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A one-step iteration with errors is considered for a family of asymptotically nonexpansive nonself
mappings. Weak convergence of the purposed iteration is obtained in a Banach space.

1. Introduction and Preliminaries

Let E be a real Banach space and E∗ the dual space of E. Let 〈·, ·〉 denote the pairing between
E and E∗. The normalized duality mapping J : E → 2E

∗
is defined by

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 = ∥∥f∥∥2

}
, ∀x ∈ E. (1.1)

Let UE = {x ∈ E : ‖x‖ = 1}, where E is said to be smooth or said to have a Gâteaux
differentiable norm if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(1.2)

exists for each x, y ∈ UE, where E is said to have a uniformly Gâteaux differentiable norm
if for each y ∈ UE, the limit is attained uniformly for all x ∈ UE, where E is said to be
uniformly smooth or said to have a uniformly Fréchet differentiable norm if the limit is
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attained uniformly for all x, y ∈ UE, whereE is said to be uniformly convex if for any ε ∈ (0, 2]
there exists δ > 0 such that for any x, y ∈ UE:

∥∥x − y
∥∥ ≥ ε implies

∥∥∥∥
x + y

2

∥∥∥∥ ≤ 1 − δ. (1.3)

It is known that a uniformly convex Banach space is reflexive and strictly convex.
In this paper, we use → and ⇀ to denote the strong convergence and weak

convergence, respectively. Recall that a Banach space E is said to have the Kadec-Klee
property if for any sequence {xn} ⊂ E and x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖, then
‖xn − x‖ → 0 as n → ∞ for more details on Kadec-Klee property, the reader is referred to
[1, 2] and the references therein. It is well known that if E is a uniformly convex Banach space,
then E enjoys the Kadec-Klee property.

Recall that a Banach space E is said to satisfy the Opial condition [3] if, for each
sequence {xn} in E, the convergence xn ⇀ x implies that

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥∥xn − y
∥∥, ∀y ∈ E

(
y /=x

)
. (1.4)

Let C be a nonempty closed and convex subset of E and T a mapping. In this paper,
we use F(T) to denote the fixed point set of T. Recall that the mapping T is said to be
nonexpansive if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (1.5)

T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with
kn → 1 as n → ∞ such that

∥∥Tnx − Tny
∥∥ ≤ kn

∥∥x − y
∥∥, ∀x, y ∈ C, ∀n ≥ 1. (1.6)

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[4] as a generalization of the class of nonexpansive mappings. They proved that if C is
a nonempty closed convex and bounded subset of a real uniformly convex Banach space,
then every asymptotically nonexpansive self-mapping has a fixed point; see [4] for more
details. Some classical results on asymptotically nonexpansivemappings and other important
nonlinear mappings have been established by Kirk et al.; see [5–13].

However, T is said to be uniformly L-lipschitz if there exists a positive constant L such
that

∥∥Tnx − Tny
∥∥ ≤ L

∥∥x − y
∥∥, ∀x, y ∈ C, ∀n ≥ 1. (1.7)

Recall that the Mann iteration was introduced by Mann [14] in 1953. The Mann
iteration sequence {xn} is defined in the following manner:

∀x1 ∈ C, xn+1 = (1 − αn)xn + αnTxn, ∀n ≥ 1, (1.8)

where {αn} is a sequence in the interval (0, 1) and T : C → C is a mapping.
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In 1979, Reich [15] obtained the following celebrated weak convergence theorem.

Theorem R-1. Let C be a closed convex subset of a uniformly convex Banach space E with a Fréchet
differential norm, T : C → C a nonexpansive mapping with a fixed point, and {αn} a real sequence
such that 0 ≤ αn ≤ 1 and

∑
n=1 αn(1 − αn) = ∞. Let {xn} be a sequence generated in (1.8). Then the

sequence {xn} converges weakly to a fixed point of T.

Note that the dual of reflexive Banach spaces with a Fréchet differentiable norm have
the Kadec-Klee property. In 2001, Garcı́a Falset et al. [16] obtained a new weak convergence
theorem without the restriction E enjoys the Fréchet differential norm. To be more precise,
they obtained the following results.

Theorem FKKR. Let C be a closed convex subset of a uniformly convex Banach space E such that E∗

has the Kadec-Klee property, T : C → C a nonexpansive mapping with a fixed point, and {αn} a real
sequence such that 0 ≤ αn ≤ 1 and

∑∞
n=1 αn(1 − αn) = ∞. Let {xn} be a sequence generated in (1.8).

Then the sequence {xn} converges weakly to a fixed point of T.

Recall that the modified Mann iteration which was introduced by Schu [17] generates
a sequence {xn} in the following manner:

x1 ∈ C, xn+1 = (1 − αn)xn + αnT
nxn, ∀n ≥ 1, (1.9)

where {αn} is a sequence in the interval (0, 1) and T : C → C is an asymptotically
nonexpansvie mapping.

In 1991, Schu [17] obtained the following weak convergence results for asymptotically
nonexpansive mappings in a uniformly convex Banach space. To be more precise, they
obtained the following results.

Theorem S. Let E be a uniformly convex Banach space satisfying the Opial condition, ∅/=C ⊂ E
closed bounded and convex and S : C → C asymptotically nonexpansive with sequence {kn} ⊂ [1,∞)
for which

∑∞
n=1(kn − 1) < ∞ and {αn} ∈ [0, 1] is bounded away. Let {xn} be a sequence generated in

(1.9). Then the sequence {xn} converges weakly to some fixed point of T .

Note that each lp (1 ≤ p < ∞) satisfies the Opial condition, while all Lp do not have the
property unless p = 2. In 1994, Tan and Xu [18] obtained the following results.

Theorem TX. Let E be a uniformly convex Banach space whose norm is Fréchet differentiable, C a
nonempty closed and convex subset of E, and T : K → K an asymptotically nonexpansive mapping
with a sequence {kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞ such that F(T) is nonempty. Let {xn}

be sequence generated in (1.9), where {αn} is a real sequence bounded away from 0 and 1. Then the
sequence {xn} converges weakly to some point in F(T).

Let E be a Banach space, K a nonempty subset of E, and T : K → E a mapping. For
all x ∈ K, define a set IK(x) by

IK(x) =
{
x + λ

(
y − x

)
: λ > 0, y ∈ K

}
, (1.10)

where T is said to be inward if Tx ∈ IK(x) for all x ∈ K and T is said to be weakly inward
if Tx ∈ IK(x) for all x ∈ K. Recall that the subset K of E is said to be retract if there exists
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a continuous mapping P : E → K such that Px = x for all x ∈ K. It is well known that every
closed convex subset of a uniformly convex Banach space is a retract. A mapping P : E → E
is said to be a retraction if P 2 = P. Let C and D be subsets of E. Then a mapping P : C → D
is said to be sunny if P(Px + t(x − Px)) = Px, whenever Px + t(x − Px) ∈ C for all x ∈ C and
t ≥ 0.

The following result describes a characterization of sunny nonexpansive retractions
on a smooth Banach space. See Reich [19].

Theorem R-2. Let E be a smooth Banach space and let C be a nonempty subset of E. Let Q : E → C
be a retraction and let J be the normalized duality mapping on E. Then the following are equivalent:

(1) P is sunny and nonexpansive;
(2) ‖Px − Py‖2 ≤ 〈x − y, J(Px − Py)〉, ∀x, y ∈ E;
(3) 〈x − Px, J(y − Px)〉 ≤ 0, ∀x ∈ E, y ∈ C.

Recently, fixed point problems of nonself mappings have been studied by a number
of authors; see, for example, [20–30]. Next, we draw our attention to nonself mappings. Let
K be a nonempty subset of a Banach space E, T : K → E be a mapping and P a sunny
nonexpansive retraction from E onto K.

The mapping T is said to be asymptotically nonexpansive with respect to P if there
exists a sequence {kn} ⊂ [1,∞)with kn → 1 as n → ∞ such that

∥∥(PT)nx − (PT)ny
∥∥ ≤ kn

∥∥x − y
∥∥, ∀x, y ∈ K, ∀n ≥ 1. (1.11)

The mapping T is said to be uniformly L-lipschitz with respect to P if there exists a
positive constant L such that

∥∥(PT)nx − (PT)ny
∥∥ ≤ L

∥∥x − y
∥∥, ∀x, y ∈ K, ∀n ≥ 1. (1.12)

We remark that if T is a self mapping, then P is reduced to the identity mapping. It
follows that (1.11) is reduced to (1.6).

In this paper, we consider a one-step iteration for a finite family of asymptotically
nonexpansive nonself mappings. Weak convergence theorems are established in a real
smooth and uniformly convex Banach space.

In order to prove our main results, we need the following lemmas.

Lemma 1.1 (see [16, 31]). LetE be a uniformly convex Banach space such that its dual has the Kadec-
Klee property. Suppose that {xn} is a bounded sequence such that limn→∞‖axn+(1−a)f1−f2‖ exists
for all a ∈ [0, 1] and f1, f2 ∈ ωw(xn). Then ωw(xn) is a singleton.

Lemma 1.2 (see [2, 25]). Let E be a real smooth Banach space, K a nonempty closed convex subset
of E with P as a sunny nonexpansive retraction, and T : K → E a mapping which enjoys the weakly
inward condition. Then F(PT) = F(T).

Lemma 1.3 (see [32]). Let {an} and {bn} be two nonnegative sequences satisfying the following
condition:

an+1 ≤ an + bn, ∀n ≥ 1. (1.13)

If
∑∞

n=1 bn < ∞, then limn→∞an exists.
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Lemma 1.4 (see [33]). Let p > 1 and s > 0 be two fixed real numbers. Then a Banach space E
is uniformly convex if and only if there exists a continuous strictly increasing convex function g :
[0,∞) → [0,∞) with g(0) = 0 such that

∥∥λx + (1 − λ)y
∥∥p ≤ λ‖x‖p + (1 − λ)

∥∥y∥∥p −wp(λ)g
(∥∥x − y

∥∥) (1.14)

for all x, y ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s} and λ ∈ [0, 1], where wp(λ) = λp(1 − λ) + λ(1 − λ)p.

The following lemma is an immediate result of Lemma 1.4. See also Zhang [34].

Lemma 1.5. Let E be a uniformly convex Banach space, s > 0 a positive number, and Bs(0) a closed
ball of E. There exits a continuous, strictly increasing, and convex function g : [0,∞) → [0,∞) with
g(0) = 0 such that

∥∥∥∥∥
N∑
i=1

(αixi)

∥∥∥∥∥
2

≤
N∑
i=1

(
αi‖xi‖2

)
− α1α2g(‖x1 − x2‖) (1.15)

for all x1, x2, . . . , xN ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s} and α1, α2, . . . , αN ∈ [0, 1] such that
∑N

i=1 αi = 1.

Proof. We prove it by inductions. For N = 2, we from Lemma 1.4 see that (1.15) holds. For
N = j, where j ≥ 3 is some positive integer, suppose that (1.15) holds. We see that (1.15) still
holds for N = j + 1. Indeed, from Lemma 1.4, we see that

∥∥α1x1 + α2x2 + · · · + αjxj + αj+1xj+1
∥∥2

=

∥∥∥∥∥
(
1 − αj+1

)( α1

1 − αj+1
x1 +

α2

1 − αj+1
x2 + · · · + αj

1 − αj+1
xj

)
+ αj+1xj+1

∥∥∥∥∥
2

≤ (
1 − αj+1

)
∥∥∥∥∥

α1

1 − αj+1
x1 +

α2

1 − αj+1
x2 + · · · + αj

1 − αj+1
xj

∥∥∥∥∥
2

+ αj+1
∥∥xj+1

∥∥2

− αj

(
1 − αj+1

)
g

(∥∥∥∥∥

(
α1

1 − αj+1
x1 +

α2

1 − αj+1
x2 + · · · + αj

1 − αj+1
xj

)
− xj+1

∥∥∥∥∥

)

≤ (
1 − αj+1

)( α1

1 − αj+1
‖x1‖2 + α2

1 − αj+1
‖x2‖2 + · · · + αj

1 − αj+1

∥∥xj

∥∥2

− α1α2(
1 − αj+1

)(
1 − αj+1

)g(‖x1 − x2‖)
)

+ αj+1
∥∥xj+1

∥∥2

= α1‖x1‖2 + α2‖x2‖2 + · · · + αj

∥∥xj

∥∥2 + αj+1
∥∥xj+1

∥∥2 − α1α2

1 − αj+1
g(‖x1 − x2‖)

≤ α1‖x1‖2 + α2‖x2‖2 + · · · + αj

∥∥xj

∥∥2 + αj+1
∥∥xj+1

∥∥2 − α1α2g(‖x1 − x2‖).

(1.16)

This completes the proof.
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Lemma 1.6 (see [35]). Let E be a real uniformly convex Banach space, K a nonempty closed, and
convex subset ofE and T : K → K an asymptotically nonexpansive mapping. Then I−T is demiclosed
at zero, that is, xn ⇀ x and xn − Txn → 0 imply that x = Tx.

2. Main Results

Lemma 2.1. Let E be a real uniformly convex Banach space,K a nonempty closed and convex subset
of E, and P a sunny nonexpansive retraction from E onto K. Let Ti : K → E be an asymptotically
nonexpansive mapping with respect to P with a sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i−1) < ∞

for each i ∈ {1, 2, . . . ,N}. Assume that F =
⋂N

i=1 F(Ti) is nonempty. Let {xn} be sequence generated
in the following manner: x1 ∈ K and

xn+1 = αn,0xn +
N∑
i=1

αn,i(PTi)nxn + αn,N+1un, ∀n ≥ 1, (HCQ)

where {αn,i} is a real sequence in (0, 1) and {un} is a bounded sequence in K. Assume that

(a)
∑N+1

i=0 αn,i = 1;

(b) lim infn→∞αn,0αn,i > 0 for each i ∈ {1, 2, . . . ,N};

(c)
∑∞

n=1 αn,N+1 < ∞.

Then limn→∞‖xn − (PTi)xn‖ = 0 for each i ∈ {1, 2, . . . ,N}.

Proof. Fix q ∈ F and kn = max{kn,1, kn,2, . . . , kn,N}. It follows that
∑∞

n=1(kn −1) < ∞. Since {un}
is a bounded sequence in K, we set M = sup{‖un − q‖ : n ≥ 1}. It follows that

∥∥xn+1 − q
∥∥ =

∥∥∥∥∥αn,0xn +
N∑
i=1

αn,i(PTi)nxn + αn,N+1un − q

∥∥∥∥∥

≤ αn,0
∥∥xn − q

∥∥ +
N∑
i=1

αn,i

∥∥(PTi)nxn − q
∥∥ + αn,N+1

∥∥un − q
∥∥

≤ αn,0
∥∥xn − q

∥∥ +
N∑
i=1

αn,ikn,i
∥∥xn − q

∥∥ + αn,N+1
∥∥un − q

∥∥

≤ [1 + (kn − 1)]
∥∥xn − q

∥∥ + αn,N+1M.

(2.1)

In view of the condition (c), we obtain from Lemma 1.3 that limn→∞‖xn − q‖ exists for any
q ∈ F(T). This in turn shows that the sequence {xn} is bounded.
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On the other hand, we conclude from Lemma 1.4 that

∥∥xn+1 − q
∥∥2 =

∥∥∥∥∥αn,0xn +
N∑
i=1

αn,i(PTi)nxn + αn,N+1un − q

∥∥∥∥∥
2

≤ αn,0
∥∥xn − q

∥∥2 +
N∑
i=1

αn,i

∥∥(PTi)nxn − q
∥∥2 + αn,N+1

∥∥un − q
∥∥2

− αn,0αn,1g
(∥∥xn − (PT1)nxn

∥∥)

≤ αn,0
∥∥xn − q

∥∥2 +
N∑
i=1

αn,ik
2
n,i

∥∥xn − q
∥∥2 + αn,N+1

∥∥un − q
∥∥2

− αn,0αn,1g
(∥∥xn − (PT1)nxn

∥∥)

≤
[
1 +

(
k2
n − 1

)]∥∥xn − q
∥∥2 + αn,N+1

∥∥un − q
∥∥2 − αn,0αn,1g

(∥∥xn − (PT1)nxn

∥∥).

(2.2)

This shows that

αn,0αn,1g
(∥∥xn − (PT1)nxn

∥∥)

≤ ∥∥xn − q
∥∥2 − ∥∥xn+1 − q

∥∥2 +
(
k2
n − 1

)∥∥xn − q
∥∥2 + αn,N+1

∥∥un − q
∥∥2

≤ (∥∥xn − q
∥∥ − ∥∥xn+1 − q

∥∥)R1 +
(
k2
n − 1

)
R2 + αn,N+1

∥∥un − q
∥∥2

.

(2.3)

where R1 = sup{‖xn − q‖ + ‖xn+1 − q‖ : n ≥ 1} and R2 = sup{‖xn − q‖2 : n ≥ 1}. In view of the
conditions (b) and (c), we arrive at limn→∞g(‖xn − (PT1)

nxn‖) = 0. In view of the property of
the function g, we conclude that

lim
n→∞

∥∥xn − (PT1)nxn

∥∥ = 0. (2.4)

By repeating (2.2) and (2.3), we can conclude that

lim
n→∞

∥∥xn − (PTi)nxn

∥∥ = 0, ∀i ∈ {1, 2, . . . ,N}. (2.5)

Note that

‖xn+1 − xn‖ ≤
N∑
i=1

αn,i

∥∥(PTi)nxn − xn

∥∥ + αn,N+1‖un − xn‖. (2.6)

From (2.5) and condition (c), we see that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.7)
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On the other hand, we have

‖xn − (PTi)xn‖ ≤ ‖xn − xn+1‖ +
∥∥∥xn+1 − (PTi)n+1xn+1

∥∥∥

+
∥∥∥(PTi)n+1xn+1 − (PTi)n+1xn

∥∥∥ +
∥∥∥(PTi)n+1xn − (PTi)xn

∥∥∥.
(2.8)

Since Ti is Lipschitz with respective to P for each i ∈ {1, 2, . . . ,N}, we obtain that

lim
n→∞

‖xn − (PTi)xn‖ = 0, ∀i ∈ {1, 2, . . . ,N}. (2.9)

This completes the proof.

Next, we give some weak convergence theorems.

Theorem 2.2. Let E be a real smooth and uniformly convex Banach space which enjoys the Opial
condition, K a nonempty closed and convex subset of E, and P a sunny nonexpansive retraction from
E on K. Let Ti : K → E be a weakly inward and asymptotically nonexpansive mapping with respect
to P with a sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i −1) < ∞ for each i ∈ {1, 2, . . . ,N}. Assume

that F =
⋂N

i=1 F(Ti) is nonempty. Let {xn} be sequence generated in (HCQ), where {αn,i} is a real
sequence in (0, 1) and {un} is a bounded sequence in K. Assume that

(a)
∑N+1

i=0 αn,i = 1;

(b) lim infn→∞αn,0αn,i > 0 for each i ∈ {1, 2, . . . ,N};
(c)

∑∞
n=1 αn,N+1 < ∞.

Then the sequence {xn} converges weakly to some point in F.

Proof. Since E is reflexive and {xn} is bounded, we from Lemmas 1.2 and 1.6 conclude that
ωw(xn) ⊂ F(PTi) = F(Ti) for each i ∈ {1, 2, . . . ,N}. On the other hand, since the space E
enjoys the Opial condition, we see that ωw(xn) is singleton. This completes the proof.

If T = Ti for each i ∈ {1, 2, . . . ,N} and αn,N+1 = 0 for each n ≥ 1, then we have from
Theorem 2.2 the following results.

Corollary 2.3. Let E be a real smooth and uniformly convex Banach space which enjoys the Opial
condition, K a nonempty closed and convex subset of E, and P a sunny nonexpansive retraction from
E ontoK. Let T : K → E be a weakly inward and asymptotically nonexpansive mapping with respect
to P with a sequence {kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞. Assume that F(T) is nonempty. Let

{xn} be sequence generated in the following manner: x1 ∈ K and

xn+1 = (1 − αn)xn + αn(PT)nxn, ∀n ≥ 1, (2.10)

where {αn} is a real sequence in (0, 1) such that lim infn→∞αn(1 − αn) > 0. Then the sequence {xn}
converges weakly to some point in F(T).
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Theorem 2.4. Let E be a real smooth and uniformly convex Banach space whose norm is Fréchet
differentiable, K a nonempty closed and convex subset of E, and P a sunny nonexpansive retraction
from E onto K. Let Ti : K → E be a weakly inward and asymptotically nonexpansive mapping with
respect to P with a sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i − 1) < ∞ for each i ∈ {1, 2, . . . ,N}.

Assume that F =
⋂N

i=1 F(Ti) is nonempty. Let {xn} be sequence generated in (HCQ), where {αn,i} is
a real sequence in (0, 1) and {un} is a bounded sequence in K. Assume that

(a)
∑N+1

i=0 αn,i = 1;

(b) lim infn→∞αn,0 αn,i > 0 for each i ∈ {1, 2, . . . ,N};
(c)

∑∞
n=1 αn,N+1 < ∞.

Then the sequence {xn} converges weakly to some point in F.

Proof. Since E is reflexive and {xn} is bounded, we from Lemma 1.2 and 1.6 conclude that
ωw(xn) ⊂ F(PTi) = F(Ti) for each i ∈ {1, 2, . . . ,N}. From the proof of Tan and Xu [18, Lemma
2.2] (see also Cho et al. [35, Lemma 1.8]), we can show that, for every f1, f2 ∈ F,

〈
p − q, J

(
f1 − f2

)〉
= 0, ∀p, q ∈ ωw(xn). (2.11)

Let p, q ∈ ωw(xn). It follows that p, q ∈ F; that is,
∥∥p − q

∥∥ =
〈
p − q, J

(
p − q

)〉
= 0. (2.12)

Therefore, p = q. This completes the proof.

If T = Ti for each i ∈ {1, 2, . . . ,N} and αn,N+1 = 0 for each n ≥ 1, then we from
Theorem 2.4 have the following results.

Corollary 2.5. Let E be a real smooth and uniformly convex Banach space whose norm is Fréchet
differentiable, K a nonempty closed and convex subset of E, and P a sunny nonexpansive retraction
from E onto K. Let T : K → E be a weakly inward and asymptotically nonexpansive mapping with
respect to P with a sequence {kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞. Assume that F(T) is

nonempty. Let {xn} be sequence generated in (2.10), where {αn} is a real sequence in (0, 1) such that
lim infn→∞αn(1 − αn) > 0. Then the sequence {xn} converges weakly to some point in F(T).

Theorem 2.6. Let E be a real smooth and uniformly convex Banach space such that its dual E∗ has
the Kadec-Klee property, K a nonempty closed and convex subset of E, and P a sunny nonexpansive
retraction from E onto K. Let Ti : K → E be a weakly inward and asymptotically nonexpansive
mapping with respect to P with a sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i − 1) < ∞ for each

i ∈ {1, 2, . . . ,N}. Assume that F =
⋂N

i=1 F(Ti) is nonempty. Let {xn} be sequence generated in
(HCQ), where {αn,i} is a real sequence in (0, 1) and {un} is a bounded sequence in K. Assume that

(a)
∑N+1

i=0 αn,i = 1;

(b) lim infn→∞αn,0αn,i > 0 for each i ∈ {1, 2, . . . ,N};
(c)

∑∞
n=1 αn,N+1 < ∞.

Then the sequence {xn} converges weakly to some point in F.
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Proof. Since E is reflexive and {xn} is bounded, we from Lemma 1.2 and Lemma 1.6 conclude
that ωw(xn) ⊂ F(PTi) = F(Ti) for each i ∈ {1, 2, . . . ,N}. From the proof of Lemma 2.2 of Tan
and Xu [18] (see also of Cho et al. [35, Lemma 1.8]), we can show that limn→∞‖axn + (1 −
a)f1 − f2‖ exists for all a ∈ [0, 1] and f1, f2 ∈ ωw(xn). In view of Lemma 1.1, we see that
ωw(xn) is singleton. This completes the proof.

If T = Ti for each i ∈ {1, 2, . . . ,N} and αn,N+1 = 0 for each n ≥ 1, then we from
Theorem 2.6 have the following results.

Corollary 2.7. Let E be a real smooth and uniformly convex Banach space such that its dual E∗ has
the Kadec-Klee property, K a nonempty closed and convex subset of E and P a sunny nonexpansive
retraction from E onto K. Let T : K → E be a weakly inward and asymptotically nonexpansive
mapping with respect to P with a sequence {kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞. Assume that

F(T) is nonempty. Let {xn} be sequence generated in (2.10), where {αn} is a real sequence in (0, 1)
such that lim infn→∞αn(1−αn) > 0. Then the sequence {xn} converges weakly to some point in F(T).
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