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We propose a modified hybrid projection algorithm to approximate a common fixed point of a
k-strict pseudocontraction and of two sequences of nonexpansive mappings. We prove a strong
convergence theorem of the proposed method and we obtain, as a particular case, approximation
of solutions of systems of two equilibrium problems.

1. Introduction

In this paper, we define an iterative method to approximate a common fixed point of a k-
strict pseudocontraction and of two sequences of nonexpansive mappings generated by two
sequences of firmly nonexpansive mappings and two nonlinear mappings. Let us recall from
[1] that the k-strict pseudocontractions in Hilbert spaces were introduced by Browder and
Petryshyn in [2].

Definition 1.1. S : C → C is said to be k-strict pseudocontractive if there exists k ∈ [0, 1[ such
that

∥
∥Sx − Sy

∥
∥
2 ≤ ∥∥x − y

∥
∥
2 + k

∥
∥(I − S)x − (I − S)y

∥
∥
2
, ∀x, y ∈ C. (1.1)

The iterative approximation problems for nonexpansive mappings, asymptotically
nonexpansive mappings, and asymptotically pseudocontractive mappings were studied
extensively by Browder [3], Goebel and Kirk [4], Kirk [5], Liu [6], Schu [7], and Xu [8, 9]
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in the setting of Hilbert spaces or uniformly convex Banach spaces. Although nonexpansive
mappings are 0-strict pseudocontractions, iterative methods for k-strict pseudocontractions
are far less developed than those for nonexpansive mappings. The reason, probably, is that
the second term appearing in the previous definition impedes the convergence analysis for
iterative algorithms used to find a fixed point of the k-strict pseudocontraction S. However,
k-strict pseudocontractions have more powerful applications than nonexpansive mappings
do in solving inverse problems. In the recent years the study of iterative methods like Mann’s
like methods and CQ-methods has been extensively studied by many authors [1, 10–13] and
the references therein.

If C is a closed and convex subset of a Hilbert space H and F : C × C → R is a
bi-function we call equilibrium problem

Find x ∈ C s.t. F
(

x, y
) ≥ 0, ∀y ∈ C, (1.2)

and we will indicate the set of solutions with EP(F).
If A : C → H is a nonlinear mapping, we can choose F(x, y) = 〈Ax, y − x〉, so an

equilibrium point (i.e., a point of the set EP(F)) is a solution of variational inequality problem
(VIP)

Find x ∈ C s.t.
〈

Ax, y − x
〉 ≥ 0, ∀y ∈ C. (1.3)

We will indicate with V I(C,A) the set of solutions of VIP.
The equilibrium problems, in its various forms, found application in optimization

problems, fixed point problems, convex minimization problems; in other words, equilibrium
problems are a unified model for problems arising in physics, engineering, economics, and
so on (see [10]).

As in the case of nonexpansive mappings, also in the case of k-strict pseudocontraction
mappings, in the recent years many papers concern the convergence of iterative methods
to a solutions of variational inequality problems or equilibrium problems; see example for,
[10, 14–18].

Here we prove a strong convergence theorem of the proposed method and we obtain,
as a particular case, approximation of solutions of systems of two equilibrium problems.

2. Preliminaries

Let H be a real Hilbert space and let C be a nonempty closed convex subset ofH.
We denote by PC the metric projection of H onto C. It is well known [19] that

〈

x − PC(x), PC(x) − y
〉 ≥ 0, ∀x ∈ H and y ∈ C. (2.1)

Lemma 2.1. (see [20]) LetX be a Banach space with weakly sequentially continuous duality mapping
J , and suppose that (xn)n∈N converges weakly to x0 ∈ X, then for any x ∈ X,

lim inf
n→∞

‖xn − x0‖ ≤ lim inf
n→∞

‖xn − x‖. (2.2)

Moreover if X is uniformly convex, equality holds in (2.2) if and only if x0 = x.
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Recall that a point u ∈ C is a solution of a VIP if and only if

u = PC(I − λA)u ∀λ > 0, that is, u ∈ V I(C,A) ⇐⇒ u ∈ Fix(PC(I − λA)), ∀λ > 0.
(2.3)

Definition 2.2. An operator A : C → H is said to be α-inverse strongly monotone operator if
there exists a constant α > 0 such that

〈

Ax −Ay, x − y
〉 ≥ α

∥
∥Ax −Ay

∥
∥
2 ∀x, y ∈ C. (2.4)

If α = 1 we say that A is firmly nonexpansive. Note that every α-inverse strongly
monotone operator is also 1/α Lipschitz continuous (see [21]).

Lemma 2.3. (see [2]). Let C be a nonempty closed convex subset of a real Hilbert space H and let
S : C → C be a k-strict pseudocontractive mapping. Then St := tI + (1 − t)S with t ∈ [k, 1[ is a
nonexpansive mapping with Fix(St) = Fix(S).

3. Main Theorem

Theorem 3.1. Let C be a closed convex subset of a real Hilbert spaceH. Let

(i) A be an α-inverse strongly monotone mapping of C intoH,

(ii) B a β-inverse strongly monotone mapping of C intoH,

(iii) (Tn)n∈N and (Vn)n∈N two sequences of firlmy nonexpansive mappings from C toH.

Let S : C → C be a k-strict pseudocontraction Fix(S)/= ∅.
Set Sk = kI + (1 − k)S and let us define the sequence (xn)n∈N as follows:

x1 ∈ C,

C1 = C,

un = Tn(I − rnA)xn

zn = Vn(I − λnB)un,

yn = αnxn + (1 − αn)Skzn,

Cn+1 =
{

w ∈ Cn :
∥
∥yn −w

∥
∥ ≤ ‖xn −w‖},

xn+1 = PCn+1x1, ∀n ∈ N,

(3.1)

where

(i) (αn)n∈N ⊂ [0, a] with a < 1;

(ii) (λn)n∈N ⊂ [b, c] ⊂ (0, 2β);

(iii) (rn)n∈N ⊂ [d, e] ⊂ (0, 2α).
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Moreover suppose that

(i) F := Fix(S)
⋂∩n Fix(Vn(I − λnB))

⋂∩n Fix(Tn(I − rnA))/= ∅;

(ii) (Tn(I − rnA))n∈N pointwise converges in C to an operator R and (Vn(I − λnB))n∈N
pointwise converges in C to an operator W ;

(iii) Fix(W) = ∩n Fix(Vn(I − λnB)) and Fix(R) = ∩n Fix(Tn(I − rnA)).

Then (xn)n∈N strongly converges to x∗ = PFx1.

Proof. We begin to observe that the mappings Tn(I − rnA) and Vn(I − λnB) are nonexpansive
for all n ∈ N since they are compositions of nonexpansive mappings (see [22, page 419]). As
a rule, if p ∈ F

∥
∥un − p

∥
∥
2 ≤ ∥∥xn − p

∥
∥
2
,

∥
∥zn − p

∥
∥
2 ≤ ∥∥un − p

∥
∥
2 ≤ ∥∥xn − p

∥
∥
2
.

(3.2)

Now we divide the proof in more steps.

Step 1. Cn is closed and convex for each n ∈ N.
Indeed Cn+1 is the intersection of Cn with the half space

{

w ∈ H :
〈

w,xn − yn

〉 ≤ L
}

, (3.3)

where L = (‖xn‖2 − ‖yn‖2)/2.

Step 2. F ⊆ Cn for each n ∈ N.
For each w ∈ F we have

∥
∥yn −w

∥
∥ = ‖αnxn + (1 − αn)Skzn −w‖
≤ αn‖xn −w‖ + (1 − αn)‖zn −w‖
= αn‖xn −w‖ + (1 − αn)‖Vn(I − λnB)un −w‖
≤ αn‖xn −w‖ + (1 − αn)‖un −w‖
= αn‖xn −w‖ + (1 − αn)‖Tn(I − rnA)xn −w‖
≤ αn‖xn −w‖ + (1 − αn)‖xn −w‖
= ‖xn −w‖.

(3.4)

So the claim immediately follows by induction.
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Step 3. limn→+∞‖xn −x1‖ exists and (xn)n∈N is asymptotically regular, that is, limn→+∞‖xn+1 −
xn‖ = 0.

Since xn = PCnx1, xn+1 = PCn+1x1, and Cn+1 ⊆ Cn, by (2.1) choosing y = xn+1, x = x1 and
C = Cn, we have

0 ≤ 〈x1 − xn, xn − xn+1〉
= 〈x1 − xn, xn − x1 + x1 − xn+1〉

≤ −‖x1 − xn‖2 + ‖x1 − xn‖‖x1 − xn+1‖,

(3.5)

that is, ‖xn − x1‖ ≤ ‖xn+1 − x1‖.
By xn = PCnx1 and F ⊆ Cn, we have

‖x1 − xn‖ ≤ ‖x1 − PFx1‖. (3.6)

Then limn→+∞‖xn − x1‖ exists and (xn)n∈N is bounded. Moreover

‖xn+1 − xn‖2 = ‖xn+1 − x1 + x1 − xn‖2

= ‖xn+1 − x1‖2 + ‖xn − x1‖2 + 2〈xn+1 − x1, x1 − xn〉

= ‖xn+1 − x1‖2 + ‖xn − x1‖2 + 2〈xn+1 − xn, x1 − xn〉 − 2‖xn − x1‖2

≤ ‖xn+1 − x1‖2 − ‖xn − x1‖2 by (3.5),

(3.7)

and consequently limn→+∞‖xn+1 − xn‖ = 0.

Step 4. limn→+∞‖xn − yn‖ = 0 and limn→+∞‖xn − Skzn‖ = 0.
By xn+1 ∈ Cn+1, it follows

∥
∥yn − xn+1

∥
∥ ≤ ‖xn − xn+1‖,

∥
∥yn − xn

∥
∥ ≤ ∥∥yn − xn+1

∥
∥ + ‖xn+1 − xn‖ ≤ 2‖xn+1 − xn‖ −→ 0.

(3.8)

Moreover

∥
∥yn − xn

∥
∥ = (1 − αn)‖xn − Skzn‖, (3.9)

and by boundedness of (αn)n∈N, it follows that limn→+∞‖xn − Skzn‖ = 0.
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Step 5. limn→+∞‖Bun − Bw‖ = 0, for each w ∈ F.
For w ∈ F, we have

∥
∥yn −w

∥
∥
2 ≤ αn‖xn −w‖2 + (1 − αn)‖Skzn −w‖2

≤ αn‖xn −w‖2 + (1 − αn)‖zn −w‖2

≤ αn‖xn −w‖2 + (1 − αn)‖Vn(I − λnB)un − Vn(I − λnB)w‖2

≤ αn‖xn −w‖2 + (1 − αn)‖(I − λnB)un − (I − λnB)w‖2

= αn‖xn −w‖2 + (1 − αn)
(

‖un −w‖2 + λ2n‖Bun − Bw‖2 − 2λn〈Bun − Bw, un −w〉
)

≤ αn‖xn −w‖2 + (1 − αn)
(

‖un −w‖2 − λn
(

2β − λn
)‖Bun − Bw‖2

)

≤ ‖xn −w‖2 + (1 − αn)λn
(

λn − 2β
)‖Bun − Bw‖2.

(3.10)

Consequently

(1 − αn)λn
(

2β − λn
)‖Bun − Bw‖2 ≤ ‖xn −w‖2 − ∥∥yn −w

∥
∥
2

=
(‖xn −w‖ − ∥∥yn −w

∥
∥
)(‖xn −w‖ + ∥∥yn −w

∥
∥
)

≤ (∥∥xn − yn

∥
∥
)(‖xn −w‖ + ∥∥yn −w

∥
∥
)

,

(3.11)

and by Step 4, the assumptions on (αn)n∈N and (λn)n∈N, we obtain the claim of Step 5.

Step 6. limn→+∞‖un − zn‖ = 0.
Since Vn is firmly nonexpansive, for any w ∈ F, we have

‖zn −w‖2 ≤ 〈(I − λnB)un − (I − λnB)w, zn −w〉

=
1
4

{

‖(I − λnB)un − (I − λnB)w + (zn −w)‖2

−‖(I − λnB)un − (I − λnB)w − (zn −w)‖2
}

≤ 1
4

{

‖un −w‖2 − λn
(

2β − λn
)‖Bun − Bw‖2 + ‖zn −w‖2

−‖un − zn − λn(Bun − Bw)‖2
}

≤ 1
4

{

‖un −w‖2 + ‖zn −w‖2 − ‖un − zn − λn(Bun − Bw)‖2
}

=
1
4

{

‖un −w‖2 + ‖zn −w‖2 − ‖un − zn‖2

+2λn〈un − zn, Bun − Bw〉 − λ2n‖Bun − Bw‖2
}

(3.12)
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which implies

3‖zn −w‖2 ≤ ‖un −w‖2 − ‖un − zn‖2 + 2λn〈un − zn, Bun − Bw〉

≤ ‖xn −w‖2 − ‖un − zn‖2 + 2λn‖un − zn‖ ‖Bun − Bw‖.
(3.13)

Consequently

∥
∥yn −w

∥
∥
2 ≤ αn‖xn −w‖2 + (1 − αn)‖zn −w‖2

≤ ‖xn −w‖2 − (1 − αn)‖un − zn‖2 + 2(1 − αn)λn‖un − zn‖‖Bun − Bw‖
(3.14)

which implies

(1 − αn)‖un − zn‖2 ≤ ‖xn −w‖2 − ∥∥yn −w
∥
∥
2 + 2(1 − αn)λn‖un − zn‖ ‖Bun − Bw‖

≤ (‖xn −w‖ − ∥∥yn −w
∥
∥
)(‖xn −w‖ + ∥∥yn −w

∥
∥
)

+ 2(1 − αn)λn‖un − zn‖ ‖Bun − Bw‖
≤ (∥∥xn − yn

∥
∥
)(‖xn −w‖ + ∥∥yn −w

∥
∥
)

+ 2(1 − αn)λn‖un − zn‖ ‖Bun − Bw‖.
(3.15)

By the assumptions on (αn)n∈N, Steps 4 and 6, and the boundedness of (xn)n∈N (yn)n∈N and
(un)n∈N the claim follows.

Step 7. limn→+∞‖xn − un‖ = 0 and limn→+∞‖xn − Skxn‖ = 0.
Since Tn is firmly nonexpansive, for each p ∈ ∩n Fix(Tn(I − rn)A), we have

∥
∥un − p

∥
∥
2 =
∥
∥Tn(I − rnA)xn − Tn(I − rnA)p

∥
∥
2

≤ 〈un − p, (I − rnA)xn − (I − rnA)p
〉

=
1
2

(∥
∥(I − rnA)xn − (I − rnA)p

∥
∥
2 +
∥
∥un − p

∥
∥
2

−∥∥(I − rnA)xn − (I − rnA)p − (un − p
)∥
∥
2
)

=
1
2

(∥
∥xn − p

∥
∥
2 − rn(2α − rn)

∥
∥Axn −Ap

∥
∥
2 +
∥
∥un − p

∥
∥
2

−∥∥xn − un − rn
(

Axn −Ap
)∥
∥
2
)

≤ 1
2

(∥
∥xn − p

∥
∥
2 +
∥
∥un − p

∥
∥
2 − ‖xn − un‖2

−r2n
∥
∥Axn −Ap

∥
∥
2
+ 2rn

〈

xn − un,Axn −Ap
〉)

,

(3.16)
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and consequently

∥
∥un − p

∥
∥
2 ≤
(∥
∥xn − p

∥
∥
2 − ‖xn − un‖2 + 2rn‖xn − un‖

∥
∥Axn −Ap

∥
∥

)

. (3.17)

Then, for each w ∈ F, we have

∥
∥yn −w

∥
∥
2 ≤ αn‖xn −w‖2 + (1 − αn)‖un −w‖2

≤ ‖xn −w‖2 − (1 − αn)‖xn − un‖2

+ 2(1 − αn)rn‖xn − un‖ ‖Axn −Aw‖ by (3.17),

(3.18)

consequently

(1 − αn)‖xn − un‖2 ≤ ‖xn −w‖2 − ∥∥yn −w
∥
∥
2 + 2(1 − αn)rn‖xn − un‖‖Axn −Aw‖

≤ ∥∥xn − yn

∥
∥
(‖xn −w‖ + ∥∥yn −w

∥
∥
)

+ 2(1 − αn)rn‖xn − un‖‖Axn −Aw‖,
(3.19)

and by the assumptions on (αn)n∈N, Step 4 and the boundedness of (xn)n∈N and (yn)n∈N it
follows that ‖xn − un‖ → 0 as n → +∞. By Step 6 we note that also ‖xn − zn‖ → 0.

Finally

‖xn − Skxn‖ ≤ ‖xn − Skzn‖ + ‖Skzn − Skxn‖
≤ ‖xn − Skzn‖ + ‖zn − xn‖
≤ ‖xn − Skzn‖ + ‖zn − un‖ + ‖un − xn‖,

(3.20)

and by previous steps, it follows that ‖xn − Skxn‖ → 0 as n → +∞.

Step 8. The set of weak cluster points of (xn)n∈N is contained in F.
We will use three times the Opial’s Lemma 2.1.
Let p be a weak cluster point of (xn)n∈N and let (xnj )j∈N be a subsequence of (xn)n∈N

such that xnj ⇀ p.
We prove that p ∈ Fix(S) = Fix(Sk). We suppose for absurd that p /=Skp. By Opial’s

Lemma 2.1 and ‖xn − Skxn‖ → 0 as n → ∞, we obtain

lim inf
j→+∞

∥
∥
∥xnj − p

∥
∥
∥ < lim inf

j→+∞

∥
∥
∥xnj − Skp

∥
∥
∥

= lim inf
j→+∞

∥
∥
∥xnj − Skxnj − Skxnj − Skp

∥
∥
∥ ≤ lim inf

j→+∞

[∥
∥
∥xnj − Skxnj

∥
∥
∥ +
∥
∥
∥Skxnj − Skp

∥
∥
∥

]

= lim inf
j→+∞

∥
∥
∥xnj − p

∥
∥
∥

(3.21)

which is a contradiction.
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Since Fix(R) = ∩n Fix(Tn(I − rnA)) it is enough to prove that p ∈ Fix(R). Now if p /=Rp
we note that

lim inf
j→+∞

∥
∥
∥xnj − p

∥
∥
∥ < lim inf

j→+∞

∥
∥
∥xnj − Rp

∥
∥
∥

≤ lim inf
j→+∞

[∥
∥
∥xnj − Tnj

(

I − rnjA
)

xnj

∥
∥
∥

+
∥
∥
∥Tnj

(

I − rnjA
)

xnj − Tnj

(

I − rnjA
)

p
∥
∥
∥ +
∥
∥
∥Tnj

(

I − rnjA
)

p − Rp
∥
∥
∥

]

≤ lim inf
j→+∞

[∥
∥
∥xnj − unj

∥
∥
∥ +
∥
∥
∥xnj − p

∥
∥
∥ +
∥
∥
∥Tnj

(

I − rnjA
)

p − Rp
∥
∥
∥

]

= lim inf
j→+∞

∥
∥
∥xnj − p

∥
∥
∥.

(3.22)

This leads to a contraddiction again. By the hypotheses and Step 7 the claim follows. By the
same idea and using Step 6, we prove that p ∈ Fix(W) = ∩n Fix(Vn(I − λnB)).

Step 9. xn → x∗ = PFx1.
Since x∗ = PFx1 ∈ Cn and xn = PCnx1, we have

‖x1 − xn‖ ≤ ‖x1 − x∗‖. (3.23)

Let (xnj )j∈N be a subsequence of (xn)n∈N such that xnj ⇀ p. By Step 8, p ∈ F. Thus

‖x1 − x∗‖ ≤ ∥∥x1 − p
∥
∥ ≤ lim inf

j→+∞

∥
∥
∥x1 − xnj

∥
∥
∥

≤ lim sup
j→+∞

∥
∥
∥x1 − xnj

∥
∥
∥ ≤ ‖x1 − x∗‖.

(3.24)

Therefore we have

‖x1 − x∗‖ =
∥
∥x1 − p

∥
∥ = lim

j→+∞

∥
∥
∥x1 − xnj

∥
∥
∥. (3.25)

Since H has the Kadec-Klee property, then xnj → p as j → +∞.
Moreover, by ‖x1 − x∗‖ = ‖x1 − p‖ and by the uniqueness of the projection PFx1, it

follows that p = x∗ = PFx1.
Thence every subsequence (xnj )j∈N converges to x∗ as j → +∞ and consequently

xn → x∗, as n → +∞.

Remark 3.2. Let us observe that one can choose (Tn)n∈N and (Vn)n∈N as sequences of γn-
inverse strongly monotone operators and ηn-inverse strongly monotone operators provided
γn ≥ 1, ηn ≥ 1 for all n ∈ N.
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The hypotheses (ii) and (iii) in the main Theorem 3.1 seem very strong but, in the
sequel, we furnish two cases in which (ii) and (iii) are satisfied.

Let us remember that the metric projection on a convex closed set PC is a firmly
nonexpansive mapping (see [19]) so we claim that have the following proposition.

Proposition 3.3. If (rn)n∈N ⊂ (0,∞) is such that limnrn = r > 0 and A an α-inverse strongly
monotone, then PC(I − rnA) realizes conditions (ii) and (iii) with R = PC(I − rA).

Proof. To prove (ii) we note that for each x ∈ C,

‖PC(I − rnA)x − PC(I − rA)x‖ ≤ ‖(I − rnA)x − (I − rA)x‖ ≤ |rn − r|‖Ax‖. (3.26)

Moreover, (iii) follows directly by (2.2).

Now we consider the mixed equilibrium problem

Find x ∈ C : f
(

x, y
)

+ h
(

x, y
)

+
〈

Ax, y − x
〉 ≥ 0, ∀y ∈ C. (3.27)

In the sequel we will indicate withMEP(f, h,A) the set of solution of our mixed equilibrium
problem. If A = 0 we denote MEP(f, h, 0)withMEP(f, h).

We notice that for h = 0 andA = 0 the problem is the well-known equilibrium problem
[23–25]. If h = 0 and A is an α-inverse strongly monotone operator we have the equilibrium
problems studied firstly in [26] and then in [18, 22, 27]. If h(x, y) = ϕ(y) −ϕ(x) andA = 0 we
refound the mixed equilibrium problem studied in [16, 28, 29].

Definition 3.4. A bi-function g : C×C → R is monotone if g(x, y)+g(y, x) ≤ 0 for all x, y ∈ C.
A function G : C → R is upper hemicontinuous if

lim sup
t→ 0

G
(

tx + (1 − t)y
) ≤ G

(

y
)

. (3.28)

Next lemma examines the case in which A = 0.

Lemma 3.5. Let C be a convex closed subset of a Hilbert spaceH.
Let f : C × C → R be a bi-function such that

(f1) f(x, x) = 0 for all x ∈ C;

(f2) f is monotone and upper hemicontinuous in the first variable;

(f3) f is lower semicontinuous and convex in the second variable.

Let h : C × C → R be a bi-function such that

(h1) h(x, x) = 0 for all x ∈ C;

(h2) h is monotone and weakly upper semicontinuous in the first variable;

(h3) h is convex in the second variable.
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Moreover let us suppose that

(H) for fixed r > 0 and x ∈ C, there exists a bounded set K ⊂ C and a ∈ K such that for all
z ∈ C \K, −f(a, z) + h(z, a) + (1/r)〈a − z, z − x〉 < 0,

for r > 0 and x ∈ H let Tr : H → C be a mapping defined by

Trx =
{

z ∈ C : f
(

z, y
)

+ h
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C

}

, (3.29)

called resolvent of f and h.
Then

(1) Trx /= ∅;
(2) Trx is a single value;

(3) Tr is firmly nonexpansive;

(4) MEP(f, h) = Fix(Tr) and it is closed and convex.

Proof. Let x0 ∈ H. For any y ∈ C define

Gr,x0y =
{

z ∈ C : −f(y, z) + h
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0

}

. (3.30)

We will prove that, by KKM’s lemma, ∩y∈CGr,x0y is nonempty.
First of all we claim that Gr,x0 is a KKM’s map. In fact if there exists {y1, . . . , yN} ⊂ C

such that y =
∑

i αiyi (with
∑

i αi = 1) does not appartiene to Gr,x0yi for any i = 1, . . . ,N then

−f(yi, y
)

+ h
(

y, yi

)

+
1
r

〈

yi − y, y − x0
〉

< 0, ∀i. (3.31)

By the convexity of f and h and the monotonicity of f , we obtain that

0 = f
(

y, y
)

+ h
(

y, y
)

+
1
r

〈

y − y, y − x0
〉

≤
∑

i

αif
(

y, yi

)

+
∑

i

αih
(

y, yi

)

+
1
r

∑

i

αi

〈

yi − y, y − x0
〉

≤ −
∑

i

αif
(

yi, y
)

+
∑

i

αih
(

y, yi

)

+
1
r

∑

i

αi

〈

yi − y, y − x0
〉

=
∑

i

αi

[

−f(yi, y
)

+ h
(

y, yi

)

+
1
r

〈

yi − y, y − x0
〉
]

< 0,

(3.32)

that is absurd.
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Now we prove that Gr,x0

w
= Gr,x0 . We recall that, by the weak lower semicontinuity of

‖ · ‖2, the relation

lim sup
m

〈

y − zm, zm − x0
〉 ≤ 〈y − z, z − x0

〉

(3.33)

holds. Let z ∈ Gr,x0y
w
and let (zm)m be a sequence in Gr,x0y such that zm ⇀ z.

We want to prove that

−f(y, z) + h
(

z, y
)

+
1
r

〈

y − z, z − x0
〉 ≥ 0. (3.34)

Since f is lower semicontinuous and convex in the second variable and h is weakly upper
semicontinuous in the first variable, then

0 ≤ lim sup
m

[

−f(y, zm
)

+ h
(

zm, y
)

+
1
r

〈

y − z, z − x0
〉
]

≤ lim sup
m

(−f(y, zm
))

+ lim sup
m

h
(

zm, y
)

+
1
r
lim sup

m

〈

y − z, z − x0
〉

≤ −lim inf
m

f
(

y, zm
)

+ lim sup
m

h
(

zm, y
)

+
1
r
lim sup

m

〈

y − z, z − x0
〉

≤ −f(y, z) + h
(

z, y
)

+
1
r

〈

y − z, z − x0
〉

.

(3.35)

Now we observe that Gr,x0y
w
= Gr,x0y is weakly compact for at least a point y ∈ C. In

fact by hypothesis (H) there exist a bounded K ⊂ C and a ∈ K, such that for all z ∈ C \ K
it results z/∈Gr,x0a. Then Gr,x0a ⊂ K, that is, it is bounded. It follows that Gr,x0a is weakly
compact. Then by KKM’s lemma ∩y∈CGr,x0y is nonempty. However if z ∈ ∩y∈CGr,x0 then

−f(y, z) + h
(

z, y
)

+
1
r

〈

y − z, z − x0
〉 ≥ 0, ∀y ∈ C. (3.36)

As in [24, Lemma 3], since f is upper hemicontinuous and convex in the first variable and
monotone, we obtain that (3.36) is equivalent to claim that z is such that

f
(

z, y
)

+ h
(

z, y
)

+
1
r

〈

y − z, z − x0
〉 ≥ 0, ∀y ∈ C, (3.37)

that is, z ∈ Tr(x0). This prove (1). To prove (2) and (3) we consider z1 ∈ Trx1 and z2 ∈ Trx2.
They satisfy the relations

f(z1, z2) + h(z1, z2) +
1
r
〈z2 − z1, z1 − x1〉 ≥ 0,

f(z2, z1) + h(z2, z1) +
1
r
〈z1 − z2, z2 − x2〉 ≥ 0.

(3.38)
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By the monotonicity of f and h, summing up both the terms,

0 ≤ 1
r
[〈z2 − z1, z1 − x1〉 − 〈z2 − z1, z2 − x2〉]

=
1
r
[〈z2 − z1, z1 − x1 − z2 + x2〉]

=
1
r

[

−‖z2 − z1‖2 + 〈z2 − z1, x2 − x1〉
]

(3.39)

so we conclude

‖z2 − z1‖2 ≤ 〈z2 − z1, x2 − x1〉 (3.40)

that means simultaneously that z1 = z2 if x1 = x2 and Tr is firmly nonexpansive.
To prove (4), it is enough to follow (iii) and (iv) in [25, Lemma 2.12].

Remark 3.6. We note that if h = 0, our lemma reduces to [25, Lemma 2.12]. The coercivity
condition (H) is fulfilled.

Moreover our lemma is more general than [16, Lemma 2.2]. In fact

(i) our hypotheses on f are weaker (f weak upper semicontinuous implies f upper
hemicontinuous);

(ii) if ϕ satisfies the condition in Lemma 2.2 , choosing h(x, y) = ϕ(y) − ϕ(x) one has
that h is concave and upper semicontinuous in the first variable and convex and
lower semicontinous in the second variable;

(iii) the coercivity condition (H) by the equivalence of (3.36) and (3.37) is the same.

Lemma 3.7. Let us suppose that (f1)–(f3), (h1)–(h3) and (H) hold. Let x, y ∈ H, r1, r2 > 0. Then

∥
∥Tr2y − Tr1x

∥
∥ ≤ ∥∥y − x

∥
∥ +
∣
∣
∣
∣

r2 − r1
r2

∣
∣
∣
∣

∥
∥Tr2y − y

∥
∥. (3.41)

Proof. By Lemma 3.5, defining u1 = Tr1x and u2 := Tr2y, we know that

f(u2, z) + h(u2, z) +
1
r2
〈z − u2, u2 − y〉 ≥ 0, ∀z ∈ C,

f(u1, z) + h(u1, z) +
1
r1
〈z − u1, u1 − x〉 ≥ 0, ∀z ∈ C.

(3.42)

In particular,

f(u2, u1) + h(u2, u1) +
1
r2

〈

u1 − u2, u2 − y
〉 ≥ 0,

f(u1, u2) + h(u1, u2) +
1
r1
〈u2 − u1, u1 − x〉 ≥ 0.

(3.43)
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Hence, summing up this two inequalities and using the monotonicity of f and h,

〈

u2 − u1,
u1 − x

r1
− u2 − y

r2

〉

≥ 0. (3.44)

We derive from (3.44) that

〈

u2 − u1, u1 − u2 − x + u2 − r1
r2

(

u2 − y
)
〉

≥ 0, (3.45)

and so

−‖u2 − u1‖2 +
〈

u2 − u1,
(

u2 − y
)
(

1 − r1
r2

)

+
(

y − x
)
〉

≥ 0. (3.46)

Then,

‖u2 − u1‖2 ≤ ‖u2 − u1‖
(
∥
∥y − x

∥
∥ +
∣
∣
∣
∣
1 − r1

r2

∣
∣
∣
∣

∥
∥u2 − y

∥
∥

)

, (3.47)

and thus the claim holds.

Proposition 3.8. Let us suppose that f and h are two bi-functions satisfying the hypotheses of
Lemma 3.5. Let Tr be the resolvent of f and h. Let A be an α-inverse strongly monotone operator.
Let us suppose that (rn)n∈N ⊂ (0,∞) is such that limnrn = r > 0. Then Trn(I − rnA) realize (ii) and
(iii) in Theorem 3.1.

Proof. Let x be in a bounded closed convex subsetK of C. To prove (i) it is enough to observe
that by Lemma 3.7

‖Trn(I − rnA)x − Tr(I − rA)x‖ ≤ |rn − r|‖Ax‖ + |rn − r|
r

‖Tr(I − rA)x − (I − rA)x‖. (3.48)

When n → ∞, by boundedness of the terms that do not depend on n, we obtain (ii).
To prove (iii) let W = Tr(I − rA) the pointwise limit of Trn(I − rnA). It is necessary

to prove only that Fix(W) ⊂ ∩n Fix(Trn(I − rnA)). Let x ∈ Fix(W). We want to prove that
x ∈ MEP(f, h,A). Let wn = Trn(I − rnA)x. Thus, by definition of Trn , wn is the unique point
such that

f
(

wn, y
)

+ h
(

wn, y
)

+
1
rn

〈

y −wn,wn − (I − rnA)x
〉 ≥ 0, ∀y. (3.49)

By monotonicity of f and h this implies

h
(

wn, y
)

+
1
rn

〈

y −wn,wn − (I − rnA)x
〉 ≥ f

(

y,wn

)

. (3.50)
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Passing to the limit on n, by (f3) and (h2) we obtain

h
(

x, y
)

+
〈

y − x,Ax
〉 ≥ f

(

y, x
)

, ∀y. (3.51)

Let now u = ty + (1 − t)x with t ∈ [0, 1]. Then by the convexity of f and h

0 = f(u, u) + h(u, u) ≤ t
[

f
(

u, y
)

+ h
(

u, y
)]

+ (1 − t)
[

f(u, x) + h(u, x)
]

≤ t
[

f
(

u, y
)

+ h
(

u, y
)]

+ 〈u − x,Ax〉
= t
[

f
(

u, y
)

+ h
(

u, y
)

+
〈

y − x,Ax
〉]

.

(3.52)

Passing t → 0+ we obtain by (f1) and (h1)

f
(

x, y
)

+ h
(

x, y
)

+
〈

Ax, y − x
〉 ≥ 0. (3.53)

That is, x ∈ MEP(f, h,A). At this point we observe that from the definitions ofMEP(f, h,A)
and Trn , one has MEP(f, h,A) = Fix(Trn(I − rnA)).

By Propositions 3.3 and 3.8 we can exhibit iterative methods to approximate fixed
points of the k-strict pseudo contraction that are also

(1) solution of a system of two variational inequalities VI(C,A) and VI(C,B) (Vn = Tn =
PC);

(2) solution of a system of two mixed equilibrium problems (Tn = Trn and Vn = Tλn);

(3) solution of a mixed equilibrium problem and a variational inequality (Tn = Trn and
Vn = PC).

However when the properties of the mapping Tn and Vn are well known, one can
prove convergence theorems like Theorem 3.1 without use of Opial’s lemma.

In next theorem our purpose is to prove a strong convergence theorem to approximate
a fixed point of S that is also a solution of a mixed equilibrium problem and a solution of a
variational inequality V I(C,B). One can note that we relax the hypotheses on the convergence
of the sequences (rn)n∈N and (λn)n∈N.

Theorem 3.9. Let C be a closed convex subset of a real Hilbert spaceH, let f, h : C ×C → R be two
bi-functions satisfying (f1)–(f3),(h1)–(h3), and (H). Let S : C → C be a k-strict pseudocontraction.

LetA be an α-inverse strongly monotone mapping ofC intoH and let B be a β-inverse strongly
monotone mapping of C intoH.

Let us suppose that F = Fix(S) ∩MEP(f, h,A) ∩ V I(C,B)/= ∅.
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Set Sk = kI + (1 − k)S, one defines the sequence (xn)n∈N as follows:

x1 ∈ C,

C1 = C,

f
(

un, y
)

+ h
(

un, y
)

+
1
rn

〈

y − un, un − xn

〉

+
〈

Axn, y − un
〉 ≥ 0,

zn = PC(I − λnB)un,

yn = αnxn + (1 − αn)Skzn,

Cn+1 =
{

w ∈ Cn :
∥
∥yn −w

∥
∥ ≤ ‖xn −w‖},

xn+1 = PCn+1x1, ∀n ∈ N,

(3.54)

where

(i) (αn)n∈N ⊂ [0, a] with a < 1;

(ii) (λn)n∈N ⊂ [b, c] ⊂ (0, 2β);

(iii) (rn)n∈N ⊂ [d, e] ⊂ (0, 2α).

Then (xn)n∈N strongly converges to x∗ = PFx1.

Proof. First of all we observe that by Lemma 3.5 we have that un = Trn(I − rnA)xn. We can
follow the proof of Theorem 3.1 from Steps 1–7. We prove only the following.

Step 10. The set of weak cluster points of (xn)n∈N is contained in F.
Let p be a cluster point of xn; we begin to prove that p ∈ MEP(f, h,A). We know that

f
(

un, y
)

+ h
(

un, y
)

+
〈

Axn, y − un

〉

+
1
rn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ C, (3.55)

and by (f2)

h
(

un, y
)

+
〈

Axn, y − un

〉

+
1
rn

〈

y − un, un − xn

〉 ≥ f
(

y, un

)

, ∀y ∈ C. (3.56)

Let (xnj )j∈N be a subsequence of (xn)n∈N weakly convergent to p, then by Step 7 unj ⇀ p as
j → +∞. Let ρt := ty + (1 − t)p, t ∈]0, 1]. Then by (3.56)

〈

ρt − unj , Aρt
〉

=
〈

ρt − unj , Aρt −Axnj

〉

+
〈

Axnj , ρt − unj

〉

≥
〈

ρt − unj , Aρt −Axnj

〉

+ f
(

y, unj

)

− h
(

unj , y
)

− 1
rnj

〈

y − unj , unj − xnj

〉

=
〈

ρt − unj , Aρt −Aunj

〉

+
〈

ρt − unj , Aunj −Axnj

〉

+ f
(

y, unj

)

− h
(

unj , y
)

− 1
rnj

〈

y − unj , unj − xnj

〉

≥
〈

ρt − unj , Aunj −Axnj

〉

+ f
(

y, unj

)

− h
(

unj , y
)

− 1
rnj

〈

y − unj , unj − xnj

〉

.

(3.57)
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SinceA is Lipschitz continuous and ‖unj −xnj‖ → 0 as j → +∞, we have ‖Aunj −Axnj‖ → 0
as j → +∞.

By condition (f3), for x ∈ H fixed, the function f(x, ·) is lower semicontinuos and
convex, and thus weakly lower semicontinuous [30].

Since ‖xn−un‖ → 0, as n → ∞ and by the assumption on rn we obtain (unj−xnj )/rnj →
0. Then we obtain by (h2)

〈

ρt − p,Aρt
〉 ≥ f

(

y, p
) − h

(

p, y
)

. (3.58)

Using (f1), (f3), (h1), (h3) we obtain

0 = f
(

ρt, ρt
)

+ h
(

ρt, ρt
) ≤ tf

(

ρt, y
)

+ (1 − t)f
(

ρt, p
)

+ th
(

ρt, y
)

+ (1 − t)h
(

ρt, p
)

≤ tf
(

ρt, y
)

+ th
(

ρt, y
)

+ (1 − t)
(

f
(

ρt, p
) − h

(

p, ρt
))

≤ tf
(

ρt, y
)

+ th
(

ρt, y
)

+ (1 − t)
〈

ρt − p,Aρt
〉

= t
(

f
(

ρt, y
)

+ h
(

ρt, y
)

+ (1 − t)
〈

y − p,Aρt
〉)

.

(3.59)

Consequently

f
(

ρt, y
)

+ h
(

ρt, y
)

+ (1 − t)
〈

y − p,Aρt
〉 ≥ 0 (3.60)

by (f2) and (h2), as t → 0, we obtain p ∈ MEP(f, h,A).
Now we prove that p ∈ V I(C,B).
We define the maximal monotone operator

Tx =

{

Bx +NCx, if x ∈ C,

∅, se x /∈C,
(3.61)

where NCx is the normal cone to C at x, that is,

NCx = {w ∈ H : 〈x − u,w〉 ≥ 0, ∀u ∈ C}. (3.62)

Since zn ∈ C, by the definition of NC we have

〈

x − zn, y − Bx
〉 ≥ 0. (3.63)

But zn = PC(I − λnB)un, then

〈x − zn, zn − (I − λnB)un〉 ≥ 0, (3.64)

and hence

〈

x − zn,
zn − un

λn
+ Bun

〉

≥ 0. (3.65)
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By (3.63), (3.65), and by the β-inverse monotonicity of B, we obtain

〈

x − znj , y
〉

≥
〈

x − znj , Bx
〉

≥
〈

x − znj , Bx
〉

−
〈

x − znj ,
znj − unj

λnj

+ Bunj

〉

=
〈

x − znj , Bx − Bznj

〉

+
〈

x − znj , Bznj − Bunj

〉

−
〈

x − znj ,
znj − unj

λnj

〉

.

(3.66)

By ‖xn − zn‖ → 0 as n → +∞ (immediately consequence of Steps 6 and 7), it follows that
znj ⇀ p as j → +∞. Then

〈

x − p, y
〉 ≥ 0, (3.67)

moreover, since T is a maximal operator, 0 ∈ Tp, that is, p ∈ V I(C,B).
Finally, to prove that p ∈ Fix(S) = Fix(Sk)we follow Step 8 as in Theorem 3.1.
Since also Step 9 can be followed as in Theorem 3.1, we obtain the claim.
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Paris, France, 1983.


	1. Introduction
	2. Preliminaries
	3. Main Theorem
	References

