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We present a sufficient and necessary condition for weak ψ-sharp minima in infinite-dimensional
spaces. Moreover, we develop the characterization of weak ψ-sharp minima by virtue of a
nonlinear scalarization function.

1. Introduction

The notion of a weak sharp minimum in general mathematical program problems was first
introduced by Ferris in [1]. It is an extension of sharp minimum in [2]. Weak sharp minima
play important roles in the sensitivity analysis [3, 4] and convergence analysis of a wide
range of optimization algorithms [5]. Recently, the study of weak sharp solution set covers
real-valued optimization problems [5–8] and piecewise linear multiobjective optimization
problems [9–11].

Most recently, Bednarczuk [12] defined weak sharp minima of order m for vector-
valued mappings under an assumption that the order cone is closed, convex, and pointed
and used the concept to prove upper Hölderness and Hölder calmness of the solution
set-valued mappings for a parametric vector optimization problem. In [13], Bednarczuk
discussed the weak sharp solution set to vector optimization problems and presented some
properties in terms of well-posedness of vector optimization problems. In [14], Studniarski
gave the definition of weak ψ-sharp local Pareto minimum in vector optimization problems
under the assumption that the order cone is convex and presented necessary and sufficient
conditions under a variety of conditions. Though the notions in [12, 14] are different for
vector optimization problems, they are equivalent for scalar optimization problems. They are
a generalization of the weak sharp local minimum of order m.

In this paper, motivated by the work in [14, 15], we present a sufficient and necessary
condition of which a point is a weak ψ-sharp minimum for a vector-valued mapping in the



2 Fixed Point Theory and Applications

infinite-dimensional spaces. In addition, we develop the characterization of weak ψ-sharp
minima in terms of a nonlinear scalarization function.

This paper is organized as follows. In Section 2, we recall the definitions of the
local Pareto minimizer and weak ψ-sharp local minimizer for vector-valued optimization
problems. In Section 3, we present a sufficient and necessary condition for weak ψ-sharp local
minimizer of vector-valued optimization problems. We also give an example to illustrate the
optimality condition.

2. Preliminary Results

Throughout the paper, X and Y are normed spaces. B(x, δ) denotes the open ball with center
x ∈ X and radius δ > 0. N(x) is the family of all neighborhoods of x, and dist(x,W) is the
distance from a point x to a set W ⊂ X. The symbols Sc, intS and bds denote, respectively,
the complement, interior and boundary of S.

Let D ⊂ Y be a convex cone (containing 0). The cone defines an order structure on Y ,
that is, a relation “≤” in Y × Y is defined by y1 ≤ y2 ⇔ y2 − y1 ∈ D. D is a proper cone if
{0}/=D/=Y .

Let Ω be an open subset of X, S ⊂ Ω. Given a vector-valued map f : Ω → Y , the
following abstract optimization is considered:

Min
{
f(x) : x ∈ S

}
. (2.1)

In the sequel, we always assume that D is a proper closed and convex cone.

Definition 2.1. One says that x0 is a local Pareto minimizer for (2.1), denoted by x0 ∈
LMin(f, S), if there exists U ∈ N(x) for which there is no x ∈ S ∩U such that

f(x) − f(x0) ∈ (−D) \D. (2.2)

If one can choose U = X, one will say that x0 is a Pareto minimizer for (2.1), denoted by
x0 ∈ Min(f, S).

Note that (2.2) may be replaced by the simple condition f(x) − f(x0) ∈ (−D) \ {0} if
we assume that the cone D is pointed.

Definition 2.2 (see [14]). Let ψ : [0,+∞) → [0,+∞) be a nondecreasing function with the
property ψ(t) = 0 ⇔ t = 0 (such a family of functions is denoted by Ψ). Let x0 ∈ S. One says
that x0 is a weak ψ-sharp local Pareto minimizer for (2.1), denoted by x0 ∈ WSL(ψ, f, S), if
there exist a constant α > 0 and U ∈ N(x0) such that

(
f(x) +D

) ∩ B
(
f(x0), αψ(dist(x,W))

)
= ∅, ∀x ∈ (S ∩U) \W, (2.3)

where

W :=
{
x ∈ S : f(x) = f(x0)

}
. (2.4)
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If one can choose U = X, one says x0 is a weak ψ-sharp minimizer for (2.1), denoted by
x0 ∈ WS(ψ, f, S). In particular, let ψm(t) := tm form = 1, 2, . . . . Then, one says that x0 is a weak
ψ-sharp local Pareto minimizer of order m for (2.1) if x0 ∈ WSL(ψm, f, S), and one says that
x0 is a weak sharp Pareto minimizer of order m for (2.1) if x0 ∈ WS(ψm, f, S).

Remark 2.3. If W is a closed set, condition (2.3) can be expressed as the following equivalent
forms:

f(x) ∈ (
f(x0) + B

(
0, αψ(dist(x,W))

) −D
)c
, ∀x ∈ (S ∩U) \W, (2.5)

d
(
f(x) − f(x0),−D

) ≥ αψ(dist(x,W)), ∀x ∈ (S ∩U) \W. (2.6)

Remark 2.4. In the Definition 2.2, if Y = R, D = [0,+∞), and ψ = ψm, then the relation (2.6)
becomes the following form:

f(x) − f(x0) ≥ α(dist(x,W))m, ∀x ∈ S ∩U, (2.7)

which is the well-known definition of a weak sharp minimizer of order m for (2.1); see [16].

3. Main Results

In this section, we first generalize the result of Theorem 1 in Studniarski [14] to infinite-
dimensional spaces. Finally, we develop the characterization of weak ψ-sharp minimizer by
means of a nonlinear scalarization function.

Let D ⊂ Y be a proper closed convex cone with intD/= ∅. The topological dual space
of Y is denoted by Y ∗. The polar cone to D is D∗ = {λ ∈ Y ∗ : 〈λ, y〉 ≥ 0, ∀y ∈ D}. It is well
known that the cone D∗ contains a w∗-compact convex set Λwith 0/∈Λ such that

D∗ = coneΛ = {rλ : r ≥ 0, λ ∈ Λ}. (3.1)

The set Λ is called a base for the dual cone D∗. Recall that a point λ is an extremal point of a
set Λ if there exist no different points λ1, λ2 ∈ Λ and t ∈ (0, 1) such that λ = tλ1 + (1 − t)λ2.

Theorem 3.1. Suppose that f : X → Y is a vector-valued map. LetD ⊂ Y be a proper closed convex
cone with intD/= ∅, x0 ∈ S, and ψ ∈ Ψ.

(i) Let Λ be a w∗-compact convex base of D∗ and Q the set of extremal points of Λ. Suppose
that W defined by (2.4) is a closed set. Then, x0 ∈ WSL(ψ, f, S) if and only if there exist
U ∈ N(x), a constant α > 0, a covering {Sλ : λ ∈ Q} of S ∩U, and

〈
λ, f(x)

〉
>
〈
λ, f(x0)

〉
+ αψ(dist(x,W)), ∀x ∈ (Sλ ∩U) \W, ∀λ ∈ Q. (3.2)

(ii) Let Q ⊂ D∗ \ {0} and assume that D∗ = cl cone coQ. Then x0 ∈ LMin(f, S) if and only
if there exists a covering {Sλ : λ ∈ Q} of S ∩U such that

〈
λ, f(x)

〉
>
〈
λ, f(x0)

〉
, ∀x ∈ (Sλ ∩U) \W, ∀λ ∈ Q. (3.3)
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Proof. (i) Part “only if”: by assumption, there exist β > 0 and U ∈ N(x0) such that

(
f(x) − f(x0) +D

) ∩ B
(
0, βψ(dist(x,W))

)
= ∅, ∀x ∈ (S ∩U) \W. (3.4)

Let e ∈ intD be a fixed point. Set β0 = infλ∈Λ〈λ, e〉. Since Λ is w∗-compact, the infimum is
attained at a point of Q. Namely, β0 = minλ∈Q〈λ, e〉. Clearly, 〈λ, e〉 > 0 for any λ ∈ Λ. Hence,
β0 > 0.

For each λ ∈ Q, we define

Sλ =
{
x ∈ S ∩U :

〈
λ, f(x)

〉 ≥ 〈
λ, f(x0)

〉
+

β

2‖e‖ψ(dist(x,W))β0
}
. (3.5)

We will show that

S ∩U ⊂
⋃

λ∈Q
Sλ. (3.6)

Let x ∈ S ∩ U. If x ∈ W , then f(x) = f(x0) by (2.4), hence, x ∈ Sλ for all λ ∈ Q. If x /∈W ,
suppose that x /∈Sλ for any λ ∈ Q, then

〈
λ, f(x)

〉
<
〈
λ, f(x0)

〉
+

β

2‖e‖ψ(dist(x,W))β0, ∀λ ∈ Q. (3.7)

This relation, together with statement 〈λ, e〉 ≥ β0 yields

〈
λ, f(x0) − f(x) +

β

2‖e‖ψ(dist(x,W))e
〉

> 0, ∀λ ∈ Q. (3.8)

Obviously, for any λ ∈ D∗, the above relation becomes the following form:

〈
λ, f(x0) − f(x) +

β

2‖e‖ψ(dist(x,W))e
〉

≥ 0. (3.9)

Consequently, by the bipolar theorem, one has

d := f(x0) − f(x) +
β

2‖e‖ψ(dist(x,W))e ∈ D. (3.10)

Therefore,

f(x) − f(x0) + d =
β

2‖e‖ψ(dist(x,W))e, (3.11)

and f(x) − f(x0) + d ∈ B(0, βψ(dist(x,W))), which is a contradiction to (3.4). We have thus
proved that Sλ covers S ∩U.
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Now, let x ∈ (Sλ ∩U) \W and λ ∈ Q. From the procedure of the above proof, we see
that (S ∩U) \W ⊂ ∪λ∈QSλ. Hence, by (3.5), set α = ββ0/(4‖e‖), inequality (3.2) is true.

Part “if”: we define β1 = supλ∈Λ〈λ, e〉. The supremum is attained at an extremal point
because of thew∗-compactness ofΛ. So β1 = maxλ∈Q〈λ, e〉 > 0 and β−11 〈λ, e〉 ≤ 1 for any λ ∈ Q.
Hence, by assumption, we have

〈λ, f(x)〉 >
〈
λ, f(x0)

〉
+ αψ(dist(x,W)) ≥ 〈

λ, f(x0)
〉
+ β−11 αψ(dist(x,W))〈λ, e〉, (3.12)

for x ∈ (Sλ ∩U) \W and λ ∈ Q.
Now, suppose that for all β > 0, (3.4) is false, then there exist x′ ∈ (S ∩ U) \ W and

d ∈ D such that

f
(
x′) − f(x0) + d ∈ B

(
0, βψ(dist(x,W))

)
. (3.13)

Let e ∈ intD be a fixed point, and since D is a cone, there is k > 0 such that B(0, 1) ⊂ ke −D.
Consequently,

B
(
0, βψ(dist(x,W))

) ⊂ kβψ(dist(x,W))e −D. (3.14)

Therefore,

f
(
x′) − f(x0) + d ∈ kβψ(dist(x,W))e −D. (3.15)

There is d′ ∈ D from (3.15) such that

f
(
x′) − f(x0) = kβψ(dist(x,W))e − (

d′ + d
)
. (3.16)

Since x′ ∈ (S ∩ U) \ W ⊂ ⋃
λ∈Q Sλ \ W , there is λ′ ∈ Q such that x′ ∈ Sλ′ . Moreover, Λ ⊂ D∗

and d + d′ ∈ D. Hence,

〈
λ′, f

(
x′)〉 − 〈

λ′, f(x0)
〉
= kβψ

(
dist

(
x′,W

))〈
λ′, e

〉 − 〈
λ′, d + d′〉 ≤ kβψ

(
dist

(
x′,W

))〈
λ′, e

〉
.

(3.17)

By choosing β = β−11 αk−1, we obtain a contradiction to (3.12).
(ii) Part “only if”: for each λ ∈ Q, we define,

Sλ =
{
x ∈ S ∩U :

〈
λ, f(x)

〉 ≥ 〈
λ, f(x0)

〉}
. (3.18)

Now, we will check that (3.6) holds true. Pick any x ∈ S ∩ U. Suppose that x /∈Sλ for any
λ ∈ Q, then

〈
λ, f(x) − f(x0)

〉
< 0, ∀λ ∈ Q. (3.19)
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Hence, for any λ ∈ cl cone coQ = D∗, 〈λ, f(x) − f(x0)〉 ≤ 0. By applying the bipolar theorem,
we have

f(x) − f(x0) ∈ −D, (3.20)

Combing it with the assumption, we have

f(x) − f(x0) ∈ (−D) ∩D, (3.21)

which is a contradiction to (3.19). So (3.6) holds and (3.3) is satisfied by the definition of Sλ.
Part “if”: suppose that x0 /∈LMin(f, S), then there exists x ∈ S ∩U such that

f(x) − f(x0) ∈ −D \D. (3.22)

Indeed, x ∈ S ∩U can be replace by x ∈ (S ∩U) \W , because x ∈ W , f(x) − f(x0) = 0, which
is contradiction to (3.22). Hence, for x ∈ (S∩U) \W , we have 〈λ, f(x)− f(x0)〉 ≤ 0, ∀λ ∈ D∗.
In particular,

〈λ, f(x) − f(x0)〉 ≤ 0, ∀λ ∈ Q. (3.23)

It follows from the assumption that

(∪λ∈QSλ ∩U
) \W ⊃ (S ∩U) \W. (3.24)

Therefore, by (3.3), we obtain

〈
λ, f(x) − f(x0)

〉
> 0, ∀λ ∈ Q, ∀x ∈ (Sλ ∩U) \W, (3.25)

which contradicts relation (3.23).

Remark 3.2. By takingU = X in part (i) (resp., (ii)) of Theorem 3.1, we obtain a necessary and
sufficient condition for x0 to be in WS(ψ, f, S) (resp., Min(f, S)). In particular, if we choose
Y = Rp and D = R

p
+ and Q = {λ1, λ2, . . . , λp}, then, we obtain Theorem 1 in [14].

Finally, we apply the nonlinear scalarization function to discuss the weak ψ-sharp
minimizer in vector optimization problems.

Let D ⊂ Y be a closed and convex cone with nonempty interior intD. Given a fixed
point e ∈ intD and y ∈ Y , the nonlinear scalarization function ξ : Y → R is defined by

ξ
(
y
)
= inf

{
t : te ∈ y +D

}
. (3.26)

This function plays an important role in the context of nonconvex vector optimization
problems and has excellent properties such as continuousness, convexity, and (strict)
monotonicity on Y . More results about the function can be found in [17].
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In what follows, we present several properties about the nonlinear scalarization
function.

Lemma 3.3 (see [17]). For any fixed e ∈ intD, y ∈ Y , and r ∈ R. One has

(i) ξ(y) < r ⇔ re ∈ y + intD,

(ii) ξ(y) > r ⇔ re/∈y +D.

(iii) ξ(y) = r ⇔ re ∈ y + bdD.

Given a vector-valued map f : X → Y , define f̃ : X → Y by

f̃(x) = f(x) − f(x0). (3.27)

Next, we consider weak ψ-sharp local minimizer for a vector-valued map f through a
weak sharp local minimizer of a scalar function ξ ◦ f̃ : X → R.

Theorem 3.4. Let x0 ∈ S ⊂ X. Suppose that W defined by (2.4) is a closed set. Then,

x0 ∈ WSL
(
ψ, f, S

) ⇐⇒ x0 ∈ WSL
(
ψ, ξ ◦ f̃ , S

)
. (3.28)

Proof. Part “only if”: let us assume that x0 ∈ WSL(ψ, f, S). Thus, there exist α > 0 and U ∈
N(x0) such that

(
f(x) − f(x0) +D

) ∩ B
(
0, αψ(dist(x,W))

)
= ∅, ∀x ∈ (S ∩U) \W. (3.29)

Note that, whenW is a closed set,

α

4‖e‖ψ(dist(x,W))e ∈ B
(
0, αψ(dist(x,W))

) ∀x ∈ (S ∩U) \W. (3.30)

Therefore,

α

4‖e‖ψ(dist(x,W))e /∈ f(x) − f(x0) +D ∀x ∈ (S ∩U) \W. (3.31)

By using Lemma 3.3(ii), one has

ξ
(
f(x) − f(x0)

)
>

α

4‖e‖ψ(dist(x,W)) ∀x ∈ (S ∩U) \W. (3.32)

According to Lemma 3.3(iii), one has

ξ
(
f(x0) − f(x0)

)
= 0. (3.33)
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This relation, together with (3.32) yields

ξ
(
f(x) − f(x0)

)
> ξ

(
f(x0) − f(x0)

)
+

α

4‖e‖ψ(dist(x,W)), ∀x ∈ (S ∩U) \W. (3.34)

Namely,

(
ξ ◦ f̃

)
(x) >

(
ξ ◦ f̃

)
(x0) +

α

4‖e‖ψ(dist(x,W)), ∀x ∈ (S ∩U) \W, (3.35)

that is, x0 ∈ WSL(ψ, ξ ◦ f̃ , S).
Part “if”: by assumption, there exist β > 0 and U ∈ N(x0) such that

ξ
(
f̃(x)

)
> ξ

(
f̃(x0)

)
+ βψ(dist(x,W)), ∀x ∈ (S ∩U) \W. (3.36)

In terms of Lemma 3.3(iii), we have

ξ
(
f̃(x0)

)
= ξ

(
f(x0) − f(x0)

)
= 0. (3.37)

Hence,

ξ
(
f(x) − f(x0)

)
> βψ(dist(x,W)), ∀x ∈ (S ∩U) \W. (3.38)

Once more using Lemma 3.3(ii), one has

βψ(dist(x,W))e /∈ f(x) − f(x0) +D, ∀x ∈ (S ∩U) \W, (3.39)

which implies that

(
βψ(dist(x,W))e −D

) ∩ (
f(x) − f(x0) +D

)
= ∅, ∀x ∈ (S ∩U) \W. (3.40)

Since e ∈ intD, there exists some number ε > 0 such that B(0, ε) ⊂ e −D. Moreover,

B(0, λε) ⊂ λe −D, ∀λ > 0. (3.41)

Hence, it follows from the relation that

B
(
0, εβψ(dist(x,W))

) ⊂ βψ(dist(x,W))e −D, ∀x ∈ (S ∩U) \W. (3.42)

Combing it with relation (3.40), we deduce that

B
(
0, εβψ(dist(x,W))

) ∩ (
f(x) − f(x0) +D

)
= ∅, ∀x ∈ (S ∩U) \W. (3.43)
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Let α = εβ, by the definition of weak ψ-sharp local minimizer, we have x0 ∈ WSL(ψ, f, S).
It is possible to illustrate Theorem 3.4 by means of adapting a simple example given in

[14].

Example 3.5. Let n = p = 2, S = Ω = R2, and D = R2
+ and let f = (f1, f2) : R2 → R2 be defined

by

f1
(
x1, x2

)
:= max

{
0,min

{
x1, x2

}}
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1, if x2 ≥ x1 > 0,

x2, if x1 > x2 > 0,

0, if x1 ≤ 0 or x2 ≤ 0,

f2
(
x1, x2

)
:= max

{
0,min

{
−x1, x2

}}
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−x1, if x2 ≥ −x1 > 0,

x2, if − x1 > x2 > 0,

0, if x1 ≥ 0 or x2 ≤ 0,

(3.44)

We choose U = R2. Using Definition 2.2, we derive that x0 = (0, 0) ∈ WS(ψ1, f, S).
Let e = (1, 1). From Corollary 1.46 in [17], we have (ξ ◦ f̃)(x) = max1≤i≤2fi(x). Observe

that

W =
{
x : f(x) = (0, 0)

}
=
{
x : x2 ≤ 0

}
∪
{
x : x1 = 0

}
. (3.45)

It is easy to verify that fi(x) = dist(x,W) for all x ∈ S \W . Using relation (2.7), we show that
x0 = (0, 0) ∈ WS(ψ1, ξ ◦ f̃ , S). Hence, condition (3.28) with ψ = ψ1 holds for α ∈ (0, 1).
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