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We are going to answer some open questions in the theory of hyperconvex metric spaces. We
prove that in complete R-trees hyperconvex hulls are uniquely determined. Next we show that
hyperconvexity of subsets of normed spaces implies their convexity if and only if the space
under consideration is strictly convex. Moreover, we prove a Krein-Milman type theorem for R-
trees. Finally, we discuss a general construction of certain complete metric spaces. We analyse its
particular cases to investigate hyperconvexity via measures of noncompactness.

1. Introduction

It is hard to believe that although hyperconvex metric spaces have been investigated for
more that fifty years, some basic questions in their theory still remain open (let us recall
that hyperconvex metric spaces were introduced in [1] (see also [2]), but from formal point
of view it has to be emphasized that the notion of hyperconvexity was investigated earlier
by Aronszajn in his Ph.D. thesis [3] which was never published). The main purpose of this
paper is to answer some of these questions.

Let us begin with the notion of hyperconvex hull which was introduced by Isbell
in [4] (see Definition 2.7). This notion is more difficult to investigate than the classical
notion of convex hull, since the former one is not uniquely determined (see Proposition 2.8).
In Section 3 we are going to prove that in hyperconvex metric spaces with the unique
metric segments property, hyperconvex hulls are uniquely determined. Let us recall that
such hyperconvex spaces were characterized by Kirk (see [5]) as complete R-trees (see
Theorem 2.15). This led to a surprising application of the theory of hyperconvex spaces to
graph theory (see [6]).
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Another interesting question is about the relation between the notion of convexity and
hyperconvexity (cf. Remark 4.1). In particular, it is inspired by the following Sine’s remark
[7, page 863], stated without a proof: “The term hyperconvex does have some unfortunate
aspects. First, a hyperconvex subset of even R

2 (with the l∞ norm) need not be convex. Also
convex sets can fail to be hyperconvex (but for this one must go to at least R

3).” It turns out
that all hyperconvex subsets of a given normed space are convex if and only if the space in
question is strictly convex; this fact is proved in Section 4.

In Section 5 we turn our attention to the classical Krein-Milman theorem (see [8]).
We prove that a bounded complete R-tree is a convex hull of its extremal points (note that a
similar result, but with the assumption of compactness, is proved in [9]). Hence, in particular,
such a property holds for bounded hyperconvex metric spaces with unique metric segments.

Let us denote by α and β the Kuratowski and Hausdorff measures of noncompactness,
respectively, (see [10, 11] for the definition and basic properties). It was noticed by Espı́nola
(see [12]) that if a metric space is hyperconvex, then α(A) = 2β(A) for all its bounded subsets
A. The question is about the inverse implication. More precisely, assume that α(A) = 2β(A)
for every bounded subset of a given metric space X. Does this equality imply that X is
hyperconvex? (Obviously, we mean nontrivial cases, i.e., we exclude spaces in which every
bounded set is relatively compact.) In Sections 6 and 7 we introduce a few metric spaces
which are not hyperconvex, but α(A) = 2β(A) for all their bounded subsets. Hence the answer
to the above question is negative. Let us emphasize that the metrics considered in Sections 6
and 7 are extensions and generalizations of commonly known radial metric and river metric,
which were proved in [13] to be hyperconvex.

Let us notice that in general it is not easy to provide explicit formulae which would
allow to evaluate the measures of noncompactness in particular spaces. We are going to state
such formulae for the metric spaces considered in Sections 6 and 7.

Let us emphasize that another motivation to consider those metrics comes from the
real world. Let us consider an example of the transmission of phone signals, when one person
(say, v1) calls another (say, v2), assuming there are two base transceiver stations (say, A and
B). We may have two cases. If v1 and v2 are in the range of one of the BTS’s, say A, then the
signal is first transmitted from v1 to A and then from A to v2—even if v1 and v2 are “close”
to each other. If v1 and v2 are located in the ranges of A and B, respectively, then the signal
is transmitted from v1 to A, then from A to B and finally from B to v2. Hence we have the
metric considered in Definition 7.4.

In Section 8 we provide a general scheme to construct metrics similar to these of
Sections 6 and 7. This scheme is a generalization of a construction from [14].

For completeness, in Section 2 we collect some basic definitions and facts used in the
sequel.

2. Preliminaries

In what follows we will denote the Euclidean metric on R
n by ρ and a “maximum” norm on

any suitable space by ‖ · ‖∞.
Let us begin with some classical definitions and facts.

Definition 2.1. Let (X, d) be a metric space. We call a set S ⊂ X a metric segment (joining the
points p, q ∈ X) if there exists an isometric embedding i : [0, d(p, q)] → X such that i(0) = p
and i(d(p, q)) = q.
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Definition 2.2 (see [1, page 410, Definition 1]). We call a metric space (X, d) hyperconvex, if any
family of closed balls {B(xi, ri)}i∈I with centers at xi’s and radii of ri’s, respectively, such that
d(xi, xj) ≤ ri + rj for any i, j ∈ I has a nonempty intersection.

Hyperconvex spaces possess—among others—the following properties.

Proposition 2.3 (see [1, page 417, Theorem 1’]). A hyperconvex space is complete.

Proposition 2.4 (see [1, page 423, Theorem 9]). A nonexpansive retract (i.e., a retract by a
nonexpansive retraction) of a hyperconvex space is hyperconvex.

Proposition 2.5 (see [1, page 422, Corollary 4]). Each hyperconvex metric space is an absolute
nonexpansive retract, that is, it is a nonexpansive retract of any metric space it is isometrically
embedded in. In particular, hyperconvex spaces are absolute retracts.

The following theorem gives a characterization of hyperconvex real Banach spaces.

Theorem 2.6 (Nachbin-Kelley, see [15, 16]). A real Banach space is hyperconvex if and only if
it is isometrically isomorphic to some space CR(K) of all real continuous functions on a Hausdorff,
compact and extremally disconnected topological spaceK with the “sup′′ norm.

Now let us state the definition of a hyperconvex hull. We will not need the general
version of this notion, investigated by Isbell in [4]; instead, the notion of a hyperconvex hull
of a subset of a hyperconvex space will suffice for our considerations.

Definition 2.7 (see, e.g., [17, page 408]). Let A ⊂ H be a nonempty subset of a hyperconvex
space H. We call B ⊂ H a hyperconvex hull of A (inH) if A ⊂ B, the set B is hyperconvex (as a
metric subspace) and there exists no hyperconvex B′ ⊂ H such that A ⊂ B′

� B.

A hyperconvex hull always exists, but needs not to be unique. It is, however, unique
up to an isometry. To be more precise, the following holds.

Proposition 2.8 (cf. [17, page 408, Proposition 5.6]). Each nonempty subset of a hyperconvex
metric space possesses a hyperconvex hull. If (X, dX) and (Y, dY ) are hyperconvex spaces, AX ⊂ X,
AY ⊂ Y are isometric and i : AX → AY is an isometry, then for any hyperconvex hulls HX ⊂ X,
HY ⊂ Y of AX and AY , respectively, the isometry i extends to an isometry ı̃ : HX → HY .

In what follows, we will also need the definitions of total and strict convexity.

Definition 2.9 (see, e.g. [1, page 407] and [18, page 6, Definition 2.1]). A metric space (X, d)
is called totally convex if for any two points p, q ∈ X and for all α, β ∈ [0, 1] such that α + β = 1
there exists a point r ∈ X satisfying the equalities d(p, r) = αd(p, q) and d(r, q) = βd(p, q).
If this point is unique for all possible combinations of p, q, α, β, we call the space X strictly
convex and denote this point by αp + βq.

Remark 2.10 (see [1, page 410]). A hyperconvex space is totally convex.

Remark 2.11 (see, e.g., [18, page 7]). For normed spaces, the above definition of strict
convexity (Definition 2.9) coincides with the usual one.

Proposition 2.12 (see, e.g., [18, page 7]). In a strictly convex metric space, intersection of any
family of totally convex subsets is itself totally convex.
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The above proposition lets us define the notion of a convex hull in any strictly convex
metric space in a natural way.

Definition 2.13. Let A be a nonempty subset of a strictly convex metric space X. The convex
hull of A (in X) is the set

convXA :=
⋂

{

C ⊂ X | A ⊂ C and the subspace C is totally convex
}

. (2.1)

When the underlying space X is obvious from the context, we will usually write convA
instead of convXA.

Now, let us recall the definition of an R-tree.

Definition 2.14 (see, e.g., [5, page 68, Definition 1.2]). A metric space (T, d) is called an R-tree,
if the following conditions are satisfied:

(1) any two points p, q ∈ T are joined by a unique metric segment (denoted by [p, q]d);

(2) if p, q, r ∈ T and [p, q]d ∩ [q, r]d = {q}, then [p, q]d ∪ [q, r]d = [p, r]d;

(3) for any p, q, r ∈ T there exists s ∈ T such that [p, q]d ∩ [p, r]d = [p, s]d.

(Let us note that (3) follows from (1); it is, however, useful to have it among the basic
properties of R-trees.) We will also use the notation (p, q)d := [p, q]d \ {p, q} for an open metric
segment joining p and q and (p, q]d := [p, q]d \ {p} for a left-open one.

Theorem 2.15 (see [5, Theorem 3.2]). For a metric spaceX the following conditions are equivalent:

(1) X is a complete R-tree;

(2) X is hyperconvex and any two points in X are joined by a unique metric segment.

In what follows, we will also use the classical notions of Chebyshev subset of a metric
space, a metric projection onto such a set C (which we will denote by PC), Kuratowski and
Hausdorff measures of noncompactness (which we will denote by α and β, resp.), and the
radial and river metrics (which we will denote by dr and dri, resp.). The reader may find the
relevant definitions, for instance, in the papers [11, 19, 20].

3. R-Trees

Let us begin this section with the following three simple propositions, which will enable us
to characterize R-trees as exactly these hyperconvex spaces in which hyperconvex hulls are
unique.

Proposition 3.1. A hyperconvex hull of a two-point subset {p, q} of a hyperconvex metric space is a
metric segment joining p and q.

Proof. It is enough to consider {p, q} as a subset of R and apply the uniqueness (up to
isometry) of hyperconvex hulls (Proposition 2.8).

Proposition 3.2. R-trees are strictly convex.
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Proof. Let (T, d) be an R-tree. Assume that x, y ∈ T , α, β ≥ 0, α + β = 1, z1, z2 ∈ T , z1 /= z2 and
d(x, zi) = αd(x, y), d(zi, y) = βd(x, y) for i ∈ {1, 2}. Then [x, z1]d /= [x, z2]d, [z1, y]d /= [z2, y]d.
But we have [x, zi]d ∩ [zi, y]d = {zi} for i ∈ {1, 2} and therefore [x, y]d = [x, z1]d ∪
[z1, y]d /= [x, z2]d ∪ [z2, y]d = [x, y]d, which is a contradiction.

Proposition 3.3. For a subset A of an R-tree, the following conditions are equivalent:

(1) A is hyperconvex;

(2) A is closed and totally convex.

Proof. For (1)⇒(2), it is enough to use Proposition 2.3 and Remark 2.10. On the other hand, if
a subset C of an R-tree T is closed and totally convex, it is a complete sub-R-tree of T . Indeed,
it is enough to show that for each p, q ∈ C, the metric segment [p, q]d ⊂ C. But in view of the
strict convexity of T , we have [p, q]d = {αp + βq | α, β ≥ 0, α + β = 1} ⊂ C. Now, in view of
Theorem 2.15, C is hyperconvex.

A natural question to ask is: in which hyperconvex metric spaces the hyperconvex
hulls are unique? The following theorem answers this question.

Theorem 3.4. Let (H,d) be a hyperconvex metric space. The following conditions are equivalent:

(1) for each A ⊂ H there exists exactly one hyperconvex hull of A inH;

(2) H is an R-tree.

Proof. Necessity follows easily from Proposition 3.1 and Theorem 2.15. Sufficiency. Let A be
a subset of an R-tree H. Notice that Σ := {B ⊂ H | A ⊂ B, B hyperconvex} = {B ⊂ H |
A ⊂ B, B closed and totally convex}. Using Propositions 3.2, 2.12 and 3.3, we arrive at the
conclusion that

⋂

Σ is the hyperconvex hull of A in H.

4. Normed Spaces

In the first part of this section we will give an answer to the following question: In which
spaces closed and convex subsets are hyperconvex?

Remark 4.1. Note that the question whether all closed and convex subsets of some normed
space are hyperconvex makes sense only in spaces which are themselves hyperconvex, so we
will now restrict our attention to such spaces.

Theorem 4.2 (see [21, page 474, Theorem 1]). If E is a two-dimensional real normed space, then
each nonempty, closed, and convex subset of E is a nonexpansive retract of E.

Corollary 4.3. Each nonempty, closed and convex subset of R
2 endowed with any hyperconvex norm

is hyperconvex.

Remark 4.4. Notice that “any hyperconvex norm on R
2” means essentially (i.e., up to an

isometric isomorphism) the maximum norm; this follows from Theorem 2.6 and can also be
proved using a geometric argument (see [19, Theorem 4.1]).

Theorem 4.5. Let E be a hyperconvex normed space. If E is not isometrically isomorphic to R
1 or

(R2, ‖ · ‖∞), then there exists a two-dimensional linear subspace of E which is not hyperconvex.
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Proof. Since E is not isometrically isomorphic to R
1, its dimension must be at least 2. Further,

since the only (up to an isometric isomorphism) two-dimensional hyperconvex space is
(R2, ‖ · ‖∞), we may assume dimE ≥ 3. By Theorem 2.6 we may assume that E is the space
CR(K) for some Hausdorff, compact and extremally disconnected topological space K. Since
dimE ≥ 3, the space K has at least three points, so CR(K) includes a copy of (R3, ‖ · ‖∞). This
means that it is enough to prove the theorem in case of E = R

3 with the “maximum” norm.
For simplicity, we will construct an affine non-hyperconvex subspace of E; by an

appropriate translation one can obtain a linear one. Let V := {(x1, x2, x3) ∈ E | x1 +
x2 + x3 = 1}. Consider the following three balls in V : BV ((−1, 1, 1), 1), BV ((1,−1, 1), 1),
BV ((1, 1,−1), 1). Since the corresponding balls in E intersect only at (0, 0, 0)/∈V, the space
V is not hyperconvex.

Corollary 4.3 and Theorem 4.5 yield the following characterization.

Corollary 4.6. Let E be a real normed space. The following conditions are equivalent:

(1) each nonempty, closed, and convex subset of E is hyperconvex;

(2) E is isometrically isomorphic to R
1 or (R2, ‖ · ‖∞).

We will now turn our attention to the problem of describing the spaces in which
hyperconvexity implies convexity. We will start with an observation suggested to us by
Grzybowski [22].

Proposition 4.7. If a real normed space E is strictly convex, then all its hyperconvex subsets are
one-dimensional.

Proof. Let A ⊂ E be at least two-dimensional. Therefore there exist three noncollinear points
a, b, c ∈ A. Put p := (1/2)(‖a − b‖ + ‖b − c‖ + ‖a − c‖) and let ra := p − ‖b − c‖, rb := p − ‖a − c‖,
rc := p − ‖a − b‖. It is clear that ‖a − b‖ = ra + rb and similarly for other distances. But E
is strictly convex, so we have BE(a, ra) ∩ BE(b, rb) = {(rb/(ra + rb))a + (ra/(ra + rb))b} and
BE(a, ra)∩BE(c, rc) = {(rc/(ra + rc))a+ (ra/(ra + rc))c}, so BE(a, ra)∩BE(b, rb)∩BE(c, rc) = ∅.
It must be therefore BA(a, ra) ∩ BA(b, rb) ∩ BA(c, rc) = ∅, which finishes the proof.

Corollary 4.8. If a real normed space E is strictly convex, then all its hyperconvex subsets are convex.

Proof. From Proposition 4.7 we know that hyperconvex subsets of E are one dimensional;
but from Proposition 2.5 we infer that hyperconvex sets are connected, which for one-
dimensional sets is equivalent to their convexity.

To prove the inverse implication, we will need a simple lemma.

Lemma 4.9 (see [23, page 44, Lemma 15.1]). Let X be a metric space and a, b, c ∈ X be such that
d(a, c) + d(c, b) = d(a, b). If there exist metric segments: Sac, joining the points a and c and Scb,
joining the points c and b, then Sac ∪ Scb is a metric segment joining the points aand b.

Now we are ready to prove the following theorem.

Theorem 4.10. If all hyperconvex subsets of a real normed space E are convex, then E is strictly
convex.
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Proof. Assume that E is not strictly convex; we will construct a nonconvex, hyperconvex
subset of E. There exist points a, b, c1, c2 ∈ E and positive numbers α, β such that c1 /= c2,
α + β = 1 and the equalities d(a, c1) = d(a, c2) = αd(a, b) and d(c1, b) = d(c2, b) = βd(a, b)
hold. From Lemma 4.9, both sets [a, c1] ∪ [c1, b] and [a, c2] ∪ [c2, b], where [x, y] means
an affine segment with endpoints x, y, are metric segments joining a and b (and hence
hyperconvex sets). They cannot be, however, both convex, so at least one of them is the
desired counterexample.

Again, combining Corollary 4.8 and Theorem 4.10, we obtain the following character-
ization of strictly convex normed spaces.

Theorem 4.11. A normed space is strictly convex if and only if each its hyperconvex subset is convex.

5. Krein-Milman Type Theorem

In this short section, we will show that a Krein-Milman type theorem holds for R-trees. It
turns out that instead of compactness we only need a weaker boundedness condition.

For completeness, let us state the definition of an extremal point in the setting of R-
trees.

Definition 5.1. Let X be a subset of an R-tree T . We call a point x ∈ X an extremal point of X if
no open metric segment included in X contains x.

Theorem 5.2. A complete and bounded R-tree is a convex hull of the set of its extremal points.

Proof. It is enough to show that each point of X lies on a metric segment joining some two
extremal points of X. Let x ∈ X. We may assume that x is not extremal; let x ∈ (a, b)d. The
family of all metric segments having x as one of its endpoints satisfies the assumptions of
the Kuratowski-Zorn lemma. Let [x, c]d ⊃ [x, a]d and [x, d]d ⊃ [x, b]d be maximal metric
segments containing the respective given metric segments. We will first show that c and d are
extremal points.

If, say, c were not extremal, we would have c ∈ (e, f)d for some e, f ∈ X, e /= f . Let
[c, x]d ∩ [c, e]d = [c, e′]d and [c, x]d ∩ [c, f]d = [c, f ′]d. If e′ /= c /= f ′, we would have (c, e′]d ⊂
(c, x]d and (c, f ′]d ⊂ (c, x]d, so c /∈ [e′, f ′]d; but [c, e′]d ∩ [c, f ′]d ⊂ [c, e]d ∩ [c, f]d = {c}, so
[c, e′]d ∪ [c, f ′]d = [e′, f ′]d—contradiction. This means that c = e′ or c = f ′; assume c = e′.
Now [c, x]d ∩ [c, e]d = {c}, so [c, x]d ∪ [c, e]d = [x, e]d, which contradicts the maximality of
[x, c]x.

Now let us show that x ∈ [c, d]d. We will prove that [x, c]d ∩ [x, d]d = {x}. Assume
[x, c]d ∩ [x, d]d = [x, y]d and x /=y. Let ε = min{d(x, a), d(x, b)}. Choose w ∈ (x, y]d
such that d(x,w) < ε. We have [x,w]d ⊂ [x, c]d and hence [x,w]d ⊂ [x, a]d; analogously,
[x,w]d ⊂ [x, b]d. This means that w ∈ [x, a]d ∩ [x, b]d and w/=x; but [x, a]d ∩ [x, b]d = {x}—
contradiction.

Since closed and convex subsets of an R-tree are hyperconvex (Proposition 3.3),
Corollary 4.6 might give the impression that R-trees are somehow similar to 1- or 2-
dimensional vector spaces and that completeness and boundedness of an R-tree imply its
compactness. As the following example shows, this analogy is misleading.

Example 5.3. Let T be R
2 with the radial metric. It is easy to see that X is an R-tree and so is

BX((0, 0), 1), which is both complete and bounded, but not compact.
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6. Hyperconvexity and Measures of Noncompactness

Let us begin this section with the following definition.

Definition 6.1. Let A ∈ R
2 be some point in the Euclidean plane. Let us define a function

˜dA
r : R

2 × R
2 → [0,+∞) as follows:

˜dr(v1, v2) =

⎧

⎨

⎩

ρ(v1, A) + ρ(v2, A) if v1 /=v2,

0 if v1 = v2,
(6.1)

for all v1, v2 ∈ R
2. If A = (0, 0), we will write ˜dr instead of ˜dA

r .

It is easy to prove the following lemma.

Lemma 6.2. (R2, ˜dr) is a complete metric space.

We will call the function ˜dr (resp., ˜dA
r ) introduced in Definition 6.1, the modified radial

metric (resp., centered at A).

Remark 6.3. The topology of R
2 with the metric ˜dr is strictly stronger than the topology of the

same space induced by the radial metric.

Lemma 6.4. The space R
2 with the metric ˜dr is not hyperconvex.

Proof. Let us consider two closed balls B((0, 0), 1) and B((
√

2,
√

2), 1). Then

˜dr

(

(0, 0),
(√

2,
√

2
))

= 2, (6.2)

but

B((0, 0), 1) ∩ B
((√

2,
√

2
)

, 1
)

= ∅. (6.3)

This shows that the metric ˜dr fails to be hyperconvex.

Now we are going to examine the measures of noncompactness in the space (R2, ˜dr).
For this purpose we are going to use a similar approach as in the case of the measures of
noncompactness in R

2 with the radial metric (cf. [20, Theorem 4]). First let us introduce the
following definition.

Definition 6.5. Let D be a bounded subset of (R2, ˜dr). We say that w′ ∈ R+ satisfies

(1) V ∗(D) condition, if for every w < w′, there exist infinitely many pairwise distinct
points v ∈ D such that w < ρ(v, (0, 0)) ≤ w′;

(2) V∗(D) condition, if for every w > w′, there exist infinitely many pairwise distinct
points v ∈ D such that w > ρ(v, (0, 0)) ≥ w′.

Let us put v∗(D) = sup{0} ∪ {w′ : w′ satisfies V ∗(D) or V∗(D)}.
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Using above conditions we can prove the following theorem.

Theorem 6.6. For any bounded subset D of R
2 with the metric ˜dr we have α(D) = 2v∗(D) and

β(D) = v∗(D).

Proof. If there exists no nonnegative number w′ satisfying either V ∗(D) or V∗(D), then clearly
D consists of a finite number of points. Hence α(D) = β(D) = 0 in this case.

Now consider a bounded set D such that there exists a w′ satisfying V ∗(D) or V∗(D)
condition. To prove that α(D) = 2v∗(D), let us first show that α(D) ≥ 2v∗(D). For this,
consider a covering (Dj)j=1,2,...,m of D such that

max
j=1,...,m

δ
(

Dj

) ≤ ε (6.4)

for some ε > 0. Consider the sets An = {v = (x, y) ∈ D :
√

x2 + y2 ≥ v∗(D)−1/n}, where n ∈ N.
Then for every n ∈ N there exists a jn ∈ {1, 2, . . . , m} and vn

1 , v
n
2 ∈ D such that vn

1 /=vn
2 , vn

1 , v
n
2 ∈

Djn ∩ An. Since ˜dr(vn
1 , vn

2 ) = ρ(vn
1 , 0) + ρ(vn

2 , 0) ≥ 2v∗(D) − 2/n for every n ∈ N, ε ≥ 2v∗(D).
Hence α(D) ≥ 2v∗(D).

Next we prove that β(D) ≤ v∗(D). Obviously, if

v∗(D) = sup
(x,y)∈D

ρ
((

x, y
)

, (0, 0)
)

, (6.5)

then D is contained in the closed ball of center (0, 0) and radius v∗(D). So in this case β(D) ≤
v∗(D).

Let

v∗(D) < sup
(x,y)∈D

ρ
((

x, y
)

, (0, 0)
)

, (6.6)

then according to Definition 6.5, for every ε > 0, there exist at most finitely many points
(x, y) ∈ D with the property ρ((x, y), (0, 0)) > v∗(D) + ε. Hence β({(x, y) ∈ D :
ρ((x, y), (0, 0)) > v∗(D) + ε}) = 0. Moreover,

β
({(

x, y
) ∈ D : ρ

((

x, y
)

, (0, 0)
) ≤ v∗(D) + ε

}) ≤ v∗(D) + ε. (6.7)

Since ε > 0 is arbitrary, we get β(D) ≤ v∗(D) in this case. Finally, we get v∗(D) ≤ (1/2)α(D) ≤
β(D) ≤ v∗(D). This implies α(D) = 2v∗(D) and β(D) = v∗(D).

Example 6.7. Using the previous formulae, we can calculate that in (R2, ˜dr) we have
α(B((0, 0), 1)) = 2β(B((0, 0), 1)) = 2; in particular, the closed unit ball is noncompact.

Remark 6.8. It is known (see [12, page 135] for the details) that if a space is hyperconvex, then
for any of its bounded subset D, the following equality holds

α(D) = 2β(D). (6.8)
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The above theorem shows that even in the nontrivial cases (i.e., in cases, when bounded sets
are not necessarily relatively compact), the above equality does not have to imply that the
space in question is hyperconvex.

Definition 6.1 can be slightly modified. Namely, let us introduce the following
definition.

Definition 6.9. Let us define a function dr : R
2 × R

2 → [0,+∞) as follows:

dr(v1, v2) =

⎧

⎨

⎩

|x1| +
∣

∣y1
∣

∣ + |x2| +
∣

∣y2
∣

∣ if v1 /=v2,

0 if v1 = v2,
(6.9)

for all v1 = (x1, y1), v2 = (x2, y2) ∈ R
2.

Remark 6.10. It can be easily checked that (R2, dr) is a complete metric space. Its topology is
also stronger than the topology of R

2 with the radial metric. On the other hand this topology
is obviously equivalent to the topology induced by the metric ˜dr .

Lemma 6.11. The space R
2 with the metric dr is not hyperconvex.

Proof. Let us consider two closed balls B((0, 0), 1) and B((2, 0), 1). Then

dr((0, 0), (2, 0)) = 2 but B((0, 0), 1) ∩ B((2, 0), 1) = ∅. (6.10)

It shows that the metric dr fails to be hyperconvex.

For the measures of noncompactness in the space of bounded subsets in the space
(R2, dr) we have similar formulas to those given in Theorem 6.6.

Definition 6.12. Let D be a bounded subset of R
2 with the metric dr . We say that w′ ∈ R+

satisfies

(1) U∗(D) condition, if for every w < w′, there exist infinitely many pairwise distinct
points u = (ux, uy) ∈ D such that w < |ux| + |uy| ≤ w′;

(2) U∗(D) condition, if for every w > w′, there exist infinitely many pairwise distinct
points u = (ux, uy) ∈ D such that w > |ux| + |uy| ≥ w′.

Let us put u∗(D) = sup{0} ∪ {w′ : w′ satisfies U∗(D) or U∗(D)}.

Theorem 6.13. For any bounded subset D of R
2 with the metric dr one has α(D) = 2u∗(D) and

β(D) = u∗(D).

The proof of Theorem 6.13 is similar to the proof of Theorem 6.6 and therefore we omit
it.

The metric we are going to consider to the end of this section is, roughly speaking, like
between the radial metric and the river metric. We will call it a modified river metric.
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Definition 6.14. Let A = (ax, ay) ∈ R
2. Define a function dA

ri : R
2 × R

2 → [0,+∞) as follows:

dA
ri (v1, v2) =

⎧

⎨

⎩

∣

∣y1 − y2
∣

∣, if x1 = x2,

|x1 − ax| +
∣

∣y1 − ay

∣

∣ + |x2 − ax| +
∣

∣y2 − ay

∣

∣, otherwise,
(6.11)

for all v1 = (x1, y1), v2 = (x2, y2) ∈ R
2. If A = (0, 0), we will write dm

ri instead of dA
ri .

The following fact can be easily checked.

Lemma 6.15. (R2, dm
ri ) is a complete metric space.

Remark 6.16. The topology of (R2, dm
ri ) is strictly stronger than the topology of R

2 induced by
the river metric.

It is interesting to consider a closed ball B((a, b); r) ⊂ (R2, dm
ri ), where a ∈ R \ {0} and

|a|+ |b| < r < 2|a|+ |b|. Such a ball consists of two disjoint closed sets (a square and a segment)
which, in particular, means that it is not connected.

Lemma 6.17. The space R
2 with the metric dm

ri is not hyperconvex.

Proof. Let us consider two closed balls B1((1, 1), 3/2) and B2((0, 0), 1/2). Then
dm

ri ((0, 0), (1, 1)) = 2 but B2((0, 0), 1/2) ∩ B1((1, 1), 3/2) = ∅. This shows that (R2, dm
ri ) is

not hyperconvex.

To evaluate the measures of noncompactness of any bounded subset of (R2, dm
ri ) one

can use a similar approach as in the case of (R2, dr) (cf. Definition 6.12 and Theorem 6.13).
In connection with Remark 6.8 let us notice that (R2, dr) as well as (R2, dm

ri ) are also
examples of metric spaces such that α(D) = 2β(D) for any bounded subset D ⊂ (R2, dr) or
D ⊂ (R2, dm

ri ), but those spaces are not hyperconvex.

7. Generalized Modified Radial and River Metrics

The metric spaces (R2, dr) as well as (R2, dri) are special cases of a general construction
provided in [19]. More precisely, let E be a normed space and C ⊂ E its Chebyshev subset.

Definition 7.1. Let C ⊂ E be a Chebyshev set in a normed space E and let dC be any metric
defined on C. Let us define d : E × E → [0,+∞) by the formula

d
(

x, y
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∥

∥x − y
∥

∥, if PC(x) = PC

(

y
)

, and x, PC(x), y are collinear,

‖x−PC(x)‖+dC

(

PC(x), PC

(

y
))

+
∥

∥PC

(

y
)−y∥∥, otherwise.

(7.1)
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The above defined function d is a metric (see [19, Lemma 3.1]). Now, the following
question can be risen. Is it possible to consider two disjoint Chebyshev sets, instead of one
Chebyshev set C, in such a way to get a variant of the metric defined above? The following
two examples show that in the case of classical hyperconvex metrics: the radial metric as well
as the river metric, this problem seems not to be easy.

Example 7.2. Let AB be a fixed segment in R
2 and L the perpendicular bisector of AB dividing

the whole plane R
2 into two open half-planes II � A and I � B. Let us define a function

d : R
2 × R

2 → [0,+∞) as follows:

d(v1, v2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dA
r (v1, v2) if v1, v2 ∈ II ∪ L,

dB
r (v1, v2) if v1, v2 ∈ I ∪ L,

ρ(v1, A) + ρ(A,B) + ρ(B, v2) if v1 ∈ II, v2 ∈ I,

ρ(v2, A) + ρ(A,B) + ρ(B, v1) if v1 ∈ I, v2 ∈ II,

(7.2)

for all v1, v2 ∈ R
2, where dA

r , dB
r are the radial metrics on the plane centered at A and B,

respectively. Then this d is not a metric. Indeed it does not satisfy the triangle inequality in
the following case.

Let us consider three points v1, v2, v3 ∈ R
2 such that v1 ∈ II, v2 ∈ L, v3 ∈ I; v2, v1,

and A are collinear; v2, v3, and B are collinear; ρ(v2, v1) < ρ(v1, A) and ρ(v2, v3) < ρ(v3, B).
Then d(v1, v2) + d(v2, v3) < d(v1, v3).

Example 7.3. Let A := (−a, 0) and B := (a, 0), where a > 0, be two points in R
2. Let L be the

perpendicular bisector of AB; it divides the whole plane R
2 into two open half-planes II � A

and I � B. Let us define a function d : R
2 × R

2 → [0,+∞) as follows:

d(v1, v2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dri(v1, v2) if v1, v2 ∈ I ∪ L

or v1, v2 ∈ II ∪ L,

dri(v1, A) + ρ(A,B) + dri(B, v2) if v1 ∈ II, v2 ∈ I,

dri(v2, A) + ρ(A,B) + dri(B, v1) if v1 ∈ I, v2 ∈ II,

(7.3)

for all v1, v2 ∈ R
2, where dri denotes the river metric. Then this d is not a metric. Indeed, it

does not satisfy the triangle inequality in the following case. Let A = (−2, 0), B = (2, 0), and let
us take three points v1 = (−1, 1), v2 = (0, 0), v3 = (1, 1). Then, by the definition d(v1, v2) = 2
and d(v2, v3) = 2 but d(v1, v3) = 8, which shows d(v1, v2) + d(v2, v3) < d(v1, v3).

However, it appears that all the metrics introduced in Section 6 (Definitions 6.1, 6.9
and 6.14) are appropriate to define new metrics using the idea described at the beginning of
this section.

Let us begin with the following definition.
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Definition 7.4. Let AB be a segment in R
2 and L be the perpendicular bisector of AB dividing

the whole plane R
2 into two open half-planes II � A and I � B. Let us define a function

d1 : R
2 × R

2 → [0,+∞) as follows:

d1(v1, v2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

˜dA
r (v1, v2), if v1, v2 ∈ II ∪ L,

˜dB
r (v1, v2), if v1, v2 ∈ I ∪ L,

ρ(v1, A) + ρ(A,B) + ρ(B, v2), if v1 ∈ II, v2 ∈ I,

ρ(v2, A) + ρ(A,B) + ρ(B, v1), if v1 ∈ I, v2 ∈ II,

(7.4)

for all v1, v2 ∈ R
2, where ˜dA

r and ˜dB
r denote modified radial metrics centered at A and B,

respectively.

Let us note that if v1 and v2 both are in L, then d1(v1, v2) = ˜dA
r (v1, v2) = ˜dB

r (v1, v2), so
d1 is well-defined.

Lemma 7.5. (R2, d1) is a complete metric space.

Proof. It is easy to check that d1 is a metric. Now to verify that it is complete, let us consider
a Cauchy sequence vn in the space (R2, d1). Then there exists N ∈ N such that for all n ≥ N,
the points vn belong to the same closed half-plane I ∪ L or II ∪ L. Hence, by Lemma 6.2, (vn)
is convergent, which completes the proof.

Remark 7.6. It is clear that the topologies of R
2 induced by the metric d1 and the modified

radial metric are not comparable.

Lemma 7.7. The space R
2 with the metric d1 is not hyperconvex.

Proof. For convenience consider A = (1, 0), B = (−1, 0) and consider two closed balls
B((1, 0), 1/2) and B((1, 1), 1/2). Then d1((1, 0), (1, 1)) = 1 but B((1, 0), 1/2) ∩ B((1, 1), 1/2) =
∅.

Remark 7.8. It is easy to evaluate the Kuratowski and Hausdorff measures of noncompactness
of bounded sets in R

2 with the metric d1.
Indeed, let us consider a bounded set D in R

2 with this metric. Then we can write D as
the union of two sets U and V , where

U = D ∩ (I ∪ L), V = D ∩ (II). (7.5)

Then, by the maximum property of the measures of noncompactness, we get

α(D) = α(U ∪ V ) = max(α(U), α(V )). (7.6)
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To evaluate α(U) and α(V ) it is enough to apply formulas similar to the one given in
Theorem 6.6.

Remark 7.9. It is clear that in Definition 7.4 one can replace ˜dA
r , ˜dB

r by d
A

r , d
B

r , respectively,
(cf. Definition 6.9) getting again a complete metric space which is not hyperconvex.

Now, using the metric from Definition 6.14, let us introduce the following metric.

Definition 7.10. Let AB be a fixed segment in R
2 parallel to the x-axis and L perpendicular

bisector of AB dividing the whole plane into two open half-planes I and II. Let us define a
function d2 : R

2 × R
2 → [0,+∞) as follows:

d2(v1, v2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dA
ri (v1, v2) if v1, v2 ∈ II ∪ L,

dB
ri(v1, v2) if v1, v2 ∈ I ∪ L,

dA
ri (v1, A) + ρ(A,B) + dB

ri(B, v2) if v1 ∈ II, v2 ∈ I,

dB
ri(v1, B) + ρ(A,B) + dA

ri (A, v2) if v1 ∈ I, v2 ∈ II,

(7.7)

for all v1, v2 ∈ R
2, where dA

ri and dB
ri denote the metrics from Definition 6.14.

One can prove the following lemma.

Lemma 7.11. (R2, d2) is a complete metric space.

The proof of this Lemma is similar to the proof of Lemma 7.5 and therefore we omit it.

Remark 7.12. The metric d2 is a variant of the metric dm
ri defined in Definition 6.14.

The topologies induced by these metrics are not comparable. The space (R2, d2) is not
hyperconvex, either. Finally, to find the Kuratowski and the Hausdorff measures of
noncompactness of bounded sets in R

2 with the metric d2, it is enough to use the same
approach as in Remark 7.8.

In Definitions 7.4 and 7.10, we considered two Chebyshev sets. Now one can think of
the following question. Is it possible to increase the number of suitably chosen Chebyshev
sets? The answer is “yes.” Let us introduce the following definition.

Definition 7.13. Let us consider the square ABCD in R
2 with vertices: A := (a, a), B := (−a, a),

C := (−a,−a), D := (a,−a), where a > 0. Denote L1 := {(x, y) ∈ R
2 | y = 0}, L2 := {(x, y) ∈ R

2 |
x = 0}, L+

1 := {(x, y) ∈ L1 | x ≥ 0}, L−
1 := {(x, y) ∈ L1 | x ≤ 0}, L+

2 := {(x, y) ∈ L2 | y ≥ 0},
L−

2 := {(x, y) ∈ L2 | y ≤ 0}. Let dm be the “maximum” metric on R
2. By dAB

1 , dAC
1 , and so

forth, we will mean a metric defined as in Definition 7.4, but using dm(A,B), dm(A,C), and
so forth, instead of ρ(A,B), ρ(A,C), and so forth. Denote the four open quadrants by I � A,
II � B, III � C and IV � D. Let us define a function d4 : R

2 × R
2 → [0,+∞) as follows:
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d3(v1, v2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

˜dA
r (v1, v2) if v1, v2 ∈ Ic,

˜dB
r (v1, v2) if v1, v2 ∈ IIc,

˜dC
r (v1, v2) if v1, v2 ∈ IIIc,

dD
1 (v1, v2) if v1, v2 ∈ IV c,

dAB
1 (v1, v2) if v1 ∈ I, v2 ∈ II or vice versa,

dBC
1 (v1, v2) if v1 ∈ II, v2 ∈ III or vice versa,

dCD
1 (v1, v2) if v1 ∈ III, v2 ∈ IV or vice versa,

dDA
1 (v1, v2) if v1 ∈ IV, v2 ∈ I or vice versa,

dAC
1 (v1, v2) if v1 ∈ I, v2 ∈ III or vice versa,

dBD
1 (v1, v2) if v1 ∈ II, v2 ∈ IV or vice versa,

˜dA
r (v1, A) + dm(A,B) + ˜dB

r (B, v2),

or ˜dA
r (v1, A) + dm(A,C) + ˜dC

r (C, v2),

if v1 ∈ I, v2 ∈ L1
−,

˜dD
r (v1, D) + dm(D,B) + ˜dB

r (B, v2),

or ˜dD
r (v1, D) + dm(D,C) + ˜dC

r (C, v2),

if v1 ∈ IV, v2 ∈ L1
−,

(7.8)

and eight more similar expressions involving L+
1 , L+

2 , and L−
2 for all v1, v2 ∈ R

2, where
Ic, IIc, IIIc and IV c denote the closed quadrants and ˜dA

r , ˜dB
r , ˜dc

r , and ˜dD
r denote the

modified radial metrics defined in Definition 6.1.

Lemma 7.14. (R2, d3) is a complete metric space.

Proof. To prove that d3 is a metric on R
2 is straightforward, although quite long, so we omit

this proof. To prove that (R2, d3) is complete, let us consider a Cauchy sequence (vn) in the
space (R2, d3). Then for every ε > 0, there exists N ∈ N such that d3(vm, vn) < ε for every
m,n ≥ N. It means there exists N ∈ N such that for every n ≥ N,vn belongs to the same
closed quadrant, because if vn and vm were in different quadrants (without loss of generality
suppose vm ∈ I and vn ∈ II), then

d3(vm, vn) = ˜dA
r (vm,A) + dm(A,B) + ˜dB

r (B, vn). (7.9)

So, if we choose ε < dm(A,B), then d3(vn, vm) > ε which contradicts that (vn) is a Cauchy
sequence. Hence almost all the terms of any Cauchy sequence must be in the same closed
quadrant. Thus by Lemma 6.2, (vn) is convergent, which shows that the space (R2, d3) is
complete.
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For the convenience of the reader, let us present a figure of a closed ball BB(P, r) in
(R2, d3), where A = (1, 1), B = (−1, 1), C = (−1,−1), D = (1,−1), P = (a, b), a > 1, b > 1,
and ρ(A,P) + dm(A,B) < r < ρ(A,P) + (3/2)dm(A,B).

Obviously, the following lemma holds.

Lemma 7.15. The space R
2 with the metric d3 is not hyperconvex.

Proof. For convenience let us consider A = (1, 1), B = (−1, 1), C = (−1,−1), and D =
(1,−1) and two closed balls B((1, 1), 1/2) and B((2, 1), 1/2). Then d3((1, 1), (2, 1)) = 1 but
B((1, 1), 1/2) ∩ B((2, 1), 1/2) = ∅.

Remark 7.16. It is easy to evaluate the Kuratowski and Hausdorff measures of noncompact-
ness of bounded sets in (R2, d3). Indeed, one can use a similar approach as in Remark 7.8.

8. Linking Construction

In this section we will give a slight generalization of the so-called linking construction
described by Aksoy and Maurizi in [14] and show how this generalization includes the
metrics of Section 7. Notice that a similar concept appears in [24], where it is used to study
existence of certain mappings between Banach spaces.

Definition 8.1 (cf. [14, page 221, Theorem 2.1]). Let (X, d) be a metric space and {Wλ, dλ}λ∈Λ
a collection of pairwise disjoint metric spaces, each disjoint with X. Let f : Λ → X be an
arbitrary function and let g : Λ → ⋃

λ∈Λ Wλ be a function satisfying g(λ) ∈ Wλ for each
λ ∈ Λ. Define ˜Wλ := Wλ \ {g(λ)} for λ ∈ Λ. Let Z := X ∪ ⋃

λ∈Λ ˜Wλ. Define the function
dZ : Z × Z → [0,+∞) by the formula

dZ

(

x, y
)

:=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d
(

x, y
)

if x, y ∈ X,

dλ

(

x, y
)

if x, y ∈ Wλ for some λ ∈ Λ,

dλ1

(

x, g(λ1)
)

+ d
(

f(λ1), f(λ2)
)

+ dλ2

(

g(λ2), y
)

if x ∈ ˜Wλ1 , y ∈ ˜Wλ2 , λ1 /=λ2

d
(

x, f(λ)
)

+ dλ

(

g(λ), y
)

if x ∈ X, y ∈ ˜Wλ for some λ ∈ Λ,

d
(

y, f(λ)
)

+ dλ

(

g(λ), x
)

if y ∈ X and x ∈ ˜Wλ for some λ ∈ Λ.

(8.1)

Theorem 8.2 (cf. [14, page 221, Theorem 2.1]). The function dZ defined above is a metric on Z. If
all the metric spaces X, Wλ for λ ∈ Λ are hyperconvex, then so is (Z, dZ).

Remark 8.3. The paper [14] contains the above theorem only for hyperconvex spaces. It is
obvious that dZ is a metric also in the general case.
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0

D

B A

P(a, b)

Figure 1: An example of a ball in the metric d3.

Remark 8.4. The authors of the paper [14] applied their version of Theorem 8.2 to obtain the
hyperconvexity of the metric of Definition 7.1 (see [14, Theorem 2.2]). Let us notice that an
identical result was given in an earlier work [19].

Proposition 8.5. The metric dZ from Definition 8.1 is complete if all the spaces Wλ and X are
complete.

Proof. Let (xn) be a Cauchy sequence in (Z, dZ). We will show that (xn) has a convergent
subsequence. If (xn) has infinitely many terms in Z, we are done. If (xn) has infinitely many
terms in some ˜Wλ, it must be convergent in Wλ to some x ∈ Wλ; if x /= g(λ), the proof is
complete, and if x = g(λ), it is easily seen that xn → f(λ) in Z as n → ∞. Therefore we may
assume that (xn) includes only a finite number (possibly zero) of points from Z and each ˜Wλ.
Define PX : Z → X by

PX(x) :=

⎧

⎨

⎩

x if x ∈ X;

f(λ) if x ∈ ˜Wλ for some λ ∈ Λ.
(8.2)

Observe that limn→∞dZ(xn, PX(xn)) = 0; for if that were not the case, there would exist
a subsequence (xnk) and an ε > 0 such that each xnk would lie in different ˜Wλ and
dZ(xnk , PX(xnk)) > ε; this would mean that dZ(xnk , xnl)) > 2ε for all k, l ∈ N—contradiction
with (xn) being Cauchy.

Now notice that dZ(PX(xm), PX(xn)) ≤ dZ(xm, xn) for m,n ∈ N, so the sequence
(PX(xn)) is also Cauchy and hence convergent to some x ∈ X. We have dZ(x, xn) ≤
dZ(x, PX(xn)) + dZ(PX(xn), xn) → 0 as n → ∞ and the proof is complete.

Remark 8.6. To evaluate the Kuratowski and Hausdorff measures of noncompactness of
bounded sets in Z with the metric dZ, when the set Λ is finite, we use following procedure.

Let us consider a bounded set D in Z with the metric dZ. Then we can write D as the
following union:

D = (X ∩D) ∪
(

⋃

λ∈Λ

(

˜Wλ ∩D
)

)

. (8.3)
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Then, by the maximum property of the measures of noncompactness, we get

α(D) = α

(

(X ∩D) ∪
(

⋃

λ∈Λ

(

˜Wλ ∩D
)

))

= max
λ∈Λ

{

α(X ∩D), α
(

˜Wλ ∩D
)}

.

(8.4)

Example 8.7. Notice that the metric from Definition 7.4 can be obtained as a special case of
Definition 8.1. Indeed, put X := {A,B} and Λ := R

2 \X. For each λ ∈ Λ, define

f(λ) :=

⎧

⎨

⎩

A if λ ∈ II,

B if λ ∈ I ∪ L,
(8.5)

Wλ := {f(λ), λ} × {0} for λ ∈ Λ and g(λ) := (f(λ), 0) for λ ∈ Λ.

In a similar way, other metrics from Sections 6 and 7 are special cases of Definition 8.1.
As an example, let us provide a way to construct the metric dm

ri from Definition 6.14.

Example 8.8. Let X := R and Wλ := {λ} × R for λ ∈ Λ := R. Define the metric d : X × X →
[0,+∞) by the formula

d
(

x, y
)

:=

⎧

⎨

⎩

|x| + ∣

∣y
∣

∣ if x /=y;

0 if x = y.
(8.6)

For each λ ∈ Λ, let dλ : Wλ×Wλ → [0,+∞) be the metric defined by dλ((λ, x), (λ, y)) := |x−y|.
Further, let f : Λ → X be an identity mapping and g : Λ → ⋃

λ∈Λ Wλ : λ �→ (λ, 0). It is easily
seen that applying Definition 8.1 we obtain the metric space dm

ri .

At the beginning of Section 7 we posed a question whether it is possible to construct
a metric analogous to that from Definition 7.1, but with more than one Chebyshev subset.
In all our examples, however, these subsets were singletons. Let us now show an example
of two similar metrics constructed using two disjoint Chebyshev subsets consisting of more
than one point.

Example 8.9. Define the following two Chebyshev subsets of the Euclidean plane: C− :=
conv{(−1,−1), (−1, 1)} and C+ := conv{(1,−1), (1, 1)}. Put Λ := X := C− ∪ C+. Let H− :=
{(x, y) ∈ R

2 | x < 0} and H+ := {(x, y) ∈ R
2 | x ≥ 0}. Let P− : H− → C− and P+ : H+ → C+ be

metric projections and define P : R
2 → X by the formula

P(x) :=

⎧

⎨

⎩

P−(x) if x ∈ H−,

P+(x) if x ∈ H+.
(8.7)

For each λ ∈ Λ, let Wλ := {x ∈ R
2 | P(x) = λ} × {0}. Let f : Λ → X the identity map and

g : Λ → R
2 × {0} be defined by g(λ) := (λ, 0) for λ ∈ Λ. The metrics on X and Wλ’s are
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inherited from R
2. Applying Definition 8.1 we obtain a certain metric on R

2. Let us notice
that it is not complete; taking Λ := R

2 and Wλ := {λ, P(λ)} × {0} for λ ∈ Λ, f := P and g as
before we obtain another metric, this time complete. Let us finish by observing that since X,
and hence Z, is disconnected, in both cases Z cannot be hyperconvex.
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