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A mixed monotone variational inequality (MMVI) problem in a Hilbert space H is formulated to
find a point u∗ ∈ H such that 〈Tu∗, v − u∗〉 + ϕ(v) − ϕ(u∗) ≥ 0 for all v ∈ H, where T is a monotone
operator and ϕ is a proper, convex, and lower semicontinuous function onH. Iterative algorithms
are usually applied to find a solution of an MMVI problem. We show that the iterative algorithm
introduced in the work of Wang et al., (2001) has in general weak convergence in an infinite-
dimensional space, and the algorithm introduced in the paper of Noor (2001) fails in general to
converge to a solution.

1. Introduction

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let T be an operator
with domainD(T) and rangeR(T) inH. Recall that T ismonotone if its graphG(T) := {(x, y) ∈
H ×H : x ∈ D(T), y ∈ Tx} is a monotone set inH ×H. This means that T is monotone if and
only if

(
x, y

)
,
(
x′, y′) ∈ G(T) =⇒ 〈x − x′, y − y′〉 ≥ 0. (1.1)

A monotone operator T is maximal monotone if its graph G(T) is not properly contained in
the graph of any other monotone operator onH.

Let ϕ : H → R := R ∪ {+∞}, /≡ +∞, be a proper, convex, and lower semicontinuous
functional. The subdifferential of ϕ, ∂ϕ is defined by

∂ϕ(x) :=
{
z ∈ H : ϕ

(
y
) ≥ ϕ(x) + 〈y − x, z〉, ∀y ∈ H

}
. (1.2)

It is well known (cf. [1]) that ∂ϕ is a maximal monotone operator.
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2 Fixed Point Theory and Applications

The mixed monotone variational inequality (MMVI) problem is to find a point u∗ ∈ H
with the property

〈Tu∗, v − u∗〉 + ϕ(v) − ϕ(u∗) ≥ 0, ∀v ∈ H, (1.3)

where T is amonotone operator and ϕ is a proper, convex, and lower semicontinuous function
on H.

If one takes ϕ to be the indicator of a closed convex subset K of H,

ϕ(x) =

⎧
⎨

⎩

0, x ∈ K,

+∞, x /∈K,
(1.4)

then the MMVI (1.3) is reduced to the classical variational inequality (VI):

u∗ ∈ K, 〈Tu∗, v − u∗〉 ≥ 0, v ∈ K. (1.5)

Recall that the resolvent of a monotone operator T is defined as

JTρ :=
(
I + ρT

)−1
, ρ > 0. (1.6)

If T = ∂ϕ, we write Jϕρ for J∂ϕρ . It is known that T is monotone if and only of for each ρ > 0, the
resolvent JTρ is nonexpansive, and T is maximal monotone if and only of for each ρ > 0, the
resolvent JTρ is nonexpansive and defined on the entire space H. Recall that a self-mapping
of a closed convex subset K of H is said to be

(i) nonexpansive if ‖f(x) − f(y)‖ ≤ ‖x − y‖ for all x, y ∈ K;

(ii) firmly nonexpansive if ‖f(x) − f(y)‖2 ≤ 〈x−y, f(x)−f(y)〉 for x, y ∈ K. Equivalently,
f is firmly nonexpansive if and only of 2f − I is nonexpansive. It is known that each
resolvent of a monotone operator is firmly nonexpansive.

We use Fix(f) to denote the set of fixed points of f ; that is, Fix(f) = {x ∈ K : f(x) = x}.
Variational inequalities have extensively been studied; see the monographs by

Baiocchi and Capelo [2], Cottle et al. [3], Glowinski et al. [4], Giannessi and Maugeri [5],
and Kinderlehrer and Stampacciha [6].

Iterative methods play an important role in solving variational inequalities. For
example, if T is a single-valued, strongly monotone (i.e., 〈Tx − Ty, x − y〉 ≥ τ‖x − y‖2 for
all x, y ∈ K and some τ > 0), and Lipschitzian (i.e., ‖Tx − Ty‖ ≤ L‖x − y‖ for some L > 0 and
all x, y ∈ D(T)) operator on K, then the sequence {xk} generated by the iterative algorithm

xk+1 = PK

(
I − ρT

)
xk, k ≥ 0, (1.7)

where I is the identity operator and PK is the metric projection of H onto K, and the initial
guess x0 ∈ H is chosen arbitrarily, converges strongly to the unique solution of VI (1.5)
provided, ρ > 0 is small enough.
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2. An Inexact Implicit Method

In this section we study the convergence of an inexact implicit method for solving the MMVI
(1.3) introduced by Wang et al. [7] (see also [8, 9] for related work).

Let {τk} and {πk} be two sequences of nonnegative numbers such that

πk ∈ [0, 1) ∀k ≥ 0,
∞∑

k=0

πk < ∞,
∞∑

k=0

τk < ∞. (2.1)

Let γ ∈ (0, 2) and u0 ∈ H. The inexact implicit method introduced in [7] generates a sequence
{uk} defined in the following way. Once uk has been constructed, the next iterate uk+1 is
implicitly constructed satisfying the equation

(
I + ρkT

)
uk+1 − (

I + ρkT
)
uk + γe

(
uk, ρk

)
= θk, (2.2)

where {ρk} is a sequence of nonnegative numbers such that

ρk+1 ∈
[
ρk/(1 + τk), ρk(1 + τk)

]
(2.3)

for k ≥ 0, and for u ∈ H and ρ > 0,

e
(
u, ρ

)
:= u − J

ρ
ϕ

(
u − ρTu

)
, (2.4)

and where θk = θk(uk+1) is such that

‖θk‖ ≤ δk (2.5)

with δk given as follows:

δk =

⎧
⎪⎪⎨

⎪⎪⎩

πk, if γ
(
2 − γ

)∥∥e(uk, ρk)
∥∥2 ≥ 1

2
,

min
{
πk,

1
2

[
1 −

√
1 − 2γ

(
2 − γ

)∥∥e
(
uk, ρk

)∥∥2
]}

, otherwise.

(2.6)

We note that u∗ is a solution of the MMVI (1.3) if and only if, for each ρ > 0, u∗ satisfies
the fixed point equation

u∗ = J
ρ
ϕ

(
u∗ − ρTu∗). (2.7)

Before discussing the convergence of the implicit algorithm (2.2), we look at a special case of
(2.2), where T = 0. In this case, the MMVI (1.3) reduces to the problem of finding a u∗ ∈ H
such that

ϕ(v) ≥ ϕ(u∗), ∀v ∈ H, (2.8)



4 Fixed Point Theory and Applications

in another word, finding an absolute minimizer u∗ of ϕ over H. This is equivalent to solving
the inclusion

0 ∈ ∂ϕ(u∗), (2.9)

and the algorithm (2.2) is thus reduced to a special case of the Eckastein-Bertsekas algorithm
[10]

uk+1 =
(
1 − γ

)
uk + γJ

ρk
ϕ

(
uk

)
+ ek, (2.10)

where ek = θk(uk+1). If γ = 1, then algorithm (2.2) is reduced to a special case of Rockafellar’s
proximal point algorithm [11]

uk+1 = J
ρk
ϕ

(
uk

)
+ ek. (2.11)

Rockafellar’s proximal point algorithm for finding a zero of a maximal monotone operator
has received tremendous investigations; see [12–14] and the references therein.

Remark 2.1. Theorem 5.1 of Wang et al. [7] holds true only in the finite-dimensional setting.
This is because in the infinite-dimensional setting, a bounded sequence fails, in general, to
have a norm-convergent subsequence. As a matter of fact, in the infinite-dimensional case,
the special case of (2.2) where T = 0 and γ = 1 corresponds to Rockafellar’s proximal point
algorithm (2.11) which fails to converge in the norm topology, in general, in the infinite-
dimensional setting; see Güler’s counterexample [15]. This infinite-dimensionality problem
occurred in several papers by Noor (see, e.g., [16–26]).

In the infinite-dimensional setting, whether or notWang et al.’s implicit algorithm (2.2)
converges even in the weak topology remains an open question. We will provide a partial
answer by showing that if the operator T is weak-to-strong continuous (i.e., T takes weakly
convergent sequences to strongly convergent sequences), then the implicit algorithm (2.2)
does converge weakly.

We next collect the (correct) results proved in [7].

Proposition 2.2. Assume that {uk} is generated by the implicit algorithm (2.2).

(a) For u ∈ H, ‖e(u, ρ)‖ is a nondecreasing function of ρ ≥ 0.

(b) If u∗ is a solution to the MMVI (1.3), u ∈ H and ρ > 0, then

〈
u − u∗ + ρ(Tu − Tu∗), e

(
u, ρ

)〉 ≥ ∥∥e
(
u, ρ

)∥∥2 + ρ〈u − u∗, Tu − Tu∗〉. (2.12)

(c) For any solution u∗ to the MMVI (1.3),

∥∥∥uk+1 − u∗ + ρk+1(Tuk+1 − Tu∗)
∥∥∥
2 ≤

∥∥∥uk − u∗ + ρk(Tuk − Tu∗)
∥∥∥
2
+ σk, (2.13)

where σk ≥ 0 satisfies
∑∞

k=1 σk < ∞.
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(d) {uk} is bounded.
(e) There is a ρ > 0 such that limk→∞‖e(uk, ρ)‖ = 0.

Since algorithm (2.2) is, in general, not strongly convergent, we turn to investigate its
weak convergence. It is however unclear if the algorithm is weakly convergent (if the space
is infinite dimensional). We present a partial answer below. But first recall that an operator T
is said to be weak-to-strong continuous if the weak convergence of a sequence {xk} to a point
x implies the strong convergence of the sequence {Txk} to the point Tx.

Theorem 2.3. Assume that {uk} is generated by algorithm (2.2). If T is weak-to-strong continuous,
then {uk} converges weakly to a solution of the MMVI (1.3).

Proof. Putting

ηk = J
ρk
ϕ

(
uk − ρkTu

k
)
− uk, (2.14)

we have

J
ρk
ϕ

(
uk − ρkTu

k
)
= uk + ηk,

∥∥∥ηk
∥∥∥ −→ 0. (2.15)

It follows that

uk − ρkTu
k ∈ (

I + ρk∂ϕ
)(

uk + ηk
)
. (2.16)

This implies that

− 1
ρk

ηk − Tuk ∈ ∂ϕ
(
uk + ηk

)
. (2.17)

So, if uki → u weakly (hence Tuki → T u strongly since T is weak-to-strong continuous), it
follows that

−T u ∈ ∂ϕ(u). (2.18)

Thus, u is a solution.
To prove that the entire sequence of {uk} is weakly convergent, assume that umi → ũ

weakly. All we have to prove is that ũ = u. Passing through further subsequences if necessary,
we may assume that limi→∞‖uki − u‖ and limi→∞‖umi − ũ‖ both exist.

For ε > 0, since Tuki → T u strongly and since {uk} and {ρk} are bounded, there exists
an integer i0 ≥ 1 such that, for i ≥ i0,

2ρki〈uki − u, Tuki − T u〉 + ρ2ki

∥∥∥Tuki − T u
∥∥∥
2
+

∞∑

j=ki−1
σj < ε. (2.19)
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It follows that for k > ki > ki0 ,

∥
∥
∥uk − u

∥
∥
∥
2 ≤

∥
∥
∥uk − u + ρk

(
Tuk − T u

)∥∥
∥
2

≤
∥
∥
∥uk−1 − u + ρk−1

(
Tuk−1 − T u

)∥∥
∥
2
+ σk−1

≤ · · ·

≤
∥
∥
∥uki − u + ρki

(
Tuki − T u

)∥∥
∥
2
+

k−1∑

j=ki−1
σj

=
∥
∥
∥uki − u

∥
∥
∥
2
+ 2ρki

〈
uki − u, Tuki − T u

〉
+ ρ2ki

∥
∥
∥Tuki − T u

∥
∥
∥
2
+

∞∑

j=ki−1
σj

<
∥∥∥uki − u

∥∥∥
2
+ ε.

(2.20)

This implies

lim sup
k→∞

∥∥∥uk − u
∥∥∥
2 ≤ lim sup

i→∞

∥∥∥uki − u
∥∥∥
2
. (2.21)

However,

lim sup
k→∞

∥∥∥uk − u
∥∥∥
2 ≥ lim sup

i→∞
‖umi − u‖2 = lim sup

i→∞
‖umi − ũ‖2 + ‖ũ − u‖2. (2.22)

It follows that

lim sup
i→∞

‖umi − ũ‖2 + ‖ũ − u‖2 ≤ lim sup
i→∞

∥∥∥uki − u
∥∥∥
2
. (2.23)

Similarly, by repeating the argument above we obtain

lim sup
i→∞

∥∥∥uki − u
∥∥∥
2
+ ‖u − ũ‖2 ≤ lim sup

i→∞
‖umi − ũ‖2. (2.24)

Adding these inequalities, we get ũ = u.

3. A Counterexample

It is not hard to see that u∗ ∈ H solves MMVI (1.3) if and only of u∗ ∈ H solves the inclusion

0 ∈ (
T + ∂ϕ

)
(u∗) (3.1)
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which is in turn equivalent to the fixed point equation

u∗ = J
ρ
ϕ

[
u∗ − ρTu∗], (3.2)

where Jρϕ is the resolvent of ∂ϕ defined by

J
ρ
ϕ(x) =

(
I + ρ∂ϕ

)−1(x), x ∈ H. (3.3)

Recall that if ϕ is the indicator of a closed convex subset K ofH,

ϕ(x) =

⎧
⎨

⎩

0, x ∈ K,

+∞, x /∈K,
(3.4)

then MMVI (1.3) is reduced to the classical variational inequality (VI)

〈Tu∗, v − u∗〉 ≥ 0, v ∈ K. (3.5)

In [27], Noor introduced a new iterative algorithm [27, Algorithm 3.3, page 36] as
follows. Given u0 ∈ H, compute uk+1 by the iterative scheme

uk+1 = uk + ρTuk − ρTuk+1 − γR
(
uk

)
, k ≥ 0, (3.6)

where ρ > 0 and γ ∈ (0, 2) are constant, and R(u) is given by

R(u) = u − J
ρ
ϕ

[
u − ρTJ

ρ
ϕ

[
u − ρTu

]]
. (3.7)

Noor [27] proved a convergence result for his algorithm (3.6) as follows.

Theorem 3.1 (see [27, page 38]). Let H be a finite-dimensional Hilbert space. Then the sequence
{uk} generated by algorithm (3.6) converges to a solution of MMVI (1.3).

We however found that the conclusion stated in the above theorem is incorrect. It is
true that u∗ solves MMVI (1.3) if and only if u∗ solves the fixed point equation (3.2). The
reason that led Noor to his mistake is his claim that u∗ solves MMVI (1.3) if and only if u∗

solves the following iterated fixed point equation:

u∗ = J
ρ
ϕ

[
u∗ − ρTJ

ρ
ϕ

[
u∗ − ρTu∗]

]
. (3.8)

As a matter of fact, the two fixed point equations (3.2) and (3.8) are not equivalent, as shown
in the following counterexample which also shows that the convergence result of Noor [27]
is incorrect.
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Example 3.2. Take H = R. Define T and ϕ by

Tx = x, ϕ(x) = |x|, x ∈ R. (3.9)

Notice that (Clarke [28])

∂ϕ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if x > 0,

[−1, 1], if x = 0,

−1, if x < 0.

(3.10)

It is easily seen that u∗ = 0 is the unique solution to the MMVI

〈u∗, v − u∗〉 + |v| − |u∗| ≥ 0, v ∈ R. (3.11)

Observe that equation R(u) = 0 is equivalent to the fixed point equation

u = J
ρ
ϕ

[
u − ρTJ

ρ
ϕ

[
u − ρTu

]]
. (3.12)

Now since Tx = x for all x ∈ R, we get that u∗ ∈ R solves (3.12) if and only if

u∗ = J
ρ
ϕ

[
u∗ − ρv∗], (3.13)

where

v∗ = J
ρ
ϕ

[
u∗ − ρu∗]. (3.14)

It follows from (3.13) that u∗ − ρv∗ ∈ (I + ρ∂ϕ)(u∗). Hence

−v∗ ∈ ∂ϕ(u∗). (3.15)

But, since

∂ϕ(u∗) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if u∗ > 0,

[−1, 1], if u∗ = 0,

−1, if u∗ < 0,

(3.16)
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we deduce that the solution set S of the fixed point equation (3.12) is given by

S =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
ρ + 1
ρ − 1

,
ρ + 1
1 − ρ

}
, if ρ > 1,

0, if ρ = 1,

∅, if ρ < 1.

(3.17)

(We therefore conclude that equation R(u) = 0 is not equivalent to MMVI (1.3), as claimed by
Noor [27].)

Now take the initial guess u0 = (ρ + 1)/(ρ − 1) for ρ > 1. Then R(u0) = 0 and we have
that algorithm (3.6) generates a constant sequence uk ≡ u0 for all k ≥ 1. However, u0 > 0 is
not a solution of MMVI (3.11). This shows that algorithm (3.6)may generate a sequence that
fails to converge to a solution of MMVI (1.3) and Noor’s result in [27] is therefore false.

Remark 3.3. Noor has repeated his above mistake in a number of his recent articles. A partial
search found that articles [20, 21, 26, 29–32] contain the same error.
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