
Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2010, Article ID 264628, 13 pages
doi:10.1155/2010/264628

Research Article
Hybrid Viscosity Iterative Method for Fixed Point,
Variational Inequality and Equilibrium Problems

Yi-An Chen and Yi-Ping Zhang

College of Mathematics and Statistics, Chongqing Technology and Business University,
Chongqing 400067, China

Correspondence should be addressed to Yi-An Chen, chenyian1969@sohu.com

Received 27 December 2009; Revised 3 May 2010; Accepted 1 June 2010

Academic Editor: Simeon Reich

Copyright q 2010 Y.-A. Chen and Y.-P. Zhang. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We introduce an iterative scheme by the viscosity iterative method for finding a common element
of the solution set of an equilibrium problem, the solution set of the variational inequality, and the
fixed points set of infinitely many nonexpansive mappings in a Hilbert space. Then we prove our
main result under some suitable conditions.

1. Introduction

Let H be a real Hilbert space with the inner product and the norm being denoted by 〈·, ·〉
and ‖ · ‖, respectively. Let C be a nonempty, closed, and convex subset of H and let F be a
bifunction of C × C into R, where R denotes the real numbers. The equilibrium problem for
F : C × C → R is to find x ∈ C such that

F
(
x, y

) ≥ 0, ∀y ∈ C. (1.1)

The solution set of (1.1) is denoted by EP(F).
Let A : C → H be a mapping. The classical variational inequality, denoted by

VI(A,C), is to find x∗ ∈ C such that

〈Ax∗, v − x∗〉 ≥ 0, ∀v ∈ C. (1.2)
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The variational inequality has been extensively studied in the literature (see, e.g., [1–3]). The
mapping A is called α-inverse-strongly monotone if

〈Au −Av, u − v〉 ≥ α‖Au −Av‖2, ∀u, v ∈ C, (1.3)

where α is a positive real number.
A mapping T : C → C is called strictly pseudocontractive if there exists k with 0 ≤

k < 1 such that

∥
∥Tx − Ty

∥
∥2 ≤ ∥

∥x − y
∥
∥2 + k

∥
∥(I − T)x − (I − T)y

∥
∥2
, ∀x, y ∈ C. (1.4)

It is easy to know that I − T is ((1 − k)/2)-inverse-strongly-monotone. If k = 0, then T is
nonexpansive. We denote by F(T) the fixed points set of T .

In 2003, for x0 ∈ C, Takahashi and Toyoda [4] introduced the following iterative
scheme:

xn+1 = αnxn + (1 − αn)SPC(xn − λnAxn), n ≥ 0, (1.5)

where {αn} is a sequence in (0, 1), A is an α-inverse-strongly monotone mapping, {λn} is a
sequence in (0, 2α), and PC is the metric projection. They proved that if F(S)

⋂
VI(A,C)/= ∅,

then {xn} converges weakly to some z ∈ F(S)
⋂
VI(A,C).

Recently, S. Takahashi andW. Takahashi [5] introduced an iterative scheme for finding
a common element of the solution set of (1.1) and the fixed points set of a nonexpansive
mapping in a Hilbert space. If F is bifunction which satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt→ 0 F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous,

then they proved the following strong convergence theorem.

TheoremA (see [5]). Let C be a closed and convex subset of a real Hilbert spaceH. Let F : C×C →
R be a bifunction which satisfies conditions (A1)–(A4).

Let T : C → H be a nonexpansive mapping such that F(T)
⋂
EP(F)/= ∅ and let f : H → H

be a contraction; that is, there is a constant k ∈ (0, 1) such that

∥∥f(x) − f
(
y
)∥∥ ≤ k

∥∥x − y
∥∥, ∀x, y ∈ H, (1.6)

and let {xn} and {un} be sequences generated by x1 ∈ C and

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)Tun, n ≥ 1,

(1.7)
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where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy limn→∞ αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1 − αn| <
∞, lim infn→∞ rn > 0, and

∑∞
n=1 |rn+1 − rn| < ∞.

Then, {xn} and {un} converge strongly to z ∈ F(T)
⋂
EP(F), where z = PF(T)

⋂
EP(F)f(z).

Let {Tn}∞n=1 be a sequence of nonexpansive mappings of C into itself and {λn}∞n=1 a sequence
of nonnegative numbers in [0, 1]. For each n ≥ 1, define a mapping Wn of C into itself as
follows:

Un,n+1 = I,

Un,n = λnTnUn,n+1 + (1 − λn)I,

Un,n−1 = λn−1Tn−1Un,n + (1 − λn−1)I,

...

Un,k = λkTkUn,k+1 + (1 − λk)I,

Un,k−1 = λk−1Tk−1Un,k + (1 − λk−1)I,

...

Un,2 = λ2T2Un,3 + (1 − λ2)I,

Wn = Un,1 = λ1T1Un,2 + (1 − λ1)I.

(1.8)

Such a mapping Wn is called the W-mapping generated by Tn, Tn−1, . . . , T1 and λn, λn−1, . . . , λ1 (see
[6]).

In this paper, we introduced a new iterative scheme generated by x1 ∈ C and find un

such that

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = βnf(xn) +
(
1 − βn

)
xn, n ≥ 1,

xn+1 = αnyn + (1 − αn)WnPC(un − δnAun),

(1.9)

where {αn} and {βn} are sequences in (0, 1), {rn} and {δn} are sequences in (0,∞), f is a
fixed contractive mapping with contractive coefficient k ∈ (0, 1), A is an α-inverse-strongly
monotone mapping of C to H, F is a bifunction which satisfies conditions (A1)–(A4), and
{Wn} is generated by (1.8). Then we proved that the sequences {xn} and {un} converge
strongly to x∗ ∈ ⋂∞

n=1 F(Tn)
⋂
VI(A,C)

⋂
EP(F) = F, where x∗ = PFf(x∗).
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2. Preliminaries

Let H be a real Hilbert space and let C be a closed and convex subset of H. PC is the metric
projection from H onto C, that is, for any x ∈ H, ‖x − PCx‖ ≤ ‖x − y‖ for all y ∈ C. It is easy
to see that PC is nonexpansive and

u ∈ VI(A,C) ⇐⇒ u = PC(u − λAu), λ > 0. (2.1)

IfA is an α-inverse-strongly monotone mapping of C toH, then it is obvious thatA is (1/α)-
Lipschitz continuous. We also have that for all x, y ∈ C and λ > 0,

∥
∥(I − λA)x − (I − λA)y

∥
∥2 =

∥
∥x − y

∥
∥2 − 2λ

〈
x − y,Ax −Ay

〉
+ λ2

∥
∥Ax −Ay

∥
∥2

≤ ∥∥x − y
∥∥2 + λ(λ − 2α)

∥∥Ax −Ay
∥∥2

.
(2.2)

So, if λ ≤ 2α, then I − λA is nonexpansive.

Lemma 2.1 (see [7]). Let {xn} and {zn} be bounded sequences in a Banach space E, and let {βn} be
a sequence in [0, 1]with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = (1−βn)zn+βnxn

for all n ≥ 1 and lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞‖zn − xn‖ = 0.

Lemma 2.2 (see [8]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − αn)an + δn, n ≥ 1, (2.3)

where {αn} is a sequence in [0, 1] and {δn} is a sequence in R such that

∞∑

n=1

αn = ∞; lim sup
n→∞

δn
αn

≤ 0 or
∞∑

n=1

|δn| < ∞. (2.4)

Then limn→∞ αn = 0.

Lemma 2.3 (see [9]). Let C be a nonempty, closed, and convex subset of H and F a bifunction of
C×C into R that satisfies conditions (A1)–(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such
that

F
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C. (2.5)

Lemma 2.4 (see [9]). Assume that F : C × C → R satisfies conditions (A1)–(A4). For r > 0 and
x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C : F

(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C

}
. (2.6)
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Then, the following holds:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, that is,

∥
∥Trx − Try

∥
∥2 ≤ 〈

Trx − Try, x − y
〉
, ∀x, y ∈ H; (2.7)

(iii) F(Tr) = EP(F);

(iv) EP(F) is closed and convex.

Lemma 2.5 (Opial’s theorem [10]). Each Hilbert space H satisfies Opial’s condition; that is, for
any sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥ (2.8)

holds for each y ∈ H with x /=y.
Let {Tn}∞n=1 be a sequence of nonexpansive self-mappings on C, where C is a nonempty, closed

and convex subset of a real Hilbert spaceH. Given a sequence {λn}∞n=1 in [0, 1], one defines a sequence
{Wn}∞n=1 of self-mappings on C generated by (1.8). Then one has the following results.

Lemma 2.6 (see [6]). Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let
{Tn}∞n=1 be a sequence of nonexpansive self-mappings on C such that

⋂∞
n=1 F(Tn)/= ∅ and {λn} is a

sequence in (0, b] for some b ∈ (0, 1). Then, for every x ∈ C and k ≥ 1 the limit limn→∞ Un,kx exists.

Remark 2.7. It can be shown from Lemma 2.6 that if D is a nonempty and bounded subset of
C, then for ε > 0 there exists n0 ≥ k such that supx∈D‖Un,kx −Un−1,kx‖ ≤ ε for all n > n0.

Remark 2.8. Using Lemma 2.6, we can define a mapping W : C → C as follows:

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x (2.9)

for all x ∈ C. Such a W is called the W-mapping generated by T1, T2, . . . and λ1, λ2, . . . . Since
Wn is nonexpansive,W : C → C is also nonexpansive. Indeed, observe that for each x, y ∈ C,

∥∥Wx −Wy
∥∥ = lim

n→∞
∥∥Wnx −Wny

∥∥ ≤ ∥∥x − y
∥∥. (2.10)

Let {xn} be a bounded sequence in C and D = {xn : n ≥ 0}. Then, it is clear from Remark 2.7
that for ε > 0 there exists N0 ≥ 1 such that for all n > N0,

‖Wnxn −Wxn‖ = ‖Un,1xn −U1xn‖ ≤ sup
x∈D

‖Un,1x −U1x‖ ≤ ε. (2.11)

This implies that limn→∞‖Wnxn −Wxn‖ = 0.

Lemma 2.9 (see [6]). Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let
{Tn}∞n=1 be a sequence of nonexpansive self-mappings on C such that

⋂∞
n=1 F(Tn)/= ∅ and {λn} is a

sequence in (0, b] for some b ∈ (0, 1). Then, F(W) =
⋂∞

n=1 F(Tn).
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3. Strong Convergence Theorem

Theorem 3.1. Let H be a Hilbert space. Let C be a nonempty, closed, and convex subset of H. Let
F : C × C → R be a bifunction which satisfies conditions (A1)–(A4), A an α-inverse-strongly
monotone mapping of C toH, f a contraction of C into itself, and {Tn}∞n=1 a sequence of nonexpansive
self-mappings on C such that F /= ∅. Suppose that {αn}, {βn}, and {λn} are sequences in (0, 1), and
{rn} and {δn} are sequences in (0,∞) which satisfies the following conditions:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;

(ii) limn→∞ βn = 0;
∑∞

n=1 βn = ∞;

(iii) lim infn→∞ rn > 0,
∑∞

n=1 |rn+1 − rn| < ∞;

(iv) δn ∈ [0, b], b < 2α, limn→∞ δn = 0;

(v) λn ∈ [0, c], c ∈ (0, 1).

Then {xn} and {un} generated by (1.9) converge strongly to x∗ ∈ F, where x∗ = PFf(x∗).

Proof. Let p ∈ F. It follows from Lemma 2.4 and (1.9) that un = Trnxn, and hence,

∥∥un − p
∥∥ =

∥∥Trnxn − Trnp
∥∥ ≤ ∥∥xn − p

∥∥, (3.1)

for all n ∈ N. Let zn = PC(un − δnAun). Since I − δnA is nonexpansive and p = PC(p − δnAp),
we have

∥∥zn − p
∥∥ ≤ ∥∥un − δnAun −

(
p − δnAp

)∥∥ ≤ ∥∥un − p
∥∥ ≤ ∥∥xn − p

∥∥, (3.2)
∥∥yn − p

∥∥ ≤ βn
∥∥f(xn) − p

∥∥ +
(
1 − βn

)∥∥xn − p
∥∥

≤ βn
∥∥f(xn) − f

(
p
)∥∥ + βn

∥∥f
(
p
) − p

∥∥ +
(
1 − βn

)∥∥xn − p
∥∥

≤ [
1 − βn(1 − k)

]∥∥xn − p
∥∥ + βn

∥∥f
(
p
) − p

∥∥.

(3.3)

Thus,

∥∥xn+1 − p
∥∥ =

∥∥αnyn + (1 − αn)Wnzn − p
∥∥

≤ αn

∥∥yn − p
∥∥ + (1 − αn)

∥∥zn − p
∥∥

≤ αn

[
1 − βn(1 − k)

]∥∥xn − p
∥∥ + αnβn

∥∥f
(
p
) − p

∥∥ + (1 − αn)
∥∥xn − p

∥∥

=
[
1 − αnβn(1 − k)

]∥∥xn − p
∥∥ + αnβn(1 − k)

∥∥f
(
p
) − p

∥∥

1 − k

≤ max

{
∥∥xn − p

∥∥,

∥∥f
(
p
) − p

∥∥

1 − k

}

.

(3.4)

Hence {xn} is bounded. So {un}, {zn}, {Wnxn}, {Wnzn}, and {f(xn)} are also bounded.
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Next, we claim that limn→∞‖xn+1−xn‖ = 0. Indeed, assume that xn+1 = ρnxn+(1−ρn)tn,
where ρn = αn(1 − βn), n ≥ 0. Then,

tn+1 − tn =
αn+1βn+1f(xn+1) + (1 − αn+1)Wn+1zn+1

1 − ρn+1
− αnβnf(xn) + (1 − αn)Wnzn

1 − ρn

=
αn+1βn+1f(xn+1)

1 − ρn+1
− αnβnf(xn)

1 − ρn
+
1 − αn+1

1 − ρn+1
(Wn+1zn+1 −Wn+1zn)

+
1 − αn+1

1 − ρn+1
Wn+1zn − 1 − αn

1 − ρn
Wnzn

≤ αn+1βn+1f(xn+1)
1 − ρn+1

− αnβnf(xn)
1 − ρn

+
1 − αn+1

1 − ρn+1
(zn+1 − zn)

+Wn+1zn −
αn+1βn+1
1 − ρn+1

Wn+1zn −Wnzn +
αnβn
1 − ρn

Wnzn,

(3.5)

‖zn+1 − zn‖ ≤ ‖un+1 − δn+1Aun+1 − (un − δnAun)‖
≤ ‖(I − δn+1A)un+1 − (I − δn+1A)un‖ + ‖(I − δn+1A)un − (I − δnA)un‖
≤ ‖un+1 − un‖ + ‖δn+1 − δn‖‖Aun‖.

(3.6)

Using (1.8) and the nonexpansivity of Ti, we deduce that

‖Wn+1zn −Wnzn‖ = ‖λ1T1Un+1,2zn − λ1T1Un,2zn‖
≤ λ1‖Un+1,2zn −Un,2zn‖
≤ λ1‖λ2T2Un+1,3zn − λ2T2Un,3zn‖
≤ λ1λ2‖Un+1,3zn −Un,3zn‖
...

≤
(

n∏

i=1

λi

)

‖Un+1,n+1zn −Un,n+1zn‖

≤ M
n∏

i=1

λi,

(3.7)

for some constant M ≥ 0. On the other hand, from un = Trnxn and un+1 = Trn+1xn+1, we obtain

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C, (3.8)

F
(
un+1, y

)
+

1
rn+1

〈
y − un+1, un+1 − xn+1

〉 ≥ 0, ∀y ∈ C. (3.9)
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Setting y = un+1 in (3.8) and y = un in (3.9), we get

F(un, un+1) +
1
rn
〈un+1 − un, un − xn〉 ≥ 0,

F(un+1, un) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

(3.10)

From (A2), we have

〈
un+1 − un,

un − xn

rn
− un+1 − xn+1

rn+1

〉
≥ 0, (3.11)

and hence

〈
un+1 − un, un − un+1 + un+1 − xn − rn

rn+1
(un+1 − xn+1)

〉
≥ 0. (3.12)

Without loss of generality, we may assume that there exists a real number r such that rn > r >
0 for all n ≥ 0. Then

‖un+1 − un‖2 ≤
〈
un+1 − un, xn+1 − xn +

(
1 − rn

rn+1

)
(un+1 − xn+1)

〉

≤ ‖un+1 − un‖
(
‖xn+1 − xn‖ +

∣∣∣∣1 −
rn
rn+1

∣∣∣∣‖un+1 − xn+1‖
)
,

(3.13)

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖ +
∣∣∣∣1 −

rn
rn+1

∣∣∣∣‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖ + 1
r
|rn+1 − rn|L,

(3.14)

where L = sup{‖un − xn‖ : n ≥ 0}. It follows from (3.5), (3.6), (3.7), and (3.14) that

‖tn+1 − tn‖ − ‖xn+1 − xn‖ ≤ αn+1βn+1
1 − ρn+1

[∥∥f(xn+1)
∥∥ + ‖Wn+1zn‖

]
+

αnβn
1 − ρn

[∥∥f(xn)
∥∥ + ‖Wnzn‖

]

+
1 − αn+1

1 − ρn+1

[
‖xn+1 − xn‖ + L

r
|rn+1 − rn| + |δn+1 − δn|‖Aun‖

]

+M
n∏

i=1

λi − ‖xn+1 − xn‖
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≤ αn+1βn+1
1 − ρn+1

[∥∥f(xn+1)
∥
∥ + ‖Wn+1zn‖

]
+

αnβn
1 − ρn

[∥∥f(xn)
∥
∥ + ‖Wnzn‖

]

+
1 − αn+1

1 − ρn+1

[
L

r
|rn+1 − rn| + |δn+1 − δn|‖Aun‖

]
+M

n∏

i=1

λi.

(3.15)

Therefore, lim supn→∞(‖tn+1 − tn‖ − ‖xn+1 − xn‖) ≤ 0.
Since 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1 and limn→∞ βn = 0, hence,

0 < lim inf
n→∞

ρn ≤ lim sup
n→∞

ρn < 1. (3.16)

Lemma 2.1 yields that limn→∞‖tn − xn‖ = 0. Consequently, limn→∞‖xn+1 − xn‖ = limn→∞(1 −
ρn)‖tn − xn‖ = 0.

For p ∈ F, we obtain

∥∥un − p
∥∥2 =

∥∥Trnxn − Trnp
∥∥2

≤ 〈Trnxn − Trnp, xn − p〉
= 〈un − p, xn − p〉

=
1
2

(∥∥un − p
∥∥2 +

∥∥xn − p
∥∥2 − ‖xn − un‖2

)
,

(3.17)

and hence

∥∥un − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖xn − un‖2. (3.18)

This together with (3.2) yields that

∥∥xn+1 − p
∥∥2 ≤ αn

∥∥yn − p
∥∥2 + (1 − αn)

∥∥zn − p
∥∥2

≤ αn

∥∥βn(f(xn) − p) + (1 − βn)(xn − p)
∥∥2 + (1 − αn)

∥∥un − p
∥∥2

≤ αnβn
∥∥f(xn) − p

∥∥2 + αn

(
1 − βn

)∥∥xn − p
∥∥2

+ (1 − αn)
(∥∥xn − p

∥∥2 − ‖un − xn‖2
)
,

(3.19)

and hence,

(1 − αn)‖un − xn‖2 ≤ αnβn
∥∥f(xn) − p

∥∥2 +
(
1 − αnβn

)∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2

≤ αnβn
[∥∥f(xn) − p

∥∥2 − ∥∥xn − p
∥∥2
]

+ ‖xn+1 − xn‖
(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥).

(3.20)
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So ‖un − xn‖ → 0 (note that limn→∞ βn = 0 and limn→∞‖xn+1 − xn‖ = 0). Since

‖Wnun − un‖ ≤ ‖Wnun −Wnxn‖ + ‖Wnxn − xn‖ + ‖xn − un‖
≤ 2‖xn − un‖ + ‖Wnxn − xn‖,

‖xn −Wnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 −Wnxn‖
≤ ‖xn − xn+1‖ + αnβn

∥
∥f(xn) −Wnxn

∥
∥

+ αn

(
1 − βn

)‖xn −Wnxn‖ + (1 − αn)‖Wnzn −Wnxn‖
≤ ‖xn − xn+1‖ + αnβn

∥
∥f(xn) −Wnxn

∥
∥

+ αn

(
1 − βn

)‖xn −Wnxn‖ + (1 − αn)‖PC(un − δnAun) − PCxn‖
≤ ‖xn − xn+1‖ + αnβn

∥∥f(xn) −Wnxn

∥∥ + αn

(
1 − βn

)‖xn −Wnxn‖
+ (1 − αn)‖un − xn‖ + (1 − αn)δn‖Aun‖,

(3.21)

we obtain limn→∞‖xn −Wnxn‖ = 0, and hence limn→∞‖un −Wnun‖ = 0. Thus, ‖un −Wun‖ ≤
‖un −Wnun‖ + ‖Wnun −Wun‖ → 0.

LetQ = PF. ThenQf is a contraction ofH into itself. In fact, there exists k ∈ [0, 1) such
that ‖f(x) − f(y)‖ ≤ k‖x − y‖ for all x, y ∈ H. So

∥∥Qf(x) −Qf
(
y
)∥∥ ≤ ∥∥f(x) − f

(
y
)∥∥ ≤ k

∥∥x − y
∥∥ (3.22)

for all x, y ∈ H. So Qf is a contraction by Banach contraction principle [11]. Since H is a
complete space, there exists a unique element x∗ ∈ C ⊂ H such that x∗ = Qf(x∗).

Next we show that

lim sup
n→∞

〈f(x∗) − x∗, xn − x∗〉 ≤ 0, (3.23)

where x∗ = Qf(x∗). To show this inequality, we choose a subsequence {uni} of {un} such that

lim sup
n→∞

〈
f(x∗) − x∗, un − x∗〉 = lim

n→∞
〈
f(x∗) − x∗, uni − x∗〉. (3.24)

Since {uni} is bounded, there exists a subsequence of {uni} which converges weakly to some
ω ∈ C, that is, uni ⇀ ω. From ‖Wun −un‖ → 0, we obtain thatWuni ⇀ ω. Now we will show
that ω ∈ F(W)

⋂
VI(A,C)

⋂
EP(F). First, we will show ω ∈ EP(F). From un = Trnxn,we have

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C. (3.25)

By (A2), we also have

1
rn

〈
y − un, un − xn

〉 ≥ F
(
y, un

)
, (3.26)
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and hence

〈
y − uni ,

uni − xni

rni

〉
≥ F

(
y, uni

)
. (3.27)

Since ((uni − xni)/rni) → 0 and uni ⇀ ω, it follows from (A4) that 0 ≥ F(y,ω) for all y ∈ C.
For any 0 < t ≤ 1 and y ∈ C, let yt = ty + (1− t)ω. Since y ∈ C and ω ∈ C, then we have yt ∈ C
and hence F(yt, ω) ≤ 0. This together with (A1) and (A4) yields that

0 = F
(
yt, yt

) ≤ tF
(
yt, y

)
+ (1 − t)F

(
yt, ω

) ≤ tF
(
yt, y

)
, (3.28)

and thus 0 ≤ F(yt, y). From (A3), we have 0 ≤ F(ω, y) for all y ∈ C and hence ω ∈ EP(F).
Now, we show thatω ∈ F(W). Indeed, we assume that ω/∈F(W); from Opial’s condition, we
have

lim inf
i→∞

‖uni −ω‖ < lim inf
i→∞

‖uni −Wω‖

≤ lim inf
i→∞

(‖uni −Wuni‖ + ‖Wuni −Wω‖)

≤ lim inf
i→∞

‖uni −ω‖.

(3.29)

This is a contradiction. Thus, we obtain that ω ∈ F(W). Finally, by the same argument
as in the proof of [3, Theorem 3.1], we can show that ω ∈ VI(A,C). Hence ω ∈
F(W)

⋂
VI(A,C)

⋂
EP(F).Hence,

lim sup
n→∞

〈
f(x∗) − x∗, xn − x∗〉 = lim sup

n→∞

〈
f(x∗) − x∗, un − x∗〉

= lim
i→∞

〈
f(x∗) − x∗, uni − x∗〉

=
〈
f(x∗) − x∗, ω − x∗〉 ≤ 0.

(3.30)

Now we show that limn→∞‖xn − x∗‖ = 0.
From (1.9), we have

‖xn+1 − x∗‖2 = 〈
αnβnf(xn) + αn

(
1 − βn

)
xn + (1 − αn)Wnzn − x∗, xn+1 − x∗〉

= αnβn〈f(xn) − x∗, xn+1 − x∗〉 + αn

(
1 − βn

)〈xn − x∗, xn+1 − x∗〉
+ (1 − αn)〈Wnzn − x∗, xn+1 − x∗〉

≤ αnβnk‖xn − x∗‖‖xn+1 − x∗‖ + αnβn
〈
f(x∗) − x∗, xn+1 − x∗〉

+ αn

(
1 − βn

)‖xn − x∗‖‖xn+1 − x∗‖ + (1 − αn)‖xn − x∗‖‖xn+1 − x∗‖

≤ [
1 − αnβn(1 − k)

]‖xn − x∗‖2 + ‖xn+1 − x∗‖2
2

+ αnβn
〈
f(x∗) − x∗, xn+1 − x∗〉,

(3.31)
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and hence,

‖xn+1 − x∗‖2 ≤ [
1 − αnβn(1 − k)

]‖xn − x∗‖2

+ αnβn(1 − k)
2

1 − k

〈
f(x∗) − x∗, xn+1 − x∗〉.

(3.32)

Using (3.23) and Lemma 2.2, we conclude that {xn} converges strongly to x∗. Consequently,
{un} converges strongly to x∗. This completes the proof.

Using Theorem 3.1, we prove the following theorem.

Theorem 3.2. Let H, C, F, f , and {Tn} be given as in Theorem 3.1 and let S be an α-strictly
pseudocontractive mapping such that F /= ∅. Suppose that δn ∈ [0, b], b < 1 − α and limn→∞ δn = 0.
Let {xn} and {un} be the sequences and find un such that

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = βnf(xn) +
(
1 − βn

)
xn, n ≥ 1,

xn+1 = αnyn + (1 − αn)Wn((1 − δn)un + δnSun),

(3.33)

where {αn}, {βn}, {rn}, and {λn} are given as in Theorem 3.1. Then {xn} and {un} converge strongly
to x∗ ∈ F, where x∗ = PFf(x∗).

Proof. Put A = I − S. Then A is ((1 − α)/2)-inverse-strongly-monotone. We have F(S) =
VI(C,A) and put PC(un −δnun) = (1−δn)un +δnSun. So by Theorem 3.1 we obtain the desired
result.
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