies that

p
(
Fn(x0, y0

))
, gx

) −→ 0 as n −→ ∞. (2.17)

Similarly

p
(
Fn(y0, x0

))
, gy

) −→ 0 as n −→ ∞. (2.18)

Let ε > 0 be given. Since F is w-continuous at (x, y) with respect to g, there exists δ > 0 such
that for each n

p
(
gxn, gx

)
+ p

(
gyn, gy

)
< δ implies that p

(
F
(
x, y

)
, F

(
xn, yn

))
<

ε

2
. (2.19)

Since p(gxn, gx) → 0 and p(gyn, gy) → 0, for γ = min(ε/2, δ/2), there exists n0 such that,
for all n ≥ n0,

p
(
gxn, gx

)
< γ, p

(
gyn, gy

)
< γ. (2.20)

Now,

p
(
F
(
x, y

)
, gx

) ≤ p
(
F
(
x, y

)
, Fn0+1

(
x0, y0

))
+ p

(
Fn0+1

(
x0, y0

)
, gx

)

= p
(
F
(
x, y

)
, F

(
xn0 , yn0

))
+ p

(
gxn0+1, gx

)

<
ε

2
+ γ = ε

(2.21)

implies that p(F(x, y), gx) = 0. Since

p
(
Fn(x0, y0

)
, F

(
x, y

)) ≤ p
(
Fn(x0, y0

)
, gx

)
+ p

(
gx, F

(
x, y

))

≤ hn

1 − h
δ0,

(2.22)

using Lemma 1.3(1), we obtain F(x, y) = gx. Similarly, we can prove that F(y, x) = gy. Hence
(x, y) is coupled coincidence point of F and g.
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Theorem 2.2. Let (X, d) be a partially ordered metric space with aw-distance p having the following
properties.

(1) If {xn} is in X with xn � xn+1 for all n and xn → x for some x ∈ X, then xn � x for all
n.

(2) If {yn} is in X with yn+1 � yn for all n and yn → y for some y ∈ X, then y � yn for all
n.

Let F : X ×X → X be a mixed monotone and g : X → X a strict monotone increasing
mapping such that

p
(
F
(
x, y

)
, F(u, v)

) ≤ a1p
(
gu, gx

)
+ a2p

(
gv, gy

)
, (2.23)

for all x, y, u, v ∈ X with x � u, y � v or x � u, y � v and a1 + a2 < 1. Let F(X × X) ⊆ g(X)
and p(y, x) = 0 whenever p(x, y) = 0, for some x, y ∈ clω(F(X ×X)). If g(X) is complete and
there exist x0, y0 ∈ X such that gx0 � F(x0, y0) and F(y0, x0) � gy0, then F and g have a
coupled coincidence point.

Proof. Construct two sequences {gxn} = {Fn(x0, y0)} and {gyn} = {Fn(y0, x0)} such that
gxn � gxn+1 and gyn � gyn+1 for all n and gxn → gx and gyn → gy for some x ∈ X, as
given in the proof of Theorem 2.1. Now, we need to show that F(x, y) = gx and F(y, x) = gy.
Let ε > 0. Since p(Fn(x0, y0), gx) → 0 and p(Fn(y0, x0), gy) → 0, there exists n1 ∈ N such
that, for all n ≥ n1, we have

p
(
Fn(x0, y0

)
, gx

)
<

ε

3
, p

(
Fn(y0, x0

)
, gy

)
<

ε

3
. (2.24)

Consider

p
(
F
(
x, y

)
, gx

) ≤ p
(
F
(
x, y

)
, Fn+1(x0, y0

))
+ p

(
Fn+1(x0, y0

)
, gx

)

= p
(
F
(
x, y

)
, F

(
xn, yn

))
+ p

(
Fn+1(x0, y0

)
, gx

)

≤ a1p
(
gxn, gx

)
+ a2p

(
gyn, gy

)
+ p

(
Fn+1(x0, y0

)
, gx

)

= a1p
(
Fn(x0, y0

)
, gx

)
+ a2p

(
Fn(y0, x0

)
, gy

)
+ p

(
Fn+1(x0, y0

)
, gx

)

< a1
ε

3
+ a2

ε

3
+
ε

3

< ε,

(2.25)

which implies that p(F(x, y), gx) = 0. Also, from Theorem 2.1, we have

p
(
Fn(x0, y0

)
, gx

) ≤ hn

1 − h
δ0. (2.26)
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Therefore,

p
(
Fn(x0, y0

)
, F

(
x, y

))

≤ p
(
Fn(x0, y0

)
, gx

)
+ p

(
gx, F

(
x, y

))

≤ hn

1 − h
δ0

(2.27)

implies that gx = F(x, y). Similarly, we can prove that F(y, x) = gy. Hence (x, y) is coupled
coincidence point of F and g.

3. Coupled Common Fixed Point

In this section, using the concept ofw-compatible maps, we obtain a unique coupled common
fixed point of two mappings.

Theorem 3.1. Let all the hypotheses of Theorem 2.1 (resp., Theorem 2.2) hold with a1 + a2 < 1/2. If
for every (x, y), (x∗, y∗) ∈ X ×X there exists (u, v) ∈ X ×X that is comparable to (x, y) and (x∗, y∗)
with respect to ordering in X ×X, then there exists a unique coupled point of coincidence of F and g.
Moreover if F and g are w-compatible, then F and g have a unique coupled common fixed point.

Proof. Let (gx∗, gy∗) be another coupled coincidence point of F and g. We will discuss the
following two cases.

Case 1. If (x, y) is comparable to (x∗, y∗)with respect to ordering in X ×X, then

p
(
gx, gx∗) + p

(
gy, gy∗)

= p
(
F
(
x, y

)
, F

(
x∗, y∗)) + p

(
F
(
y, x

)
, F

(
y∗, x∗))

≤ a1p
(
gx∗, gx

)
+ a2p

(
gy∗, gy

)
+ a1p

(
gy∗, gy

)
+ a2p

(
gx∗, gx

)

≤ (a1 + a2)
[
p
(
gx, gx∗) + p

(
gy, gy∗)]

(3.1)

implies that p(gx, gx∗) + p(gy, gy∗) = 0. Hence p(gx, gx∗) = 0 = p(gy, gy∗). Also,

p
(
gx, gx

)
+ p

(
gy, gy

)
= p(F(x, x), F(x, x)) + p

(
F
(
y, y

)
, F

(
y, y

))

≤ 2a1p
(
gx, gx

)
+ 2a2p

(
gy, gy

) (3.2)

gives that p(gx, gx) = 0 = p(gy, gy). The result follows using Lemma 1.3(1).

Case 2. If (x, y) is not comparable to (x∗, y∗), then there exists an upper bound or lower
bound (u, v) of (x, y), (x∗, y∗). Again since g is strictly monotone increasing mapping and
F satisfies mixed monotone property, therefore, for all n = 0, 1, . . .,(Fn(u, v), Fn(v, u)) is
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comparable to (Fn(x, y), Fn(y, x)) = (gx, gy) and (Fn(y, x), Fn(x, y)) = (gy, gx). Following
similar arguments to those given in the proof of Theorem 2.1, we obtain

p
(
gx, gx∗) + p

(
gy, gy∗) = p

(
Fn(x, y

)
, Fn(x∗, y∗)) + p

(
Fn(y, x

)
, Fn(y∗, x∗))

≤ [
p
(
Fn(x, y

)
, Fn(u, v)

)
+ p

(
Fn(u, v), Fn(x∗, y∗))]

+
[
p
(
Fn(y, x

)
, Fn(v, u)

)
+ p

(
Fn(v, u), Fn(y∗, x∗))]

=
[
p
(
Fn(x, y

)
, Fn(u, v)

)
+ p

(
Fn(y, x

)
, Fn(v, u)

)]

+
[
p
(
Fn(u, v), Fn(x∗, y∗)) + p

(
Fn(v, u), Fn(y∗, x∗))]

≤ hnβ0 + hnγ0,

(3.3)

where β0 = max{p(gu, gx) + p(gv, gy), p(gx, gu) + p(gy, gv)} and γ0 = max{p(gx∗, gu) +
p(gy∗, gv), p(gu, gx∗) + p(gv, gy∗)}. On taking limit as n → ∞ on both sides of (3.3), we
have

p
(
gx, gx∗) + p

(
gy, gy∗) = 0 (3.4)

and p(gx, gx∗) = 0 = p(gy, gy∗). By the same lines as in Case 1, we prove that p(gx, gx) =
0 = p(gy, gy). Again Lemma 1.3(1) implies that gx = gx∗ and gy = gy∗. Hence (gx, gy) is
unique coupled point of coincidence of F and g. Note that if (gx,gy) is a coupled point of
coincidence of F and g, then (gy, gx) are also a coupled points of coincidence of F and g.
Then gx = gy and therefore (gx, gx) is unique coupled point of coincidence of F and g. Let
u = gx. Since F and g are w-compatible, we obtain

gu = g
(
gx

)
= g(F(x, x)) = F

(
gx, gx

)
= F(u, u). (3.5)

Consequently gu = gx. Therefore u = gu = F(u, u). Hence (u, u) is a coupled common fixed
point of F and g.

Remark 3.2. If in addition to the hypothesis of Theorem 2.1 (resp., Theorem 2.2) we suppose
that p ∈ M1(X), x0 and y0 are comparable, then gx = gy.

Proof. Recall that gx0 � F(x0, y0). Now, if x0 � y0, then gx0 � gy0. We claim that, for all
n ∈ N, gxn � gyn. Since g is strictly monotone increasing and F satisfies mixed monotone
property, we have

gx1 = F
(
x0, y0

)
� F

(
y0, x0

)
= gy1. (3.6)

Assuming that gxn � gyn, since g is strictly monotone increasing, so xn � yn. By the mixed
monotone property of F, we have

gxn+1 = Fn+1(x0, y0
)
= F

(
xn, yn

)
� F

(
yn, xn

)
= gyn+1. (3.7)
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Therefore,

gxn � gyn ∀n. (3.8)

Letting ε > 0, there exists an n0 ∈ N such that p(gx, Fn(x0, y0)) < ε/4 and p(Fn(y0, x0), gy) <
ε/4 for all n ≥ n0. Now,

p
(
gx, gy

) ≤ p
(
gx, Fn0+1

(
x0, y0

))
+
(
Fn0+1

(
x0, y0

)
, gy

)

≤ p
(
gx, Fn0+1

(
x0, y0

))
+ p

(
Fn0+1

(
x0, y0

)
, Fn0+1

(
y0, x0

))
+
(
Fn0+1

(
y0, x0

)
, gy

)

<
ε

4
+ hp

(
Fn0

(
x0, y0

)
, Fn0

(
y0, x0

))
+
ε

4

≤ ε

2
+ h

[
p
(
Fn0

(
x0, y0

)
, gx

)
+ p

(
gx, gy

)
+
(
gy, Fn0

(
y0, x0

))]

<
ε

2
+ h

ε

4
+ hp

(
gx, gy

)
+ h

ε

4

< ε + hp
(
gx, gy

)

(3.9)

implies that (1 − h)p(gx, gy) < ε. Since h < 1, therefore p(gx, gy) = 0. Similarly we can prove
that p(gx, gx) = 0. Hence by Lemma 1.3(1), we have gx = gy. Similarly, if gx0 � gy0, we can
show that gxn � gyn for each n and gx = gy.
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