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We first consider a cyclic ϕ-contraction map on a reflexive Banach space X and provide a positive
answer to a question raised by Al-Thagafi and Shahzad on the existence of best proximity points
for cyclic ϕ-contraction maps in reflexive Banach spaces in one of their works (2009). In the second
part of the paper, we will discuss the existence of best proximity points in the framework of more
general metric spaces. We obtain some new results on the existence of best proximity points in
hyperconvex metric spaces as well as in ultrametric spaces.

1. Introduction

Let X = (X, d) be a metric space, and let A,B be two subsets of X. A mapping T : A ∪ B →
A ∪ B is said to be cyclic provided that T(A) ⊆ B and T(B) ⊆ A. In [1] Kirk et al. proved the
following interesting extension of the Banach contraction principle:

Theorem 1.1 (see [1]). Let A and B be two nonempty closed subsets of a complete metric space X.
Suppose that T is a cyclic map such that

d
(
Tx, Ty

) ≤ αd
(
x, y

)
(1.1)

for some α ∈ (0, 1) and for all x ∈ A,y ∈ B. Then T has a unique fixed point in A ∩ B.

Later on, Eldred and Veeramani [2] considered the class of cyclic contractions.



2 Fixed Point Theory and Applications

Definition 1.2 (see [2]). Let A and B be two nonempty subsets of a metric space X, and let
T : A ∪ B → A ∪ B, T(A) ⊆ B, and T(B) ⊆ A. We say that T is a cyclic contraction if

d
(
Tx, Ty

) ≤ αd
(
x, y

)
+ (1 − α)d(A,B) (1.2)

for some α ∈ (0, 1) and for all x ∈ A,y ∈ B, where

d(A,B) := inf
{
d
(
x, y

)
: x ∈ A,y ∈ B

}
. (1.3)

We recall that a point x ∈ A ∪ B is said to be a best proximity point for T provided that
d(x, Tx) = d(A,B).

In the case that X is a uniformly convex Banach space, Eldred and Veeramani
established the following theorem.

Theorem 1.3 (see [2]). Let A and B be two nonempty closed convex subsets of a uniformly convex
Banach spaceX, and let T : A∪B → A∪B be a cyclic contraction map. For x0 ∈ A, define xn+1 := Txn

for each n ≥ 0. Then there exists a unique x ∈ A such that x2n → x and ‖x − Tx‖ = d(A,B).

In 2009, Al-Thagafi and Shahzad introduced a new class of mappings, namely, the class
of cyclic ϕ-contraction maps. This new class contains the class of cyclic contraction maps.

Definition 1.4 (see [3]). Let A and B be two nonempty subsets of a metric space X and let
T : A ∪ B → A ∪ B be a mapping such that T(A) ⊆ B and T(B) ⊆ A. T is said to be a cyclic
ϕ-contraction map if there exists a strictly increasing function ϕ : [0,+∞) → [0,+∞) such
that

d
(
Tx, Ty

) ≤ d
(
x, y

) − ϕ
(
d
(
x, y

))
+ ϕ(d(A,B)) (1.4)

for all x ∈ A and y ∈ B.

In [3] the authors were able to establish some existence and convergence results
for these mappings. Moreover, they proved the existence of a best proximity point for a
cyclic contraction map in a reflexive Banach space X (see [3, Theorems 10, 11]). In this
way they answered a question raised by Eldred and Veeramani in the affirmative. We recall
that Theorem 1.3 above was proved in the setting of a uniformly convex Banach space. The
authors of [3] then asked if the result stands true if we assume that X is a reflexive Banach
space, rather than being uniformly convex.

Al-Thagafi and N. Shahzad then stated it was interesting to ask whether Theorems 9
and 10 (resp., Theorems 11 and 12) held true for cyclic ϕ-contraction maps when the Banach
space in question is only reflexive (resp., reflexive and strictly convex).

In this paper we first take up these questions. It turns out that under some conditions
the answer is positive. In the last section we study the existence of best proximity points
in spherically complete ultrametric spaces, as well as in hyperconvex metric spaces. More
precisely, we will see that best proximity points exist for cyclic ϕ-contraction maps on
hyperconvex metric spaces. We will also provide an existence theorem for a cyclic map which
satisfies some contractive condition on an ultrametric space.
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2. Cyclic ϕ-Contraction Maps

In this section we first provide a positive answer to the question raised by the authors of
[3]. Then we present some consequences and applications. Among other things, is a common
fixed point theorem for two maps. We will begin with the following lemma.

Lemma 2.1 (see [3, Lemma 1]). Let A and B be two nonempty subsets of a metric space X and let
T : A ∪ B → A ∪ B be a cyclic ϕ-contraction map. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0.
Then one has

(a) −ϕ(d(x, y)) + ϕ(d(A,B)) ≤ 0 for all x ∈ A and y ∈ B,

(b) d(Tx, Ty) ≤ d(x, y) for all x ∈ A and y ∈ B,

(c) d(xn+2, xn+1) ≤ d(xn+1, xn) for all n ≥ 0.

Now we state and prove the following lemma which is key to the proof of the main
result of this section.

Lemma 2.2. Let A and B be two nonempty subsets of a metric space X, and let T : A ∪ B → A ∪ B
be a cyclic ϕ-contraction map. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0. Then the sequences
{x2n}, and {x2n+1} are bounded if either of the following conditions holds:

(i) limt→+∞ϕ(t) = +∞,

(ii) d(A,B) = 0.

Proof. We first show that the sequence {d(T2x0, T
2n+1x0)} is bounded. Suppose the contrary.

Then for every positive integer k, there exists nk ≥ 1 such that

d
(
T2x0, T

2nk+1x0

)
≥ k, d

(
T2x0, T

2nk−1x0

)
< k. (2.1)

We note that

k ≤ d
(
T2x0, T

2nk+1x0

)
≤ d

(
Tx0, T

2nkx0

)
− ϕ

(
d
(
Tx0, T

2nkx0

))
+ ϕ(d(A,B)). (2.2)

According to Lemma 2.1, T is nonexpansive, so that (by the property of ϕ)

d
(
Tx0, T

2nkx0

)
≤ d

(
x0, T

2nk−1x0

)
− ϕ

(
d
(
x0, T

2nk−1x0

))
+ ϕ(d(A,B))

≤ d
(
x0, T

2nk−1x0

)
.

(2.3)

Therefore

k ≤ d
(
x0, T

2nk−1x0

)
− ϕ

(
d
(
Tx0, T

2nkx0

))
+ ϕ(d(A,B))

≤ d
(
x0, T

2x0

)
+ d

(
T2x0, T

2nk−1x0

)
− ϕ

(
d
(
Tx0, T

2nkx0

))
+ ϕ(d(A,B)).

(2.4)
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But since ϕ is increasing, it follows that

ϕ
(
d
(
T2x0, T

2nk+1x0

))
≤ ϕ

(
d
(
Tx0, T

2nkx0

))
. (2.5)

Thus

k ≤ d
(
x0, T

2x0

)
+ d

(
T2x0, T

2nk−1x0

)
− ϕ

(
d
(
T2x0, T

2nk+1x0

))
+ ϕ(d(A,B))

≤ d
(
x0, T

2x0

)
+ k − ϕ(k) + ϕ(d(A,B)).

(2.6)

This implies that for every positive integer k we have

ϕ(k) < d
(
x0, T

2x0

)
+ ϕ(d(A,B)), (2.7)

contradicting the hypothesis that limt→∞ϕ(t) = ∞.
We now assume that condition (ii) holds. It follows from (2.7) that

ϕ(k) − ϕ(d(A,B)) < d
(
x0, T

2x0

)
≤ d(x0, Tx0) + d

(
Tx0, T

2x0

)
≤ 2d(x0, Tx0). (2.8)

Since (2.8) holds for all x0 ∈ A, we conclude that

ϕ(k) − ϕ(d(A,B)) < 2d
(
T2nx0, T

(
T2nx0

))
= 2d(x2n, x2n+1) (2.9)

for all n ≥ 0. Letting now n → ∞ and using Theorem 3 of [3] we conclude that

ϕ(k) − ϕ(d(A,B)) ≤ 2d(A,B) = 0, (2.10)

which contradicts the fact that ϕ is strictly increasing.
This arguments show that the sequence {d(T2x0, T

2n+1x0)} is bounded. But since

d
(
T2nx0, T

2x0

)
≤ d

(
T2nx0, T

2n+1x0

)
+ d

(
T2n+1x0, T

2x0

)
, (2.11)

and that both terms on the right-hand side are bounded, we conclude that {T2nx0} is
bounded.

Similarly, by considering the sequence {d(T3x0, T
2nx0)} we can prove that the

sequence {T2n+1x0} is bounded.

We now come to the first main result of this paper generalizing Theorem 9 of [3] to
cyclic ϕ-contraction maps.
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Theorem 2.3. LetA and B be two nonempty weakly closed subsets of a reflexive Banach space X and
let T : A ∪ B → A ∪ B be a cyclic ϕ-contraction map satisfying either of the following:

(i) limt→∞ϕ(t) = ∞,

(ii) d(A,B) = 0.

Then there exists (x, y) ∈ A × B such that ‖x − y‖ = d(A,B).

Proof. Let x0 ∈ A be arbitrarily chosen. We define xn+1 = Txn. It follows from Lemma 2.2 that
the sequences {x2n} and {x2n+1} are bounded in A and in B, respectively. Since X is reflexive,
every bounded sequence in X has a weakly convergent subsequence. Assume that x2nk → x
weakly. Since A is weakly closed, x ∈ A. Similarly, we may assume that there is a y ∈ B
such that x2nk+1 → y, weakly. Therefore x2nk − x2nk+1 → x − y, weakly. But according to a
well-known fact in basic functional analysis, we have

∥∥x − y
∥∥ ≤ lim inf

k→∞
‖x2nk − x2nk+1‖ = d(A,B), (2.12)

from which it follows that ‖x − y‖ = d(A,B).

Remark 2.4. If we assume that the function ϕ satisfies either of the conditions (i) or (ii) of
Lemma 2.2, then all three theorems (Theorems 10, 11, and 12 of [3] can be generalized to
cyclic ϕ-contraction maps. We omit the details.

The next theorem generalizes Theorem 1.1 to reflexive Banach spaces. Note that if
d(A,B) = 0 and ϕ(t) = (1 − α)t for some fixed α ∈ (0, 1), then T will be a cyclic contraction
map, because for all x ∈ A and all y ∈ B we have

d
(
Tx, Ty

) ≤ d
(
x, y

) − ϕ
(
d
(
x, y

))
+ ϕ(d(A,B)) = αd

(
x, y

)
. (2.13)

Theorem 2.5. Let A and B be two nonempty subsets of a reflexive Banach space X such that A is
weakly closed. Let T : A ∪ B → A ∪ B be a cyclic ϕ-contraction map which is weakly continuous on
A. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0. If d(A,B) = 0 then T has a unique fixed point
x ∈ A ∩ B and xn → x.

Proof. Since T is cyclic ϕ-contraction, and d(A,B) = 0, it follows from Lemma 2.2 that {x2n} is
bounded in A. Therefore we can find a weak convergent subsequence, say {x2nk}, to a point
x ∈ A. On the other hand, T is weakly continuous, so that Tx2nk → Txweakly. It follows that

x2nk+1 − x2nk −→ Tx − x, weakly. (2.14)

As in the proof of Theorem 2.3 we conclude that Tx = x. The proof of uniqueness part is a
verbatim repetition of the proof of Theorem 6 in [3]. We omit the details.

As an application of Theorem 2.5, we will prove a theorem on the existence and
approximation of common fixed points for two maps.
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Theorem 2.6. Let A be a nonempty subset of a reflexive Banach space X and f, g : A → A be
two maps such that f(A) is weakly closed in X and d(f(A), g(A)) = 0. Let T : f(A) ∪ g(A) →
f(A) ∪ g(A) be a cyclic ϕ-contraction map that satisfies this property that if there exist a1, a2 ∈ A
such that f(a1) = g(a2), then T commutes with f, g in f(a1). Then f, g have a common fixed point in
A. Moreover, if a ∈ A, x0 := f(a) and xn+1 := Txn for each n ≥ 0 then the sequence {xn} converges
to a common fixed point of f, g.

Proof. By Theorem 2.5 there exists a unique x ∈ f(A) such that Tx = x. Since x ∈ f(A), there
exists a1 ∈ A such that x = f(a1) so that T(fa1) = fa1. Also there exists a2 ∈ A such that
fa1 = ga2, so that T(ga2) = ga2. Now we have

T
(
f
(
fa1

))
= f

(
T
(
fa1

))
= f

(
fa1

)
. (2.15)

That is, f(fa1) is a fixed point for T . Since the fixed point of T is unique, we must have
f(f(a1)) = fa1. Therefore fa1 is a fixed point of f . Similarly we can show that ga2 is a fixed
point of g. Consequently fa1 is a common fixed point for f, g. According to Theorem 2.5 the
sequence {xn} converges to fa1.

Example 2.7. Let X = R and d(x, y) = |x − y|. Let A = [0, 1/2] and define f, g : A → A with
f(x) = x2 and g(x) = x3. Also consider T : f(A) ∪ g(A) → f(A) ∪ g(A) by T(x) = x/2.
Then T is cyclic contraction and satisfies the conditions of Theorem 2.6. Therefore f, g have a
common fixed point. It is clear that this common fixed point is x = 0.

3. Cyclic ϕ-Contraction Maps in Metric Spaces

In this section we discuss the existence of best proximity points for cyclic ϕ-contraction
maps in metric spaces. Indeed we prove two existence theorems on best proximity points
in hyperconvex spaces, as well as in ultrametric spaces.

Lemma 3.1. LetA,B be two nonempty subsets of a metric space X, and Let T : A∪B → A∪B be a
cyclic ϕ-contraction map. If there exists x ∈ A such that T2x = x, then T has a best proximity point.

Proof. Since T2x = x, then y := Tx is fixed point for T2. Therefore we have

d
(
x, y

)
= d

(
T2x, T2y

)
≤ d

(
x, y

) − 2ϕ
(
d
(
Tx, Ty

))
+ 2ϕ(d(A,B)). (3.1)

Thus ϕ(d(Tx, Ty)) ≤ ϕ(d(A,B)). Since ϕ is strictly increasing, we conclude that

d(A,B) = d
(
Tx, Ty

)
= d(Tx, x). (3.2)

In the following definition we will use the notation χ(D) for the Kuratowski measure
of noncompactness of a given set D. For more information see the book written by Khamsi
and Kirk [4].
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Definition 3.2. Let K be a subset of a metric space X. A mapping T : K → K is said to be
condensing if T is bounded and continuous, moreover χ(T(D)) < χ(D), for every bounded
subset D of K for which χ(D) > 0.

Definition 3.3 (see [4]). A metric space X is called hyperconvex if for any indexed class of
closed balls B(xi; ri), i ∈ I, of X which satisfy

d
(
xi, xj

) ≤ ri + rj , i, j ∈ I, (3.3)

it is necessarily the case that
⋂

i∈I B(xi; ri)/= ∅.

We recall that for a given set X, the notationA(X) denotes the family of all admissible
subsets of X, that is, the family of subsets of X that can be written as the intersection of a
family of closed balls centered at points of X. For further information on the subject we refer
the reader to [4]. We now state and prove the first main result of this section.

Theorem 3.4. LetX be a hyperconvex metric space, andA,B be two nonempty subsets ofX such that
A ∈ A(X). Suppose T : A ∪ B → A ∪ B is a cyclic ϕ-contraction map. Put T1 = T |A and T2 = T |B.
If T2T1 : A → A is a condensing map then T has a best proximity point.

Proof. Since X is a hyperconvex metric space, and since A ∈ A(X), it follows from
Proposition 4.5 of [5] that A is a hyperconvex metric space too. On the other hand, T2T1 :
A → A is a condensing map, thus by Theorem 7.13 of [5], T2T1 or T2 has a fixed point. It now
follows from Lemma 3.1 that T has a best proximity point.

Definition 3.5. A metric space X is an ultrametric space if, in addition to the usual metric
axioms, the following property holds for each x, y, z ∈ X:

d(x, z) ≤ max
{
d
(
x, y

)
, d

(
y, z

)}
. (3.4)

For example if X is a discrete metric space then X is an ultrametric space. Ultrametric
spaces arise in the study of non-Archimedean analysis, and in particular in the study of
Banach space over non-Archimedean valuation fields (see [4]).

Remark 3.6. It is immediate fromDefinition 3.5 that if B(a; r1) and B(b; r2) are two closed balls
in an ultrametric space, with r1 ≤ r2, then either B(a; r1) ∩ B(b; r2) = ∅ or B(a; r1) ⊆ B(b; r2). In
particular if a ∈ B(b; r2), then B(a; r1) ⊆ B(b; r2).

Definition 3.7. An ultrametric space X is said to be spherically complete if every chain of closed
balls in X has nonempty intersection.

As a consequence of Remark 3.6, the admissible sets A(X) of X coincide with the
closed balls of X. Here we state and prove the second main result of this section.

Theorem 3.8. Suppose X is a spherically complete ultrametric space and A,B are two nonempty
subsets of X such that A ∈ A(X). Let T : A ∪ B → A ∪ B be a cyclic map which satisfies the
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following condition:

d
(
Tx, Ty

) ≤ αmax
{
d(Tx, x), d

(
Ty, y

)
, d

(
x, y

)}
+ (1 − α)d(A,B) (3.5)

for each x ∈ A,y ∈ B and for some α ∈ (0, 1). Then T has a best proximity point.

Proof. Let x0 ∈ A and define xn+1 := Txn for n ≥ 0. Put rn = d(xn, xn+1). By Theorem 2 of [6],
rn → d(A,B). Now if there exitsN ≥ 1 such that rN−1 ≤ rN , then

rN = d(xN, xN+1) = d(TxN−1, TxN)

≤ αmax{d(TxN−1, xN−1), d(TxN, xN), d(xN−1, xN)} + (1 − α)d(A,B)

= αd(xN, xN+1) + (1 − α)d(A,B).

(3.6)

Therefore d(xN, TxN) = d(A,B). This argument shows that T has a best proximity point.
Now let for all n ≥ 1, we have rn < rn−1. Thus

d(x2n, x2n+2) ≤ max{d(x2n, x2n+1), d(x2n+1, x2n+2)}
= max{r2n, r2n+1} = r2n.

(3.7)

Then x2n+2 ∈ B(x2n; r2n) (all balls are assumed to be closed). Now by Remark 3.6 we have

B
(
x2(n+1); r2(n+1)

) ⊆ B(x2n; r2n). (3.8)

This shows that {B(x2n; r2n)}n≥1 is a descending chain of closed balls in X; in particular, each
two members of this chain intersect. It is rather obvious that each member of this chain also
intersects A (because x2n ∈ A). Since A ∈ A(X) and X is a spherically complete ultrametric
space, then A itself is a closed ball (see [4, page 114]). Now each two elements of the family
consisting of A and {B(x2n; r2n)}n≥1 intersects. Therefore if we set F = A ∪ ⋃

n≥1 B(x2n; r2n),
according to [4, page 115], there exists a point a ∈ A which belongs to

⋂
n≥1 B(x2n; r2n) as

well. Therefore

d(a, Ta) ≤ max{d(a, x2n), d(Tx2n−1, Ta)}
≤ max{r2n, d(Tx2n−1, Ta)}.

(3.9)

But for the second term we have

d(Tx2n−1, Ta) ≤ αmax{d(Tx2n−1, x2n−1), d(Ta, a), d(x2n−1, a)} + (1 − α)d(A,B)

≤ αmax{r2n−1, d(Ta, a), r2n−1} + (1 − α)d(A,B)

= αmax{r2n−1, d(Ta, a)} + (1 − α)d(A,B),

(3.10)
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because

d(x2n−1, a) ≤ max{d(x2n−1, x2n), d(x2n, a)} ≤ max{r2n−1, r2n} = r2n−1. (3.11)

It now follows that

d(a, Ta) ≤ max{r2n, αmax{r2n−1, d(Ta, a)} + (1 − α)d(A,B)}. (3.12)

Since the above relation holds for all n ≥ 1 then we have

d(a, Ta) ≤ max{d(A,B), αd(Ta, a) + (1 − α)d(A,B)}
= αd(Ta, a) + (1 − α)d(A,B).

(3.13)

Therefore d(Ta, a) = d(A,B), which means that T has a best proximity point.

In the following example we will see that the condition that X is spherically complete
is necessary.

Example 3.9. Let X := {1 + 1/n : n ≥ 1} and define a metric d on X by

d
(
x, y

)
=

⎧
⎨

⎩

0, if x = y,

max
{
x, y

}
if x /=y.

(3.14)

It is clear that (X, d) is a complete ultrametric space (see [5]). Set

A :=
{
1 +

1
2n

: n ≥ 1
}
, B :=

{
1 +

1
2n − 1

: n ≥ 1
}
; (3.15)

and define the mapping T : A ∪ B → A ∪ B by T(1 + 1/n) = 1 + 1/3(n + 1). It is easy to see
that T is cyclic and d(A,B) = 1. It is not difficult to see that T satisfies the relation (3.5) of the
previous theorem for α = 1/2, but T has no best proximity point. To see this, assume that

d

(
1 +

1
n
, T

(
1 +

1
n

))
= max

{
1 +

1
n
, 1 +

1
3(n + 1)

}
= d(A,B) (3.16)

for some n ≥ 1. Thus 1 + 1/n = 1 which is impossible. We claim that the ultrametric space
X = (X, d) is not spherically complete.

Consider the family of closed balls {B(1 + 1/(4n); 1 + 1/(2n))}n≥1 in X. Since

d

(
1 +

1
4(n + 1)

, 1 +
1
4n

)
< 1 +

1
2n

, (3.17)
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it follows from Remark 3.6 that

B

(
1 +

1
4n

; 1 +
1
2n

)
⊇ B

(
1 +

1
4(n + 1)

; 1 +
1

2(n + 1)

)
. (3.18)

Therefore this family is a chain of closed balls in X. Now let

1 +
1
m

∈
⋂

n≥1
B

(
1 +

1
4n

; 1 +
1
2n

)

(3.19)

for some m ≥ 1. This implies that for all n ≥ 1 we have

max
{
1 +

1
m
, 1 +

1
4n

}
≤ 1 +

1
2n

(3.20)

which is a contradiction.
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