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We prove some fixed point results for self-mapping T : X → X in a complete G-metric space X
under some contractive conditions related to a nondecreasing map φ : [0,+∞) → [0,+∞) with
limn→+∞φn(t) = 0 for all t ∈ (0,+∞). Also, we prove the uniqueness of such fixed point, as well as
studying the G-continuity of such fixed point.

1. Introduction

The fixed point theorems in metric spaces are playing a major role to construct methods
in mathematics to solve problems in applied mathematics and sciences. So the attraction of
metric spaces to a large numbers of mathematicians is understandable. Some generalizations
of the notion of a metric space have been proposed by some authors. In 2006, Mustafa
in collaboration with Sims introduced a new notion of generalized metric space called G-
metric space [1]. In fact, Mustafa et al. studied many fixed point results for a self-mapping
in G-metric space under certain conditions; see[1–5]. In the present work, we study some
fixed point results for self-mapping in a complete G-metric space X under some contractive
conditions related to a nondecreasing map φ : [0,+∞) → [0,+∞) with limn→+∞φn(t) = 0 for
all t ∈ (0,+∞).

2. Basic Concepts

In this section, we present the necessary definitions and theorems in G-metric spaces.

Definition 2.1 (see [1]). Let X be a nonempty set and let G : X × X × X → R+ be a function
satisfying the following properties:
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(1) (G1) G(x, y, z) = 0 if x = y = z;

(2) (G2) 0 < G(x, x, y), for all x, y ∈ X with x /=y;

(3) (G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z/=y;

(4) (G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , symmetry in all three variables;

(5) (G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then the function G is called a generalized metric, or, more specifically, a G-metric on X, and
the pair (X,G) is called a G-metric space.

Definition 2.2 (see [1]). Let (X,G) be a G-metric space, and let (xn) be a sequence of points of
X, a point x ∈ X is said to be the limit of the sequence (xn), if limn,m→+∞G(x, xn, xm) = 0, and
we say that the sequence (xn) is G-convergent to x or (xn) G-converges to x.

Thus, xn → x in a G-metric space (X,G) if for any ε > 0, there exists k ∈ N such that
G(x, xn, xm) < ε for all m,n ≥ k.

Proposition 2.3 (see [1]). Let (X,G) be a G-metric space. Then the following are equivalent.

(1) (xn) is G-convergent to x.

(2) G(xn, xn, x) → 0 as n → +∞.

(3) G(xn, x, x) → 0 as n → +∞.

(4) G(xn, xm, x) → 0 as n,m → +∞.

Definition 2.4 (see [1]). Let (X,G) be a G-metric space; a sequence (xn) is called G-Cauchy
if for every ε > 0, there is k ∈ N such that G(xn, xm, xl) < ε, for all n,m, l ≥ k; that is,
G(xn, xm, xl) → 0 as n,m, l → +∞.

Proposition 2.5 (see [3]). Let (X,G) be a G-metric space. Then the following are equivalent.

(1) The sequence (xn) is G-Cauchy.

(2) For every ε > 0, there is k ∈ N such that G(xn, xm, xm) < ε, for all n,m ≥ k.

Definition 2.6 (see [1]). Let (X,G) and (X′, G′) be G-metric spaces, and let f : (X,G) →
(X′, G′) be a function. Then f is said to beG-continuous at a point a ∈ X if and only if for every
ε > 0, there is δ > 0 such that x, y ∈ X and G(a, x, y) < δ implies G′(f(a), f(x), f(y)) < ε. A
function f is G-continuous at X if and only if it is G-continuous at all a ∈ X.

Proposition 2.7 (see [1]). Let (X,G) and (X′, G′) be G-metric spaces. Then f : X → X′ is G-
continuous at x ∈ X if and only if it is G-sequentially continuous at x; that is, whenever (xn) is
G-convergent to x, (f(xn)) is G-convergent to f(x).

Proposition 2.8 (see [1]). Let (X,G) be a G-metric space. Then the function G(x, y, z) is jointly
continuous in all three of its variables.

The following are examples of G-metric spaces.
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Example 2.9 (see [1]). Let (R, d) be the usual metric space. Define Gs by

Gs

(
x, y, z

)
= d

(
x, y

)
+ d

(
y, z

)
+ d(x, z) (2.1)

for all x, y, z ∈ R. Then it is clear that (R, Gs) is a G-metric space.

Example 2.10 (see [1]). Let X = {a, b}. Define G on X ×X ×X by

G(a, a, a) = G(b, b, b) = 0,

G(a, a, b) = 1, G(a, b, b) = 2
(2.2)

and extend G to X ×X ×X by using the symmetry in the variables. Then it is clear that (X,G)
is a G-metric space.

Definition 2.11 (see [1]). A G-metric space (X,G) is called G-complete if every G-Cauchy
sequence in (X,G) is G-convergent in (X,G).

3. Main Results

Following toMatkowski [6], letΦ be the set of all functions φ such that φ : [0,+∞) → [0,+∞)
be a nondecreasing function with limn→+∞φn(t) = 0 for all t ∈ (0,+∞). If φ ∈ Φ, then φ is
called Φ-map. If φ is Φ-map, then it is an easy matter to show that

(1) φ(t) < t for all t ∈ (0,+∞);

(2) φ(0) = 0.

From now unless otherwise stated we mean by φ the Φ-map. Now, we introduce and prove
our first result.

Theorem 3.1. Let X be a complete G-metric space. Suppose the map T : X → X satisfies

G
(
T(x), T

(
y
)
, T(z)

) ≤ φ
(
G
(
x, y, z

))
(3.1)

for all x, y, z ∈ X. Then T has a unique fixed point (say u) and T is G-continuous at u.

Proof. Choose x0 ∈ X. Let xn = T(xn−1), n ∈ N. Assume xn /=xn−1, for each n ∈ N. Claim (xn)
is a G-Cauchy sequence in X: for n ∈ N, we have

G(xn, xn+1, xn+1) = G(T(xn−1), T(xn), T(xn))

≤ φ(G(xn−1, xn, xn))

≤ φ2(G(xn−2, xn−1, xn−1))
...

≤ φn(G(x0, x1, x1)).

(3.2)
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given ε > 0, since limn→+∞φn(G(x0, x1, x1)) = 0 and φ(ε) < ε, there is an integer k0 such that

φn(G(x0, x1, x1)) < ε − φ(ε) ∀n ≥ k0. (3.3)

Hence

G(xn, xn+1, xn+1) < ε − φ(ε) ∀ n ≥ k0. (3.4)

For m,n ∈ N withm > n, we claim that

G(xn, xm, xm) < ε for all m ≥ n ≥ k0. (3.5)

We prove Inequality (3.5) by induction on m. Inequality (3.5) holds for m = n + 1 by using
Inequality (3.4) and the fact that ε − φ(ε) < ε. Assume Inequality (3.5) holds for m = k. For
m = k + 1, we have

G(xn, xk+1, xk+1) ≤ G(xn, xn+1, xn+1) +G(xn+1, xk+1, xk+1)

< ε − φ(ε) + φ(G(xn, xk, xk))

< ε − φ(ε) + φ(ε) = ε.

(3.6)

By induction on m, we conclude that Inequality (3.5) holds for all m ≥ n ≥ k0. So (xn) is
G-Cauchy and hence (xn) is G-convergent to some u ∈ X. For n ∈ N, we have

G(u, u, T(u)) ≤ G(u, u, xn+1) +G(xn+1, xn+1, T(u))

≤ G(u, u, xn+1) + φ(G(xn, xn, u))

< G(u, u, xn+1) +G(xn, xn, u).

(3.7)

Letting n → +∞, and using the fact that G is continuous on its variable, we get that
G(u, u, T(u)) = 0. Hence T(u) = u. So u is a fixed point of T . Now, let v be another fixed
point of T with v /=u. Since φ is a φ-map, we have

G(u, u, v) = G(T(u), T(u), T(v))

≤ φ(G(u, u, v))

< G(u, u, v)

(3.8)

which is a contradiction. So u = v, and hence Thas a unique fixed point. To Show that T is
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G-continuous at u, let (yn) be any sequence in X such that (yn) is G-convergent to u. For
n ∈ N, we have

G
(
u, u, T

(
yn

))
= G

(
T(u), T(u), T

(
yn

))

≤ φ
(
G
(
u, u, yn

))

< G
(
u, u, yn

)
.

(3.9)

Letting n → +∞, we get limn→+∞G(u, u, T(yn)) = 0. Hence T(yn) is G-convergent to u =
T(u). So T is G-continuous at u.

As an application of Theorem 3.1, we have the following results.

Corollary 3.2. Let X be a complete G-metric space. Suppose that the map T : X → X satisfies for
m ∈ N:

G
(
Tm(x), Tm(y

)
, Tm(z)

) ≤ φ
(
x, y, z

)
(3.10)

for all x, y, z ∈ X. Then T has a unique fixed point (say u).

Proof. From Theorem 3.1, we conclude that Tm has a unique fixed point say u. Since

T(u) = T(Tm(u)) = Tm+1(u) = Tm(T(u)), (3.11)

we have that T(u) is also a fixed point to Tm. By uniqueness of u, we get T(u) = u.

Corollary 3.3. Let X be a complete G-metric space. Suppose that the map T : X → X satisfies

G
(
T(x), T

(
y
)
, T

(
y
)) ≤ φ

(
G
(
x, y, y

))
, (3.12)

for all x, y ∈ X. Then T has a unique fixed point (say u) and T is G-continuous at u.

Proof. follows from Theorem 3.1 by taking z = y.

Corollary 3.4. Let X be a complete G-metric space. Suppose there is k ∈ [0, 1) such that the map
T : X → X satisfies

G
(
T(x), T

(
y
)
, T(z)

) ≤ kG
(
x, y, z

)
, (3.13)

for all x, y, z ∈ X. Then T has a unique fixed point (say u) and T is G-continuous at u.

Proof. Define φ : [0,+∞) → [0,+∞) by φ(w) = kw. Then it is clear that φ is a nondecreasing
function with limn→+∞φn(t) = 0 for all t > 0. Since

G
(
T(x), T

(
y
)
, T(z)

) ≤ φ
(
G
(
x, y, z

)) ∀x, y, z ∈ X, (3.14)

the result follows from Theorem 3.1.
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The above corollary has been stated in [7, Theorem 5.1.7], and proved by a different
way.

Corollary 3.5. Let X be a complete G-metric space. Suppose the map T : X → X satisfies

G
(
T(x), T

(
y
)
, T(z)

) ≤ G
(
x, y, z

)

1 +G
(
x, y, z

) , (3.15)

for all x, y, z ∈ X. Then T has a unique fixed point (say u) and T is G-continuous at u.

Proof. Define φ : [0,+∞) → [0,+∞) by φ(w) = w/(1 + w). Then it is clear that φ is a
nondecreasing function with limn→+∞φn(t) = 0 for all t > 0. Since

G
(
T(x), T

(
y
)
, T(z)

) ≤ φ
(
G
(
x, y, z

)) ∀x, y, z ∈ X, (3.16)

the result follows from Theorem 3.1.

Theorem 3.6. Let X be a complete G-metric space. Suppose that the map T : X → X satisfies

G
(
T(x), T

(
y
)
, T(z)

)

≤φ(max
{
G
(
x, y, z

)
, G(x, T(x), T(x)), G

(
y, T

(
y
)
, T

(
y
))
, G

(
T(x), y, z

)}) (3.17)

for all x, y, z ∈ X. Then T has a unique fixed point (say u) and T is G-continuous at u.

Proof. Choose x0 ∈ X. Let xn = T(xn−1), n ∈ N. Assume xn /=xn−1, for each n ∈ N. Thus for
n ∈ N, we have

G(xn, xn+1, xn+1) = G(T(xn−1), T(xn), T(xn))

≤ φ(max{G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn, xn, xn)}.
(3.18)

If

max{G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn, xn, xn)} = G(xn, xn+1, xn+1), (3.19)

then

G(xn, xn+1, xn+1) ≤ φ(G(xn, xn+1, xn+1)) < G(xn, xn+1, xn+1), (3.20)

which is impossible. So it must be the case that

max{G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn, xn, xn)} = G(xn−1, xn, xn), (3.21)
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and hence

G(xn, xn+1, xn+1) ≤ φ(G(xn−1, xn, xn)). (3.22)

Thus for n ∈ N, we have

G(xn, xn+1, xn+1) = G(T(xn−1), T(xn), T(xn))

≤ φ(G(xn−1, xn, xn))

≤ φ2(G(xn−2, xn−1, xn−1))
...

≤ φn(G(x0, x1, x1)).

(3.23)

The same argument is similar to that in proof of Theorem 3.1; one can show that (xn) is a
G-Cauchy sequence. Since X is G-complete, we conclude that (xn) is G-convergent to some
u ∈ X. For n ∈ N, we have

G(u, u, T(u)) ≤ G(u, u, xn) +G(xn, xn, T(u)) ≤ G(u, u, xn)

+ φ(max{G(xn−1, xn−1, u), G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn, xn−1, u)}).
(3.24)

Case 1.

max{G(xn−1, xn−1, u), G(xn−1, xn, xn), G(xn, xn−1, u)} = G(xn−1, xn, xn), (3.25)

then we have

G(u, u, T(u)) < G(u, u, xn) +G(xn−1, xn, xn). (3.26)

Letting n → +∞, we conclude that G(u, u, T(u)) = 0, and hence T(u) = u.

Case 2.

max{G(xn−1, xn−1, u), G(xn−1, xn, xn), G(xn, xn−1, u)} = G(xn−1, xn−1, u), (3.27)

then we have

G(u, u, T(u)) < G(u, u, xn) +G(xn−1, xn−1, u). (3.28)

Letting n → +∞, we conclude that G(u, u, T(u)) = 0, and hence T(u) = u.
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Case 3.

max{G(xn−1, xn−1, u), G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn, xn−1, u)} = G(xn, xn−1, u),
(3.29)

then we have

G(u, u, T(u)) < G(u, u, xn) +G(xn, xn−1, u)

≤ G(u, u, xn) +G(xn, xn−1, xn−1) +G(xn−1, xn−1, u).
(3.30)

Letting n → +∞, we conclude that G(u, u, T(u)) = 0, and hence T(u) = u. In all cases, we
conclude that u is a fixed point of T . Let v be any other fixed point of T such that v /=u.
Then

G(u, v, v) ≤ φ(max{G(u, v, v), G(u, u, u), G(v, v, v), G(u, v, v)})
= φ(G(u, v, v)) < G(u, v, v)),

(3.31)

which is a contradiction since φ(G(u, v, v)) < G(u, v, v). Therefore, G(u, v, v) = 0 and hence
u = v. To show that T is G-continuous at u, let (yn) be any sequence in X such that (yn) is
G-convergent to u. Then

G
(
u, u, T

(
yn

)) ≤ φ
(
max

{
G
(
u, u, yn

)
, G(u, u, u), G(u, u, u), G

(
u, u, yn

)})

= φ
(
G
(
u, u, yn

))
< G

(
u, u, yn

)
.

(3.32)

Let n → +∞, we get that T(yn) is G-convergent to T(u) = u. Hence T is G-continuous at u.

As an application to Theorem 3.6, we have the following results.

Corollary 3.7. Let X be a complete G-metric space. Suppose there is k ∈ [0, 1) such that the map
T : X → X satisfies

G
(
(Tx), T

(
y
)
, T(z)

)≤ k max
{
G
(
x, y, z

)
, G(x, T(x), T(x)), G

(
y, T

(
y
)
, T

(
y
))
, G

(
T(x), y, z

)}

(3.33)

for all x, y, z ∈ X. Then T has a unique fixed point (say u) and T is G-continuous at u.

Proof. Define φ : [0,+∞) → [0,+∞) by φ(w) = kw. Then it is clear that φ is a nondecreasing
function with limn→+∞φn(t) = 0 for all t > 0. Since

G
(
T(x), T

(
y
)
, T(z)

) ≤ φ
(
max

{
G
(
x, y, z

)
, G(x, T(x), T(x)), G

(
y, T

(
y
)
, T

(
y
))
, G

(
T(x), y, z

)})

(3.34)

for all x, y, z ∈ X, the result follows from Theorem 3.6.
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Corollary 3.8. Let X be a complete G-metric space. Suppose that the map T : X → X satisfies:

G
(
T(x), T

(
y
)
, T

(
y
))

≤φ(max
{
G
(
x, y, y

)
, G(x, T(x), T(x)), G

(
y, T

(
y
)
, T

(
y
))
, G

(
T(x), y, y

)}) (3.35)

for all x, y ∈ X. Then T has a unique fixed point (say u) and T is G-continuous at u.

Proof. It follows from Theorem 3.6 by replacing z = y.
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