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We first give some fixed point results for set-valued self-map contractions in complete metric
spaces. Then we derive a fixed point theorem for nonself set-valued contractions which are
metrically inward. Our results generalize many well-known results in the literature.

1. Introduction and Preliminaries

Let (X, d) be a metric space and let CB(X) denote the class of all nonempty bounded closed
subsets of X. Let H be the Hausdorff metric with respect to d, that is,

H(A,B) = max

{
sup
u∈A

d(u, B), sup
v∈B

d(v,A)

}
(1.1)

for every A,B ∈ CB(X), where d(u, B) = inf{d(u, y) : y ∈ B}. In 1969, Nadler [1] extended
the Banach contraction principle [2] to set-valued mappings.

Theorem 1.1 (Nadler [1]). Let (X, d) be a complete metric space and let T : X →CB(X) be a
set-valued map. Assume that there exists r ∈ [0, 1) such that

H
(
Tx, Ty

) ≤ rd
(
x, y

)
(1.2)

for all x, y ∈ X. Then T has a fixed point.

Mizoguchi and Takahashi [3] proved the following generalization of Theorem 1.1.
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Corollary 1.2 (Mizoguchi and Takahashi [3]). Let (X, d) be a complete metric space and let T :
X →CB(X) be a set-valued map satisfying

H
(
Tx, Ty

) ≤ α
(
d
(
x, y

))
d
(
x, y

)
, for each x, y ∈ X, (1.3)

where α : [0,∞) → [0, 1) satisfies lim sups→ t+α(s) < 1 for each t ∈ [0,∞). Then T has a fixed
point.

Also, Reich [4] has proved that if for each x ∈ X, Tx is nonempty and compact, then
the above result holds under the weaker condition lim sups→ t+α(s) < 1 for each t > 0. To set
up our results in the next section, we introduce some definitions and facts.

Definition 1.3. Throughout the paper, let Ψ be the family of all functions ψ : [0,∞) → [0,∞)
satisfying the following conditions:

(a) ψ(s) = 0 ⇔ s = 0;

(b) ψ is lower semicontinuous and nondecreasing;

(c) lim sups→ 0+(s/ψ(s)) < ∞.

Theorem 1.4 (Bae [5]). Let (M,ρ) be a complete metric space, φ : M → [0,∞) a lower
semicontinuous function, and ϕ : [0,∞) → [0,∞) a lower semicontinuous function such that
ϕ(t) > 0 for t > 0 and

lim sup
s→ 0+

s

ϕ(s)
< ∞. (1.4)

Let g : M → M be a map such that for any x ∈ M, ρ(x, gx) ≤ φ(x) and

ϕ
(
ρ
(
x, gx

)) ≤ φ(x) − φ
(
g(x)

)
(1.5)

hold. Then g has a fixed point inM.

Definition 1.5. Let (X, d) be a complete metric space and D be a nonempty closed subset of
X.

(i) Set

MID(x) =
{
z ∈ X : z = x or there exits y ∈ D satisfyingy /=x,

d(x, z) = d
(
x, y

)
+ d

(
y, z

)}
.

(1.6)

Then MID(x) is called the metrically inward set of D at x (see [5]);

(ii) Let T : D → CB(X) be a set-valued map. T is said to be metricaly inward, if for each
x ∈ D,

Tx ⊆ MID(x). (1.7)

In Section 2 we generalize Corollary 1.2 and Theorem 1.4.
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2. Extension of Mizoguchi-Takahashi’s Theorem

In the first result of this section, we use the technique in [6] to extend Corollary 1.2.

Theorem 2.1. Let (X, d) be a complete metric space and let T : X →CB(X) be a set-valued map
satisfying

ψ
(
H
(
Tx, Ty

)) ≤ α
(
ψ
(
d
(
x, y

)))
ψ
(
d
(
x, y

))
, for each x, y ∈ X, (2.1)

where α : [0,∞) → [0, 1) satisfies lim sups→ t+α(s) < 1 for each t ∈ [0,∞) and ψ ∈ Ψ. Then T has
a fixed point.

Proof . Define a function β : [0,∞) → [0, 1) by β(t) = (α(t) + 1)/2. Then α(t) < β(t) and
lim sups→ t+β(s) < 1 for all t ∈ [0,∞). Since ψ is nondecreasing, then from (1.3), for each x /=y,
we have

max

{
sup
u∈Tx

ψ
(
d
(
u, Ty

))
, sup
v∈Ty

ψ(d(v, Tx))

}

= max

{
ψ

(
sup
u∈Tx

d
(
u, Ty

))
, ψ

(
sup
v∈Ty

d(v, Tx)

)}

= ψ
(
H
(
Tx, Ty

))
< β

(
ψ
(
d
(
x, y

)))
ψ
(
d
(
x, y

))
.

(2.2)

Hence for each x ∈ X and y ∈ Tx, there exists an element z ∈ Ty such that ψ(d(y, z)) ≤
β(ψ(d(x, y)))ψ(d(x, y)). Thus we can define a sequence {xn} in X satisfying

xn+1 ∈ Txn, ψ(d(xn+1, xn+2)) ≤ β
(
ψ(d(xn, xn+1))

)
ψ(d(xn, xn+1)), (2.3)

for each n ∈ N. Let us show that {xn} is convergent. Since β(t) < 1 for each t ∈ [0,∞), then
{ψ(d(xn, xn+1))} is a nonincreasing sequence of non-negative numbers and so is convergent to
a real number, say r0. Since lim sups→ r0+

β(s) < 1 and β(r0) < 1, there exist r ∈ [0, 1) and ε > 0
such that β(s) ≤ r for all s ∈ [r0, r0+ε]. We can take n0 ∈ N such that r0 ≤ ψ(d(xn, xn+1)) ≤ r0+ε
for all n ∈ Nwith n ≥ n0. Since

ψ(d(xn+1, xn+2)) ≤ β
(
ψ(d(xn, xn+1))

)
ψ(d(xn, xn+1)) ≤ rψ(d(xn, xn+1)) (2.4)

for all n ≥ n0, then we have r0 ≤ rr0 and so r0 = 0 (note that r < 1). If d(xm, xm+1) = 0
for some m ∈ N, then d(xn, xn+1) = 0 for each n ≥ m (note that {ψ(d(xn, xn+1))} is
nonincreasing). Thus {xn} is eventually constant, so we have a fixed point of T (note that
xn+1 ∈ Txn). Now, we assume that d(xn, xn+1)/= 0 for each n ∈ N. Since {ψ(d(xn, xn+1))} is
decreasing and ψ is nondecreasing, then the nonnegative sequence d(xn, xn+1) converges to
some nonnegative real number τ . Since ψ is nondecreasing and d(xn, xn+1) is nonincreasing,
then ψ(τ) ≤ ψ(d(xn, xn+1)) for each n ∈ N. Thus

ψ(τ) ≤ lim
n→∞

ψ(d(xn, xn+1)) = r0 = 0. (2.5)
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Thus τ = 0 (note that ψ(τ) = 0 implies τ = 0). Also we have (note ψ(d(xn+1, xn+2)) ≤
rψ(d(xn, xn+1)) for n ≥ n0)

∞∑
1

ψ(d(xn, xn+1)) ≤
n0∑
1

ψ(d(xn, xn+1)) +
∞∑
1

rnψ(d(xn0 , xn0+1)) < ∞. (2.6)

Since

lim sup
n→∞

d(xn, xn+1)
ψ(d(xn, xn+1))

≤ lim sup
s→ 0+

s

ψ(s)
< ∞, (2.7)

then
∑∞

1 d(xn, xn+1) < ∞. Hence {xn} is a Cauchy sequence. Since X is complete, {xn}
converges to some point x0 ∈ X. Since ψ is lower semicontinuous and nondecreasing (recall
also from above that limn→∞ψ(d(xn, xn+1)) = 0), then

ψ(d(x0, Tx0)) ≤ lim inf
n→∞

ψ(d(xn+1, Tx0)) ≤ lim inf
n→∞

ψ(H(Txn, Tx0))

≤ lim inf
n→∞

β
(
ψ(d(xn, x0))

)
ψ(d(xn, x0)) ≤ lim inf

n→∞
ψ(d(xn, x0))

= lim
s→ 0+

ψ(s) = lim
n→∞

ψ(d(xn, xn+1)) = 0,

(2.8)

and this with Tx0 closed and (a) of Definition 1.3 implies x0 ∈ Tx0.

Corollary 2.2. Let (X, d) be a complete metric space and let T : X →CB(X) be a set-valued map
satisfying

ψ
(
H
(
Tx, Ty

)) ≤ ψ
(
d
(
x, y

)) − ϕ̃
(
ψ
(
d
(
x, y

)))
, for each x, y ∈ X, (2.9)

where ψ ∈ Ψ and ϕ̃ : [0,∞) → [0,∞) satisfying lim infs→ t+(ϕ̃(s)/ψ(s)) > 0 for each t ∈ [0,∞).
Then T has a fixed point.

Proof. Let α(s) = 1 − ϕ̃(s)/ψ(s) and apply Theorem 2.1.

In the following, we present a fixed point theorem for nonself set-valued contraction
type maps which are metrically inward.

Theorem 2.3. Let D be a nonempty closed subset of a complete metric space (X, d) and T : D →
CB(X) be a set-valued map satisfying

ψ
(
H
(
Tx, Ty

)) ≤ ψ
(
d
(
x, y

)) − ϕ̃
(
ψ
(
d
(
x, y

)))
, for each x, y ∈ X, (2.10)

for which ψ ∈ Ψ is continuous and

ψ(r − s) + ψ(s + t) ≤ ψ(r) + ψ(t), for each 0 ≤ s ≤ r ≤ s + t. (2.11)
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Assume that ϕ̃ : [0,∞) → [0,∞) is a lower semicontinuous function satisfying lim infs→ 0+(ϕ̃(s)/
ψ(s)) > 0 and ϕ̃(s) > 0 for s > 0. Suppose that T is metrically inward onD. Then T has a fixed point
in D.

Proof . We first show that lim sups→ 0+(s/ϕ̃(s)) < ∞. On the contrary, we assume that there
exists a sequence sn → 0+ for which

lim sup
n→∞

sn
ϕ̃(sn)

= lim sup
n→∞

sn/ψ(sn)
ϕ̃(sn)/ψ(sn)

= ∞. (2.12)

Since lim infn→∞(ϕ̃(sn)/ψ(sn)) > 0, then we get lim supn→∞(sn/ψ(sn)) = ∞, which con-
tradicts our assumption on ψ. Let M = {(x, y) : x ∈ X, y ∈ Tx} be the graph of T . Let
ρ : M ×M → [0,∞) be given by

ρ((x, z), (u, v)) = max
{
ψ(d(x, u)), ψ(d(z, v))

}
. (2.13)

We show that (M,ρ) is a complete metric space. First note that since ψ(s) = 0 ⇔ s = 0 then
ρ((x, z), (u, v)) = 0 ⇔ (x, z) = (u, v). Clearly, ρ((x, z), (u, v)) = ρ((u, v), (x, z)). Now we show
the triangle inequality. From (2.11), we have ψ(r + t) ≤ ψ(r) + ψ(t), ∀r, t ≥ 0. Hence,

ρ((x, z), (r, s)) + ρ((r, s), (u, v))

= max
{
ψ(d(x, r)), ψ(d(z, s))

}
+max

{
ψ(d(r, u)), ψ(d(s, v))

}
≥ max

{
ψ(d(x, r)) + ψ(d(r, u)), ψ(d(z, s)) + ψ(d(s, v))

}
≥ max

{
ψ(d(x, r) + d(r, u)), ψ(d(z, s) + d(s, v))

}
≥ max

{
ψ(d(x, u)), ψ(d(z, v))

}
= ρ((x, z), (u, v)).

(2.14)

To prove the completeness of ρ, we first need to show that T is Hausdorff continuous. To
prove this, let (xn) be a sequence in D such that xn → x ∈ D. Since ψ is continuous at 0,
then limn→∞ψ(d(xn, x)) = ψ(0) = 0. Hence from (2.10), we get limn→∞ψ(H(Txn, Tx)) = 0.
We claim that limn→∞H(Txn, Tx) = 0 (and then we are finished). On the contrary, assume
that there exist ε > 0 and a subsequence xnk such that H(Txnk , Tx) ≥ ε, k=1,2,3,. . . . Since
ψ is nondecreasing, then ψ(H(Txnk , Tx)) ≥ ψ(ε) > 0, a contradiction. Now, let (xn, zn) be
a Cauchy sequence in M with respect to ρ. Then {xn} and {zn} are Cauchy sequences in
the complete metric space (X, d). Then there exist x, z ∈ X such that d(xn, x) → 0 and
d(zn, z) → 0. Since zn ∈ Txn and T is Hausdorff continuous, then z ∈ Tx. Thus (x, z) ∈ M
and ρ((xn, zn), (x, z)) → 0. Therefore, (M,ρ) is a complete metric space. Suppose that T has
no fixed point. Then for each (x, z) ∈ M, we have x /= z. Since z ∈ Tx ⊆ MID(x), we can
choose u ∈ D such that u/=x and

d(x, z) = d(x, u) + d(u, z). (2.15)
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Since T satisfies (2.10) and ψ is continuous, then we can choose v ∈ Tu such that

ψ(d(z, v)) ≤ ψ(d(x, u)) − 1
2
ϕ̃
(
ψ(d(x, u))

)
. (2.16)

Let ϕ(t) = ϕ̃(t)/2. Then by combining (2.15) and (2.16), we get

ϕ
(
ψ(d(x, u))

) ≤ ψ(d(x, u)) − ψ(d(z, v))

= ψ(d(x, z) − d(u, z)) − ψ(d(z, v)).
(2.17)

From (2.11), we have (note that ψ is nondecreasing)

ψ(d(x, z) − d(u, z)) − ψ(d(z, v)) ≤ ψ(d(x, z)) − ψ(d(z, v) + d(u, z))

≤ ψ(d(x, z)) − ψ(d(u, v)).
(2.18)

Thus (2.17) and (2.18) yield

ϕ
(
ψ(d(x, u))

) ≤ ψ(d(x, z)) − ψ(d(u, v)). (2.19)

Since ρ((x, z), (u, v)) = max{ψ(d(x, u)), ψ(d(z, v))} = ψ(d(x, u)) ≤ ψ(d(x, z)) ≡ φ(x, z), by
defining g : M → M by g(x, z) = (u, v), from Theorem 1.4, g must have a fixed point, say
(x0, z0). Then (x0, z0) = g(x0, z0) = (u0, v0). Hence x0 = u0. This is a contradiction. Therefore,
T has a fixed point.

Remark 2.4. Note that Theorem 2.3 does not follow from Theorem 3.3 of Bae [5] by replacing
the metric d by ψ(d). In Theorem 2.3, we assume T is metrically inward with respect to d but
to apply Theorem 3.3 of [5] with ψ(d) rather than d, we need T to be metrically inward with

respect to ψ(d).

Letting ψ(s) = s for each s ∈ [0,∞), we get the following corollary due to Bae [5].

Corollary 2.5. Let D be a nonempty closed subset of a complete metric space (X, d) and T : D →
CB(X) be a set-valued map satisfying

H
(
Tx, Ty

) ≤ d
(
x, y

) − ϕ̃
(
d
(
x, y

))
, for each x, y ∈ X, (2.20)

for which ϕ̃ : [0,∞) → [0,∞) is a lower semicontinuous function satisfying lim infs→ 0+(ϕ̃(s)/s) >
0. Suppose that T is metrically inward on D. Then T has a fixed point in D.

Examples 2.6. Let ψ : [0,∞) → [0,∞) be a differentiable function with ψ(0) =
0 such that ψ ′ is positive and decreasing in (0,∞) and lims→ 0+ψ

′(s) = ∞. Now we show
that (ψ) satisfies all the conditions of Theorem 2.3. Obviously, ψ is continuous and
increasing. Since lims→ 0+(1/ψ ′(s)) = 0, then by L’Hopital’s rule lims→ 0+(s/ψ(s)) = 0.
Thus lim sups→ 0+(s/ψ(s)) < ∞. Nowwe prove that for each 0 ≤ t ≤ r, ψ(r + t) ≤ ψ(r) +ψ(t).
To show this let h(t) = ψ(r) + ψ(t) − ψ(r + t) for 0 ≤ t ≤ r. Then h′(t) = ψ ′(t) − ψ ′(r + t) > 0.
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Since h(0) = 0 and h is increasing, we get h(t) ≥ 0 for each 0 ≤ t ≤ r and we are done. Finally,
we show that for each 0 ≤ s ≤ r ≤ s + t, we have ψ(r − s) + ψ(s + t) ≤ ψ(r) + ψ(t). Let k(s) =
ψ(r)+ψ(t)−ψ(r−s)+ψ(s+t) for 0 ≤ s ≤ r. Then k′(s) = ψ ′(r−s)−ψ ′(s+t). If r ≤ t, then k′(s) >
0. Since k(0) = 0, we obtain k(s) ≥ 0 for each 0 ≤ s ≤ r and we are finished. In the
case, r > t, k′(s) = 0 if and only if s = (r−t)/2. Since k′(s) > 0 for 0 < s < (r−t)/2 and k′(s) <
0 for (r − t)/2 < s ≤ t, then inf0≤s≤rk(s) = min(k(0), k(r)) = min(0, ψ(r) + ψ(t) − ψ(r + t)) =
0, and we are finished (note that we proved above that ψ(r) + ψ(t) − ψ(r + t) ≥ 0).
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