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A new nonlinear mapping is introduced. The convergence of Ishikawa iterative processes for the
class of asymptotically pseudocontractive mappings in the intermediate sense is studied. Weak
convergence theorems are established. A strong convergence theorem is also established without
any compact assumption by considering the so-called hybrid projection methods.

1. Introduction and Preliminaries

Throughout this paper, we always assume thatH is a real Hilbert space, whose inner product
and norm are denoted by 〈·, ·〉 and ‖ · ‖. The symbols → and ⇀ are denoted by strong
convergence and weak convergence, respectively. ωw(xn) = {x : ∃xni ⇀ x} denotes the weak
w-limit set of {xn}. Let C be a nonempty closed and convex subset of H and T : C → C
a mapping. In this paper, we denote the fixed point set of T by F(T).

Recall that T is said to be nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.1)

T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞)with kn → 1
as n → ∞ such that

∥
∥Tnx − Tny

∥
∥ ≤ kn

∥
∥x − y

∥
∥, ∀n ≥ 1, ∀x, y ∈ C. (1.2)
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The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[1] as a generalization of the class of nonexpansive mappings. They proved that if C is a
nonempty closed convex and bounded subset of a real uniformly convex Banach space and
T is an asymptotically nonexpansive mapping on C, then T has a fixed point.

T is said to be asymptotically nonexpansive in the intermediate sense if it is continuous and
the following inequality holds:

lim sup
n→∞

sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥ − ∥

∥x − y
∥
∥
) ≤ 0. (1.3)

Observe that if we define

τn = max

{

0, sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥ − ∥

∥x − y
∥
∥
)

}

, (1.4)

then τn → 0 as n → ∞. It follows that (1.3) is reduced to

∥
∥Tnx − Tny

∥
∥ ≤ ∥

∥x − y
∥
∥ + τn, ∀n ≥ 1, ∀x, y ∈ C. (1.5)

The class of mappings which are asymptotically nonexpansive in the intermediate sense was
introduced by Bruck et al. [2]. It is known [3] that if C is a nonempty close convex subset of a
uniformly convex Banach space E and T is asymptotically nonexpansive in the intermediate
sense, then T has a fixed point. It is worth mentioning that the class of mappings which
are asymptotically nonexpansive in the intermediate sense contains properly the class of
asymptotically nonexpansive mappings.

Recall that T is said to be strictly pseudocontractive if there exists a constant k ∈ [0, 1)
such that

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥
2 + k

∥
∥(I − T)x − (I − T)y

∥
∥
2
, ∀x, y ∈ C. (1.6)

The class of strict pseudocontractions was introduced by Browder and Petryshyn [4]
in a real Hilbert space. Marino and Xu [5] proved that the fixed point set of strict
pseudocontractions is closed convex, and they also obtained a weak convergence theorem
for strictly pseudocontractive mappings by Mann iterative process; see [5] for more details.

Recall that T is said to be a asymptotically strict pseudocontraction if there exist a constant
k ∈ [0, 1) and a sequence {kn} ⊂ [1,∞)with kn → 1 as n → ∞ such that

∥
∥Tnx − Tny

∥
∥
2 ≤ kn

∥
∥x − y

∥
∥
2 + k

∥
∥(I − Tn)x − (I − Tn)y

∥
∥
2
, ∀x, y ∈ C. (1.7)

The class of asymptotically strict pseudocontractions was introduced by Qihou [6] in 1996
(see also [7]). Kim and Xu [8] proved that the fixed point set of asymptotically strict
pseudocontractions is closed convex. They also obtained that the class of asymptotically strict
pseudocontractions is demiclosed at the origin; see [8, 9] for more details.
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Recently, Sahu et al. [10] introduced a class of new mappings: asymptotically strict
pseudocontractive mappings in the intermediate sense. Recall that T is said to be an
asymptotically strict pseudocontraction in the intermediate sense if

lim sup
n→∞

sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥
2 − kn

∥
∥x − y

∥
∥
2 − k

∥
∥(I − Tn)x − (I − Tn)y

∥
∥
2
)

≤ 0, (1.8)

where k ∈ [0, 1) and {kn} ⊂ [1,∞) such that kn → 1 as n → ∞. Put

ξn = max

{

0, sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥
2 − kn

∥
∥x − y

∥
∥
2 − k

∥
∥(I − Tn)x − (I − Tn)y

∥
∥
2
)
}

. (1.9)

It follows that ξn → 0 as n → ∞. Then, (1.8) is reduced to the following:

∥
∥Tnx − Tny

∥
∥
2 ≤ kn

∥
∥x − y

∥
∥
2 + k

∥
∥(I − Tn)x − (I − Tn)y

∥
∥
2 + ξn, ∀x, y ∈ C. (1.10)

They obtained aweak convergence theorem ofmodifiedMann iterative processes for the class
of mappings. Moreover, a strong convergence theorem was also established in a real Hilbert
space by considering the so-called hybrid projection methods; see [10] for more details.

Recall that T is said to be asymptotically pseudocontractive if there exists a sequence kn ⊂
[1,∞)with kn → 1 as n → ∞ such that

〈Tnx − Tny, x − y〉 ≤ kn
∥
∥x − y

∥
∥
2
, ∀x, y ∈ C. (1.11)

The class of asymptotically pseudocontractive mapping was introduced by Schu [11] (see
also [12]). In [13], Rhoades gave an example to show that the class of asymptotically
pseudocontractive mappings contains properly the class of asymptotically nonexpansive
mappings; see [13] for more details. In 1991, Schu [11] established the following classical
results.

Theorem JS. Let H be a Hilbert space: ∅/=A ⊂ H closed bounded and covnex; L > 0; T : A → A
completely continuous, uniformly L-Lipschitzian and asymptotically pseudocontractive with sequence
{kn} ⊂ [1,∞); qn = 2kn − 1 for all n ≥ 1;

∑∞
n=1(qn − 1) < ∞; {αn}, {βn} are sequences in [0, 1];

ε ≤ αn ≤ βn ≤ b for all n ≥ 1, some ε > 0 and some b ∈ (0, L−2[
√
1 + L2 − 1]); x1 ∈ A; for all n ≥ 1,

define

zn = βnT
nxn +

(

1 − βn
)

xn,

xn+1 = αnT
nzn + (1 − αn)yn, ∀n ≥ 1,

(1.12)

then {xn} converges strongly to some fixed point of T .

Recently, Zhou [14] showed that every uniformly Lipschitz and asymptotically
pseudocontractive mapping which is also uniformly asymptotically regular has a fixed point.
Moreover, the fixed point set is closed and convex.

In this paper, we introduce and consider the following mapping.
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Definition 1.1. A mapping T : C → C is said to be a asymptotically pseudocontractive mapping
in the intermediate sense if

lim sup
n→∞

sup
x,y∈C

(〈

Tnx − Tny, x − y
〉 − kn

∥
∥x − y

∥
∥
2
)

≤ 0, (1.13)

where {kn} is a sequence in [1,∞) such that kn → 1 as n → ∞. Put

νn = max

{

0, sup
x,y∈C

(〈

Tnx − Tny, x − y
〉 − kn

∥
∥x − y

∥
∥
2
)
}

. (1.14)

It follows that νn → 0 as n → ∞. Then, (1.13) is reduced to the following:

〈Tnx − Tny, x − y〉 ≤ kn
∥
∥x − y

∥
∥
2 + νn, ∀n ≥ 1, x, y ∈ C. (1.15)

In real Hilbert spaces, we see that (1.15) is equivalent to

∥
∥Tnx − Tny

∥
∥
2 ≤ (2kn − 1)

∥
∥x − y

∥
∥
2 +

∥
∥(I − Tn)x − (I − Tn)y

∥
∥
2 + 2νn, ∀n ≥ 1, x, y ∈ C.

(1.16)

We remark that if νn = 0 for each n ≥ 1, then the class of asymptotically pseudocontractive
mappings in the intermediate sense is reduced to the class of asymptotically pseudocontrac-
tive mappings.

In this paper, we consider the problem of convergence of Ishikawa iterative processes
for the class of mappings which are asymptotically pseudocontractive in the intermediate
sense.

In order to prove our main results, we also need the following lemmas.

Lemma 1.2 (see [15]). Let {rn}, {sn}, and {tn} be three nonnegative sequences satisfying the
following condition:

rn+1 ≤ (1 + sn)rn + tn, ∀n ≥ n0, (1.17)

where n0 is some nonnegative integer. If
∑∞

n=1 sn < ∞ and
∑∞

n=1 tn < ∞, then limn→∞rn exists.

Lemma 1.3. In a real Hilbert space, the following inequality holds:

∥
∥ax + (1 − a)y

∥
∥
2 = a‖x‖2 + (1 − a)

∥
∥y

∥
∥
2 − a(1 − a)

∥
∥x − y

∥
∥
2
, ∀a ∈ [0, 1], x, y ∈ C. (1.18)

From now on, we always use M to denotes (diam C)2.

Lemma 1.4. Let C be a nonempty close convex subset of a real Hilbert space H and T : C → C a
uniformly L-Lipschitz and asymptotically pseudocontractive mapping in the intermediate sense with
sequences {kn} and {νn} as defined in (1.15). Then F(T) is a closed convex subset of C.
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Proof. To show that F(T) is convex, let f1 ∈ F(T) and f2 ∈ F(T). Put f = tf1 + (1 − t)f2, where
t ∈ (0, 1). Next, we show that f = Tf.Choose α ∈ (0, 1/(1+L)) and define yα,n = (1−α)f+αTnf
for each n ≥ 1. From the assumption that T is uniformly L-Lipschitz, we see that

〈f − yα,n,
(

f − Tnf
) − (

yα,n − Tnyα,n

)〉 ≤ (1 + L)
∥
∥f − yα,n

∥
∥
2
. (1.19)

For any g ∈ F(T), it follows that

∥
∥f − Tnf

∥
∥
2 = 〈f − Tnf, f − Tnf〉

=
1
α
〈f − yα,n, f − Tnf〉

=
1
α

〈

f − yα,n,
(

f − Tnf
) − (

yα,n − Tnyα,n

)〉

+
1
α
〈f − yα,n, yα,n − Tnyα,n〉

=
1
α

〈

f − yα,n,
(

f − Tnf
) − (

yα,n − Tnyα,n

)〉

+
1
α

〈

f − g, yα,n − Tnyα,n

〉

+
1
α

〈

g − yα,n, yα,n − g
〉

+
1
α
〈g − yα,n, g − Tnyα,n〉

≤ α(1 + L)
∥
∥f − Tnf

∥
∥
2 +

1
α

〈

f − g, yα,n − Tnyα,n

〉

+
(kn − 1)

∥
∥g − yα,n

∥
∥
2 + νn

α
.

(1.20)

This implies that

α[1 − α(1 + L)]
∥
∥f − Tnf

∥
∥
2 ≤ 〈f − g, yα,n − Tnyα,n〉 + (kn − 1)M + νn, ∀g ∈ F(T). (1.21)

Letting g = f1 and g = f2 in (1.21), respectively, we see that

α[1 − α(1 + L)]
∥
∥f − Tnf

∥
∥
2 ≤ 〈

f − f1, yα,n − Tnyα,n

〉

+ (kn − 1)M + νn,

α[1 − α(1 + L)]
∥
∥f − Tnf

∥
∥
2 ≤ 〈

f − f2, yα,n − Tnyα,n

〉

+ (kn − 1)M + νn.
(1.22)

It follows that

α[1 − α(1 + L)]
∥
∥f − Tnf

∥
∥
2 ≤ (kn − 1)M + νn. (1.23)

Letting n → ∞ in (1.23), we obtain that Tnf → f . Since T is uniformly L-Lipschitz, we see
that f = Tf. This completes the proof of the convexity of F(T). From the continuity of T , we
can also obtain the closedness of F(T). The proof is completed.

Lemma 1.5. Let C be a nonempty close convex subset of a real Hilbert space H and T : C → C a
uniformly L-Lipschitz and asymptotically pseudocontractive mapping in the intermediate sense such
that F(T) is nonempty. Then I − T is demiclosed at zero.
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Proof. Let {xn} be a sequence in C such that xn ⇀ x and xn − Txn → 0 as n → ∞. Next, we
show that x ∈ C and x = Tx. Since C is closed and convex, we see that x ∈ C. It is sufficient
to show that x = Tx. Choose α ∈ (0, 1/(1+L)) and define yα,m = (1−α)x +αTmx for arbitrary
but fixedm ≥ 1. From the assumption that T is uniformly L-Lipschitz, we see that

‖xn − Tmxn‖ ≤ ‖xn − Txn‖ +
∥
∥
∥Txn − T2xn

∥
∥
∥ + · · · +

∥
∥
∥Tm−1xn − Tmxn

∥
∥
∥

≤ [1 + (m − 1)L]‖xn − Txn‖.
(1.24)

It follows from the assumption that

lim
n→∞

‖xn − Tmxn‖ = 0. (1.25)

Note that

〈x − yα,m, yα,m − Tmyα,m〉 = 〈x − xn, yα,m − Tmyα,m〉 + 〈xn − yα,m, yα,m − Tmyα,m〉
= 〈x − xn, yα,m − Tmyα,m〉 + 〈xn − yα,m, T

mxn − Tmyα,m〉
− 〈xn − yα,m, xn − yα,m〉 + 〈xn − yα,m, xn − Tmxn〉

≤ 〈x − xn, yα,m − Tmyα,m〉 + km
∥
∥xn − yα,m

∥
∥
2 + νm

− ∥
∥xn − yα,m

∥
∥
2 +

∥
∥xn − yα,m

∥
∥‖xn − Tmxn‖

≤ 〈x − xn, yα,m − Tmyα,m〉 + (km − 1)M + νm

+
∥
∥xn − yα,m

∥
∥‖xn − Tmxn‖.

(1.26)

Since xn ⇀ x and (1.25), we arrive at

〈x − yα,m, yα,m − Tmyα,m〉 ≤ (km − 1)M + νm. (1.27)

On the other hand, we have

〈x − yα,m, (x − Tmx) − (

yα,m − Tmyα,m

)〉 ≤ (1 + L)
∥
∥x − yα,m

∥
∥
2 = (1 + L)α2‖x − Tmx‖2. (1.28)

Note that

‖x − Tmx‖2 = 〈x − Tmx, x − Tmx〉 =
1
α
〈x − yα,m, x − Tmx〉

=
1
α
〈x − yα,m, (x − Tmx) − (

yα,m − Tmyα,m

)〉

+
1
α
〈x−, yα,m, yα,m − Tmyα,m〉.

(1.29)



Fixed Point Theory and Applications 7

Substituting (1.27) and (1.28) into (1.29), we arrive at

‖x − Tmx‖2 ≤ (1 + L)α‖x − Tmx‖2 + (km − 1)M + νm
α

. (1.30)

This implies that

α[1 − (1 + L)α]‖x − Tmx‖2 ≤ (km − 1)M + νm, ∀m ≥ 1. (1.31)

Letting m → ∞ in (1.31), we see that Tmx → x. Since T is uniformly L-Lipschitz, we can
obtain that x = Tx. This completes the proof.

2. Main Results

Theorem 2.1. Let C be a nonempty closed convex bounded subset of a real Hilbert space H and T :
C → C a uniformly L-Lipschitz and asymptotically pseudocontractive mapping in the intermediate
sense with sequences {kn} ⊂ [1,∞) and {νn} ⊂ [0,∞) defined as in (1.15). Assume that F(T) is
nonempty. Let {xn} be a sequence generated in the following manner:

x1 ∈ C,

yn = βnT
nxn +

(

1 − βn
)

xn,

xn+1 = αnT
nyn + (1 − αn)xn, ∀n ≥ 1,

(∗)

where {αn} and {βn} are sequences in (0, 1). Assume that the following restrictions are satisfied:

(a)
∑∞

n=1 νn < ∞,
∑∞

n=1(q
2
n − 1) < ∞, where qn = 2kn − 1 for each n ≥ 1;

(b) a ≤ αn ≤ βn ≤ b for some a > 0 and some b ∈ (0, L−2[
√
1 + L2 − 1]),

then the sequence {xn} generated by (∗) converges weakly to fixed point of T .

Proof. Fix x∗ ∈ F(T). From (1.16) and Lemma 1.3, we see that

∥
∥yn − x∗∥∥2 =

∥
∥βn(Tnxn − x∗) + (1 − βn)(xn − x∗)

∥
∥
2

= βn‖Tnxn − x∗‖2 + (

1 − βn
)‖xn − x∗‖2 − βn

(

1 − βn
)‖Tnxn − xn‖2

≤ βn
(

qn‖xn − x∗‖2 + ‖xn − Tnxn‖ + 2νn
)

+
(

1 − βn
)‖xn − x∗‖2

− βn
(

1 − βn
)‖Tnxn − xn‖2

≤ qn‖xn − x∗‖2 + β2n‖Tnxn − xn‖2 + 2νn,

(2.1)

∥
∥yn − Tnyn

∥
∥
2 =

∥
∥βn(Tnxn − Tnyn) + (1 − βn)(xn − Tnyn)

∥
∥
2

= βn
∥
∥Tnxn − Tnyn

∥
∥
2 +

(

1 − βn
)∥
∥xn − Tnyn

∥
∥
2 − βn

(

1 − βn
)‖Tnxn − xn‖2

≤ β3nL
2‖xn − Tnxn‖2 +

(

1 − βn
)∥
∥xn − Tnyn

∥
∥
2 − βn

(

1 − βn
)‖Tnxn − xn‖2.

(2.2)
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From (2.1) and (2.2), we arrive at

∥
∥Tnyn − x∗∥∥2 ≤ qn

∥
∥yn − x∗∥∥2 +

∥
∥yn − Tnyn

∥
∥
2 + 2νn

≤ q2n‖xn − x∗‖2 − βn
(

1 − qnβn − β2nL
2 − βn

)

‖Tnxn − xn‖2

+ 2
(

qn + 1
)

νn +
(

1 − βn
)∥
∥xn − Tnyn

∥
∥
2
.

(2.3)

It follows that

‖xn+1 − x∗‖2 = ∥
∥αn(Tnyn − x∗) + (1 − αn)(xn − x∗)

∥
∥
2

= αn

∥
∥Tnyn − x∗∥∥2 + (1 − αn)‖xn − x∗‖2 − αn(1 − αn)

∥
∥Tnyn − xn

∥
∥
2

≤ αnq
2
n‖xn − x∗‖2 − αnβn

(

1 − qnβn − β2nL
2 − βn

)

‖Tnxn − xn‖2 + 2
(

qn + 1
)

νn

+ αn

(

1 − βn
)∥
∥xn − Tnyn

∥
∥
2 + (1 − αn)‖xn − x∗‖2 − αn(1 − αn)

∥
∥Tnyn − xn

∥
∥
2

≤ q2n‖xn − x∗‖2 − αnβn
(

1 − qnβn − β2nL
2 − βn

)

‖Tnxn − xn‖2 + 2
(

qn + 1
)

νn.

(2.4)

From condition (b), we see that there exists n0 such that

1 − qnβn − β2nL
2 − βn ≥ 1 − 2b − L2b2

2
> 0, ∀n ≥ n0. (2.5)

Note that

‖xn+1 − x∗‖2 ≤
[

1 +
(

q2n − 1
)]

‖xn − x∗‖2 + 2
(

qn + 1
)

νn, ∀n ≥ n0.
(2.6)

In view of Lemma 1.2, we see that limn→∞‖xn − x∗‖ exists. For any n ≥ n0, we see that

a2(1 − 2b − L2b2
)

2
‖Tnxn − xn‖2 ≤

(

q2n − 1
)

‖xn − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + 2
(

qn + 1
)

νn,

(2.7)

from which it follows that

lim
n→∞

‖Tnxn − xn‖ = 0. (2.8)
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Note that

‖xn+1 − xn‖ ≤ αn

∥
∥Tnyn − xn

∥
∥ ≤ αn

(∥
∥Tnyn − Tnxn

∥
∥ + ‖Tnxn − xn‖

)

≤ αn

(

L
∥
∥yn − xn

∥
∥ + ‖Tnxn − xn‖

) ≤ αn

(

1 + βnL
)‖Tnxn − xn‖.

(2.9)

Thanks to (2.8), we obtain that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.10)

Note that

‖xn − Txn‖ ≤ ‖xn − xn+1‖ +
∥
∥
∥xn+1 − Tn+1xn+1

∥
∥
∥ +

∥
∥
∥Tn+1xn+1 − Tn+1xn

∥
∥
∥ +

∥
∥
∥Tn+1xn − Txn

∥
∥
∥

≤ (1 + L)‖xn − xn+1‖ +
∥
∥
∥xn+1 − Tn+1xn+1

∥
∥
∥ + L‖Tnxn − xn‖.

(2.11)

From (2.8) and (2.10), we obtain that

lim
n→∞

‖Txn − xn‖ = 0. (2.12)

Since {xn} is bounded, we see that there exists a subsequence {xni} ⊂ {xn} such that xni ⇀ x.
From Lemma 1.5, we see that x ∈ F(T).

Next we prove that {xn} converges weakly to x. Suppose the contrary. Then we see
that there exists some subsequence {xnj} ⊂ {xn} such that {xnj} converges weakly to x̂ ∈ C
and x̂ /=x. From Lemma 1.5, we can also prove that x̂ ∈ F(T). Put d = limn→∞‖xn − x‖. Since
H satisfies Opial property, we see that

d = lim inf
ni →∞

‖xni − x‖ < lim inf
ni →∞

‖xni − x̂‖

= lim inf
nj →∞

∥
∥
∥xnj − x̂

∥
∥
∥ < lim inf

nj →∞

∥
∥
∥xnj − x

∥
∥
∥

= lim inf
ni →∞

‖xni − x‖ = d.

(2.13)

This derives a contradiction. It follows that x̂ = x. This completes the proof.

Next, we modify Ishikawa iterative processes to obtain a strong convergence theorem
without any compact assumption.
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Theorem 2.2. Let C be a nonempty closed convex bounded subset of a real Hilbert space H, PC

the metric projection from H onto C, and T : C → C a uniformly L-Lipschitz and asymptotically
pseudocontractive mapping in the intermediate sense with sequences {kn} ⊂ [1,∞) and {νn} ⊂ [0,∞)
as defined in (1.15). Let qn = 2kn − 1 for each n ≥ 1. Assume that F(T) is nonempty. Let {αn} and
{βn} be sequences in (0, 1). Let {xn} be a sequence generated in the following manner:

x1 ∈ C, chosen arbitrarily,

zn =
(

1 − βn
)

xn + βnT
nxn,

yn = (1 − αn)xn + αnT
nzn,

Cn =
{

u ∈ C :
∥
∥yn − u

∥
∥
2 ≤ ‖xn − u‖2 + αnθn + αnβn

(

qnβn + β2nL
2 + βn − 1

)

‖Tnxn − xn‖2
}

Qn = {u ∈ C : 〈x1 − xn, xn − u〉 ≥ 0},

xn+1 = PCn∩Qnx1,

(∗∗)

where θn = qn([1 + βn(qn − 1)] − 1)M + 2(qn + 1)νn for each n ≥ 1. Assume that the control
sequences {αn} and {βn} are chosen such that a ≤ αn ≤ βn ≤ b for some a > 0 and some b ∈
(0, L−2[

√
1 + L2 − 1]). Then the sequence {xn} generated in (∗∗) converges strongly to a fixed point

of T .

Proof. The proof is divided into seven steps.

Step 1. Show that Cn ∩Qn is closed and convex for each n ≥ 1.
It is obvious thatQn is closed and convex andCn is closed for each n ≥ 1. We, therefore,

only need to prove that Cn is convex for each n ≥ 1. Note that

Cn =
{

u ∈ C :
∥
∥yn − u

∥
∥
2 ≤ ‖xn − u‖2 + αnθn + αnβn

(

qnβn + β2nL
2 + βn − 1

)

‖Tnxn − xn‖2
}

(2.14)

is equivalent to

C′
n=

{

u ∈ C : 2
〈

xn−yn, u
〉≤‖xn‖2−

∥
∥yn

∥
∥
2+αnθn+αnβn

(

qnβn+β2nL
2+βn−1

)

‖Tnxn−xn‖2
}

.

(2.15)

It is easy to see that C′
n is convex for each n ≥ 1. Hence, we obtain that Cn ∩Qn is closed and

convex for each n ≥ 1. This completes Step 1.
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Step 2. Show that F(T) ⊂ Cn ∩Qn for each n ≥ 1.
Let p ∈ F(T). From Lemma 1.3 and the algorithm (∗∗), we see that

∥
∥yn − p

∥
∥
2 =

∥
∥(1 − αn)(xn − p) + αn(Tnzn − p)

∥
∥
2

= (1 − αn)
∥
∥xn − p

∥
∥
2 + αn

∥
∥Tnzn − p

∥
∥
2 − αn(1 − αn)‖Tnzn − xn‖2

≤ (1 − αn)
∥
∥xn − p

∥
∥
2 + αn

(

qn
∥
∥zn − p

∥
∥
2 + ‖zn − Tnzn‖2 + 2νn

)

− αn(1 − αn)‖Tnzn − xn‖2,

(2.16)

‖zn − Tnzn‖2 =
∥
∥(1 − βn)(xn − Tnzn) + βn(Tnxn − Tnzn)

∥
∥
2

=
(

1 − βn
)‖xn − Tnzn‖2 + βn‖Tnxn − Tnzn‖2 − βn

(

1 − βn
)‖Tnxn − xn‖2

≤ (

1 − βn
)‖xn − Tnzn‖2 + βnL

2‖xn − zn‖2 − βn
(

1 − βn
)‖Tnxn − xn‖2

≤ (

1 − βn
)‖xn − Tnzn‖2 + βn

(

β2nL
2 + βn − 1

)

‖Tnxn − xn‖2,

(2.17)

∥
∥zn − p

∥
∥
2 =

∥
∥(1 − βn)(xn − p) + βn(Tnxn − p)

∥
∥
2

=
(

1 − βn
)∥
∥xn − p

∥
∥
2 + βn

∥
∥Tnxn − p

∥
∥
2 − βn

(

1 − βn
)‖Tnxn − xn‖2

≤ [

1 + βn
(

qn − 1
)]∥
∥xn − p

∥
∥
2 + β2n‖xn − Tnxn‖2 + 2βnνn.

(2.18)

Substituting (2.17) and (2.18) into (2.16), we arrive at

∥
∥yn − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 + αn

(

qn
[

1 + βn
(

qn − 1
)] − 1

)∥
∥xn − p

∥
∥
2 + 2αn

(

qn + 1
)

νn

+ αnβn
(

qnβn + β2nL
2 + βn − 1

)

‖Tnxn − xn‖2

≤ ∥
∥xn − p

∥
∥
2 + αnβn

(

qnβn + β2nL
2 + βn − 1

)

‖Tnxn − xn‖2 + αnθn,

(2.19)

where θn = qn([1 + βn(qn − 1)] − 1)M + 2(qn + 1)νn for each n ≥ 1. This implies that p ∈ Cn for
each n ≥ 1. That is, F(T) ⊂ Cn for each n ≥ 1.

Next, we show that F(T) ⊂ Qn for each n ≥ 1.We prove this by inductions. It is obvious
that F(T) ⊂ Q1 = C. Suppose that F(T) ⊂ Qk for some k > 1. Since xk+1 is the projection of x1

onto Ck ∩Qk, we see that

〈x1 − xk+1, xk+1 − x〉 ≥ 0, ∀x ∈ Ck ∩Qk. (2.20)

By the induction assumption, we know that F(T) ⊂ Ck ∩Qk. In particular, for any y ∈ F(T) ⊂
C, we have

〈x1 − xk+1, xk+1 − y〉 ≥ 0, (2.21)
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which implies that y ∈ Qk+1. That is, F(T) ⊂ Ck+1. This proves that F(T) ⊂ Qn for each n ≥ 1.
Hence, F(T) ⊂ Cn ∩Qn for each n ≥ 1. This completes Step 2.

Step 3. Show that limn→∞‖xn − x1‖ exists.
In view of the algorithm (∗∗), we see that xn = PQnx1 and xn+1 ∈ Qn which give that

‖x1 − xn‖ ≤ ‖x1 − xn+1‖. (2.22)

This shows that the sequence ‖xn − x1‖ is nondecreasing. Note that C is bounded. It follows
that limn→∞‖xn − x1‖ exists. This completes Step 3.

Step 4. Show that xn+1 − xn → 0 as n → ∞.
Note that xn = PQnx1 and xn+1 = PCn∩Qnx1 ∈ Qn. This implies that

〈xn+1 − xn, x1 − xn〉 ≤ 0, (2.23)

from which it follows that

‖xn+1 − xn‖2 = ‖(xn+1 − x1) + (x1 − xn)‖2

= ‖xn+1 − x1‖2 + ‖x1 − xn‖2 + 2〈xn+1 − x1, x1 − xn〉

= ‖xn+1 − x1‖2 − ‖x1 − xn‖2 + 2〈xn+1 − xn, x1 − xn〉

≤ ‖xn+1 − x1‖2 − ‖x1 − xn‖2.

(2.24)

Hence, we have xn+1 − xn → 0 as n → ∞. This completes Step 4.

Step 5. Show that Tnxn − xn → 0 as n → ∞.
In view of xn+1 ∈ Cn, we see that

∥
∥yn − xn+1

∥
∥
2 ≤ ‖xn − xn+1‖2 + αnθn + αnβn

(

qnβn + β2nL
2 + βn − 1

)

‖Tnxn − xn‖2. (2.25)

On the other hand, we have

∥
∥yn − xn+1

∥
∥
2 =

∥
∥yn − xn + xn − xn+1

∥
∥
2 =

∥
∥yn − xn

∥
∥
2 + ‖xn − xn+1‖2 + 2〈yn − xn, xn − xn+1〉.

(2.26)

Combining (2.25) and (2.26) and noting yn = (1 − αn)xn + αnT
nzn, we get that

αn‖Tnzn − xn‖2 + 2〈Tnzn − xn, xn − xn+1〉 ≤ θn + βn
(

qnβn + β2nL
2 + βn − 1

)

‖Tnxn − xn‖2.
(2.27)

From the assumption, we see that there exists n0 such that

1 − qnβn − β2nL
2 − βn ≥ 1 − 2b − L2b2

2
> 0, ∀n ≥ n0. (2.28)
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For any n ≥ n0, it follows from (2.27) that

a
(

1 − 2b − L2b2
)

2
‖Tnxn − xn‖2 ≤ θn + 2‖Tnzn − xn‖‖xn − xn+1‖. (2.29)

Note that θn → 0 as n → ∞. Thanks to Step 4, we obtain that

lim
n→∞

‖Tnxn − xn‖ = 0. (2.30)

This completes Step 5.

Step 6. Show that Txn − xn → 0 as n → ∞.
Note that

‖xn − Txn‖ ≤ ‖xn − xn+1‖ +
∥
∥
∥xn+1 − Tn+1xn+1

∥
∥
∥ +

∥
∥
∥Tn+1xn+1 − Tn+1xn

∥
∥
∥ +

∥
∥
∥Tn+1xn − Txn

∥
∥
∥

≤ (1 + L)‖xn − xn+1‖ +
∥
∥
∥xn+1 − Tn+1xn+1

∥
∥
∥ + L‖Tnxn − xn‖.

(2.31)

From Step 5, we can conclude the desired conclusion. This completes Step 6.

Step 7. Show that xn → q, where q = PF(T)x1 as n → ∞.
Note that Lemma 1.5 ensures that ωw(xn) ⊂ F(T). From xn = PQnx1 and F(T) ⊂ Qn,

we see that

‖x1 − xn‖ ≤ ∥
∥x1 − q

∥
∥. (2.32)

From Lemma 1.5 of Yanes and Xu [16], we can obtain Step 7. This completes the proof.

Remark 2.3. The results of Theorem 2.2 are more general which includes the corresponding
results of Kim and Xu [17], Marino and Xu [5], Qin et al. [18], Sahu et al. [10], Zhou [14, 19]
as special cases.
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