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The viscosity approximation methods are employed to establish strong convergence theorems of
the modified Mann iteration scheme to λ-strict pseudocontractions in p-uniformly convex Banach
spaces with a uniformly Gâteaux differentiable norm. The main result improves and extends many
nice results existing in the current literature.

1. Introduction

Let E be a real Banach space, and let C be a nonempty closed convex subset E. We denote by
J the normalized duality map from E to 2E

∗
defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2, ∀x ∈ E

}
. (1.1)

A mapping T : C → C is said to be a λ-strictly pseudocontractive mapping (see, e.g.,
[1]) if there exists a constant 0 ≤ λ < 1 such that

∥∥Tx − Ty
∥∥2 ≤ ∥∥x − y

∥∥2 + λ
∥∥(I − T)x − (I − T)y

∥∥2
, (1.2)
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for all x, y ∈ C. We note that the class of λ-strict pseudocontractions strictly includes the class
of nonexpansive mappings which are mapping T on C such that

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, (1.3)

for all x, y ∈ C. Obviously, T is nonexpansive if and only if T is a 0-strict pseudocontraction.
A mapping T : C → C is said to be a λ-strictly pseudocontractive mapping with respect to
p if, for all x, y ∈ C, there exists a constant 0 ≤ λ < 1 such that

∥∥Tx − Ty
∥∥p ≤ ∥∥x − y

∥∥p + λ
∥∥(I − T)x − (I − T)y

∥∥p
. (1.4)

A mapping f : C → C is called k-contraction if there exists a constant k ∈ (0, 1) such that

∥∥f(x) − f
(
y
)∥∥ ≤ k

∥∥x − y
∥∥, ∀x, y ∈ C. (1.5)

We denote by Fix(T) the set of fixed point of T , that is, Fix(T) = {x ∈ C : Tx = x}.
Recall the definition of Mann’s iteration; let C be a nonempty convex subset E, and let T

be a self-mapping of C. For any x1 ∈ C, the sequence {xn} is defined by

xn+1 = (1 − αn)xn + αnTxn, n ≥ 1, (1.6)

where {αn} is a real sequence in (0, 1).
In the last ten years or so, there have been many nice papers in the literature

dealing with the iteration approximating fixed points of Lipschitz strongly pseudocontractive
mappings by utilizing the Mann iteration process. Results which had been known only for
Hilbert spaces and Lipschitz mappings have been extended to more general Banach spaces
and more general class of mappings; see, for example, [1–6] and the references therein for
more information about this problem.

In 2007, Marino and Xu [2] showed that the Mann iterative sequence converges
weakly to a fixed point of λ-strict pseudocontractions in Hilbert spaces. Meanwhile, they
have proposed an open question; that is, is the result of [2, Theorem 3.1] true in uniformly convex
Banach spaces with Fréchet differentiable norm? In other words, can Reich’s theorem [7, Theorem
2], with respect to nonexpansive mappings, be extended to λ-strict pseudocontractions in
uniformly convex Banach spaces?

In 2008, using the Mann iteration and the modified Ishikawa iteration, Zhou [3]
obtained some weak and strong convergence theorems for λ-strict pseudocontractions in
Hilbert spaces which extend the corresponding results in [2].

Recently, Hu and Wang [4] obtained that the Mann iterative sequence converges
weakly to a fixed point of λ-strict pseudocontractions with respect to p in p-uniformly convex
Banach spaces.

In this paper, we first introduce the modified Mann iterative sequence. Let C be a
nonempty closed convex subset of E, and let f : C → C be a k-contraction. For any x1 ∈ C, the
sequence {xn} is defined by

xn+1 = αnxn + (1 − αn)Tn
(
βnf(xn) +

(
1 − βn

)
xn

)
, n ≥ 1, (1.7)
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where Tnx := (1−μn)x+μnTx, for all x ∈ C, {αn}, {βn}, and {μn}in (0, 1). The iterative sequence
(1.7) is a natural generalization of the Mann iterative sequences (1.6). If we take βn ≡ 0, for
all n ≥ 1, in (1.7), then (1.7) is reduced to the Mann iteration.

The purpose in this paper is to show strong convergence theorems of the modified
Mann iteration scheme for λ-strict pseudocontractions with respect to p in p-uniformly
convex Banach spaces with uniformly Gâteaux differentiable norm by using viscosity
approximation methods. Our theorems improve and extend the comparable results in
the following four aspects: (1) in contrast to weak convergence results in [2–4], strong
convergence theorems of the modified Mann iterative sequence are obtained in p-uniformly
convex Banach spaces; (2) in contrast to the results in [7, 8], these results with respect to
nonexpansive mappings are extended to λ-strict pseudocontractions with respect to p; (3)
the restrictions

∑∞
n=1 |αn+1 −αn| < ∞ and

∑∞
n=1 |βn+1 −βn| < ∞ in [8, Theorem 3.1] are removed;

(4) our results partially answer the open question.

2. Preliminaries

The modulus of convexity of E is the function δE : [0, 2] → [0, 1] defined by

δE(ε) = inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : ‖x‖ = 1,
∥∥y∥∥ = 1,

∥∥x − y
∥∥ ≥ ε

}
, 0 ≤ ε ≤ 2. (2.1)

E is uniformly convex if and only if, for all 0 < ε ≤ 2 such that δE(ε) > 0. E is said to be
p-uniformly convex if there exists a constant a > 0 such that δE(ε) ≥ aεp. Hilbert spaces, Lp (or
lp) spaces (1 < p < +∞) and Sobolev spacesWp

m(1 < p < +∞) are p-uniformly convex. Hilbert
spaces are 2-uniformly convex, while

Lp, lp,W
p
m are

⎧
⎨
⎩
2-uniformly convex if 1 < p ≤ 2,

p-uniformly convex if p ≥ 2.
(2.2)

A Banach space E is said to have Gâteaux differentiable norm if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.3)

exists for each x, y ∈ U, where U = {x ∈ E : ‖x‖ = 1}. The norm of E is a uniformly Gâteaux
differentiable if for each y ∈ U, the limit is attained uniformly for x ∈ U. It is well known that
if E is a uniformly Gâteaux differentiable norm, then the duality mapping J is single valued
and norm-to-weak∗ uniformly continuous on each bounded subset of E.

Lemma 2.1 (see [4]). Let E be a real p-uniformly convex Banach space, and let C be a nonempty
closed convex subset of E. Let T : C → C be a λ-strict pseudocontraction with respect to p, and let
{ξn} be a real sequence in [0, 1]. If Tn : C → C is defined by Tnx := (1 − ξn)x + ξnTx, for all x ∈ C,
then for all x, y ∈ C, the inequality holds

∥∥Tnx − Tny
∥∥p ≤ ∥∥x − y

∥∥p − (
wp(ξn)cp − ξnk

)∥∥(I − T)x − (I − T)y
∥∥p

, (2.4)
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where cp is a constant in [9, Theorem 1]. In addition, if 0 ≤ λ < min{1, 2−(p−2)cp}, ξ = 1−(λ·2p−2)/cp,
and ξn ∈ [0, ξ], then ‖Tnx − Tny‖ ≤ ‖x − y‖, for all x, y ∈ C.

Lemma 2.2 (see [10]). Let {xn} and {yn} be bounded sequences in a Banach space E such that

xn+1 = αnxn + (1 − αn)yn, n ≥ 0, (2.5)

where {αn} is a sequence in (0, 1) such that 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1. Assuming

lim sup
n→∞

(∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖
) ≤ 0, (2.6)

then limn→∞‖xn − yn‖ = 0.

Lemma 2.3. Let E be a real Banach space. Then, for all x, y ∈ E and j(x+y) ∈ J(x+y), the following
inequality holds:

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉
. (2.7)

Lemma 2.4 (see [11]). Let {an} be a sequence of nonnegative real number such that

an+1 ≤ (1 − δn)an + δnηn, ∀n ≥ 0, (2.8)

where {δn} is a sequence in [0, 1] and {ηn} is a sequence in R satisfying the following conditions:
(i)

∑∞
n=1 δn = +∞; (ii) lim supn→∞ ηn ≤ 0 or

∑∞
n=1 δn|ηn| < +∞. Then, limn→∞ an = 0.

3. Main Results

Theorem 3.1. Let E be a real p-uniformly convex Banach space with a uniformly Gâteaux
differentiable norm, and let C be a nonempty closed convex subset of E which has the fixed point
property for nonexpansive mappings. Let T : C → C be a λ-strict pseudocontraction with respect to
p, λ ∈ (0,min{1, 2−(p−2)cp}) and Fix(T)/= ∅. Let f : C → C be a k-contraction with k ∈ (0, 1).
Assume that real sequences {αn}, {βn}, and {ξn} in (0, 1) satisfy the following conditions:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,

(ii) limn→∞ βn = 0 and
∑∞

n=1 βn = +∞,

(iii) 0 < infn ξn ≤ ξ and limn→∞ |ξn+1 − ξn| = 0, where ξ = 1 − (λ · 2p−2)/cp.

For any x1 ∈ C, the sequence {xn} is generated by

xn+1 = αnxn + (1 − αn)Tn
(
βnf(xn) +

(
1 − βn

)
xn

)
, n ≥ 1, (3.1)

where Tnx := (1 − ξn)x + ξnTx, for all x ∈ C. Then, the sequence {xn} converges strongly to a fixed
point of T .



Fixed Point Theory and Applications 5

Proof. Equation (3.1) can be expressed as follows:

xn+1 = αnxn + (1 − αn)Tnyn, (3.2)

where

yn = βnf(xn) +
(
1 − βn

)
xn, ∀n ≥ 1. (3.3)

Taking p ∈ Fix(T), we obtain from Lemma 2.1

∥∥xn+1 − p
∥∥ ≤ αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥Tnyn − p
∥∥

≤ αn

∥∥xn − p
∥∥ + (1 − αn)

(
βn
∥∥f(xn) − p

∥∥ +
(
1 − βn

)∥∥xn − p
∥∥)

≤ αn

∥∥xn − p
∥∥ + (1 − αn)

(
βnk

∥∥xn − p
∥∥ + βn

∥∥f(p) − p
∥∥ +

(
1 − βn

)∥∥xn − p
∥∥)

=
(
1 − (1 − αn)βn(1 − k)

)∥∥xn − p
∥∥ + (1 − αn)βn(1 − k)

1
1 − k

∥∥f(p) − p
∥∥

≤ max
{∥∥x1 − p

∥∥, 1
1 − k

∥∥f(p) − p
∥∥
}
.

(3.4)

Therefore, the sequence {xn} is bounded, and so are the sequences {f(xn)}, {Tnyn}, and {yn}.
Since Tnyn = (1 − ξn)yn + ξnTyn and the condition (iii), we know that {Tyn} is bounded. We
estimate from (3.3) that

∥∥yn+1 − yn

∥∥ ≤ βn+1
∥∥f(xn+1) − f(xn)

∥∥ +
(
1 − βn+1

)‖xn+1 − xn‖
+
∣∣βn+1 − βn

∣∣∥∥f(xn) − xn

∥∥

≤ (
1 − βn+1(1 − k)

)‖xn+1 − xn‖ +
∣∣βn+1 − βn

∣∣∥∥f(xn) − xn

∥∥.
(3.5)

Since Tn := (1 − ξn)I + ξnT , where I is the identity mapping, we have

∥∥Tn+1yn+1 − Tnyn

∥∥ ≤ ∥∥(1−ξn+1)yn+1+ξn+1Tyn+1−(1−ξn+1)yn−ξn+1Tyn

∥∥

+ |ξn+1−ξn|
∥∥yn−Tyn

∥∥

≤ ∥∥yn+1 − yn

∥∥ + |ξn+1 − ξn|
∥∥yn − Tyn

∥∥.
(3.6)

limn→∞ βn = 0 and limn→∞ |ξn+1 − ξn| = 0 imply from (3.5) and (3.6) that

lim sup
n→∞

(∥∥Tn+1yn+1 − Tnyn

∥∥ − ‖xn+1 − xn‖
) ≤ 0. (3.7)

Hence, by Lemma 2.2, we obtain

lim
n→∞

∥∥Tnyn − xn

∥∥ = 0. (3.8)
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From (3.3), we get

lim
n→∞

∥∥yn − xn

∥∥ = lim
n→∞

βn
∥∥f(xn) − xn

∥∥ = 0, (3.9)

and so it follows from (3.8) and (3.9) that limn→∞ ‖yn−Tnyn‖ = 0. Since yn−Tnyn = ξn(yn−Tyn)
and infn ξn > 0, we have

lim
n→∞

∥∥yn − Tyn

∥∥ = lim
n→∞

∥∥yn − Tnyn

∥∥
ξn

= 0. (3.10)

For any δ ∈ (0, ξ], defining Tδ := (1 − δ)I + δT , we have

lim
n→∞

∥∥yn − Tδyn

∥∥ = lim
n→∞

δ
∥∥yn − Tyn

∥∥ = 0. (3.11)

Since Tδ is a nonexpansive mapping, we have from [12, Theorem 4.1] that the net {xt}
generated by xt = tf(xt) + (1 − t)Tδxt converges strongly to q ∈ Fix(Tδ) = Fix(T), as t → 0.
Clearly,

xt − yn = (1 − t)
(
Tδxt − yn

)
+ t

(
f(xt) − yn

)
. (3.12)

In view of Lemma 2.3, we find

∥∥xt − yn

∥∥2 ≤ (1 − t)2
∥∥Tδxt − yn

∥∥2 + 2t
〈
f(xt) − yn, J

(
xt − yn

)〉

≤
(
1 − 2t + t2

)(∥∥xt − yn

∥∥ +
∥∥Tδyn − yn

∥∥)2 + 2t
〈
f(xt) − xt, J

(
xt − yn

)〉

+ 2t
∥∥xt − yn

∥∥2
,

(3.13)

and hence

〈
f(xt) − xt, J

(
yn − xt

)〉 ≤ t

2
∥∥xt − yn

∥∥2 +

(
1 + t2

)∥∥yn − Tδyn

∥∥
2t

(
2
∥∥xt − yn

∥∥ +
∥∥yn − Tδyn

∥∥).
(3.14)

Since the sequences {yn}, {xt}, and {Tδyn} are bounded and limn→∞ ‖yn − Tδyn‖/2t = 0, we
obtain

lim sup
n→∞

〈
f(xt) − xt, J

(
yn − xt

)〉 ≤ t

2
M, (3.15)

where M = supn≥1,t∈(0,1){‖xt − yn‖2}. We also know that

〈
f
(
q
) − q, J

(
yn − q

)〉
=
〈
f(xt) − xt, J

(
yn − xt

)〉
+
〈
f
(
q
) − f(xt) + xt − q, J

(
yn − xt

)〉

+
〈
f
(
q
) − q, J

(
yn − q

) − J
(
yn − xt

)〉
.

(3.16)
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From the facts that xt → q ∈ Fix(T), as t → 0, {yn} is bounded, and the duality mapping J is
norm-to-weak∗ uniformly continuous on bounded subset of E, it follows that

〈
f
(
q
) − q, J

(
yn − q

) − J
(
yn − xt

)〉 −→ 0, as t −→ 0,
〈
f
(
q
) − f(xt) + xt − q, J

(
yn − xt

)〉 −→ 0, as t −→ 0.
(3.17)

Combining (3.15), (3.16), and the two results mentioned above, we get

lim sup
n→∞

〈
f
(
q
) − q, J

(
yn − q

)〉 ≤ 0. (3.18)

From (3.9) and the fact that the duality mapping J is norm-to-weak∗ uniformly continuous
on bounded subset of E, it follows that

lim
n→∞

∣∣〈f(xn) − f
(
q
)
, J
(
yn − q

) − J
(
xn − q

)〉∣∣ = 0. (3.19)

Writing

xn+1 − q = αn

(
xn − q

)
+ (1 − αn)Tn

(
yn − q

)
, (3.20)

and from Lemma 2.3, we find

∥∥xn+1 − q
∥∥2 ≤ αn

∥∥xn − q
∥∥2 + (1 − αn)

∥∥βn
(
f(xn) − q

)
+
(
1 − βn

)(
xn − q

)∥∥2

≤ αn

∥∥xn − q
∥∥2 + (1 − αn)

(
1 − βn

)2∥∥xn − q
∥∥2

+ 2(1 − αn)βn
〈
f(xn) − q, J

(
yn − q

)〉

≤ αn

∥∥xn − q
∥∥2 + (1 − αn)

(
1 − βn

)2∥∥xn − q
∥∥2 + 2(1 − αn)βnk

∥∥xn − q
∥∥2

+ 2(1 − αn)βn
〈
f
(
q
) − q, J

(
yn − q

)〉

+ 2(1 − αn)βn
〈
f(xn) − f

(
q
)
, J
(
yn − q

) − J
(
xn − q

)〉

≤ [
1 − 2(1 − αn)(1 − k)βn

]∥∥xn − q
∥∥2 + 2(1 − αn)βn

×[βn
∥∥xn−q

∥∥+∣∣〈f(xn)−f
(
q
)
, J
(
yn−q

)−J(xn−q
)〉∣∣+〈f(q)−q, J(yn−q

)〉]

= [1 − (1 − k)δn]
∥∥xn − q

∥∥2 + δnηn,

(3.21)

where

δn = 2(1 − αn)βn,

ηn = βn
∥∥xn − q

∥∥ +
∣∣〈f(xn) − f

(
q
)
, J
(
yn − q

) − J
(
xn − q

)〉∣∣ + 〈f(q) − q, J
(
yn − q

)〉.
(3.22)
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From (3.18), (3.19), and the conditions (i), (ii), it follows that
∑∞

n=1 δn = +∞ and
lim supn→∞ ηn ≤ 0. Consequently, applying Lemma 2.4 to (3.21), we conclude that
limn→∞ ‖xn − q‖ = 0.

Corollary 3.2. Let E, C, T , {αn}, {βn}, and {ξn} be as in Theorem 3.1. For any u, x1 ∈ C, the
sequence {xn} is generated by

xn+1 = αnxn + (1 − αn)Tn
(
βnu +

(
1 − βn

)
xn

)
, n ≥ 1, (3.23)

where Tnx := (1 − ξn)x + ξnTx, for all x ∈ C. Then the sequence {xn} converges strongly to a fixed
point of T .

Remark 3.3. Theorem 3.1 and Corollary 3.2 improve and extend the corresponding results in
[2–4, 7, 8] essentially since the following facts hold.

(1) Theorem 3.1 and Corollary 3.2 give strong convergence results in p-uniformly
convex Banach spaces for the modification of Mann iteration scheme in contrast
to the weak convergence result in [2, Theorem 3.1], [3, Theorem 3.1 and Corollary
3.3], and [4, Theorems 3.2 and 3.3].

(2) In contrast to the results in [7, Theorem 2], and [8, Theorem 3.1], these results with
respect to nonexpansive mappings are extended to λ-strict pseudocontraction in
p-uniformly convex Banach spaces.

(3) In contrast to the results in [8, Theorem 3.1], the restrictions
∑∞

n=1 |αn+1 − αn| < ∞
and

∑∞
n=1 |βn+1 − βn| < ∞ are removed.
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