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Some new Krasnosel’skii-type fixed-set theorems are proved for the sum S + T, where S is a
multimap and T is a self-map. The common domain of S and T is not convex. A positive answer
to Ok’s question (2009) is provided. Applications to the theory of self-similarity are also given.

1. Introduction

The Krasnosel’skii fixed-point theorem [1] is a well-known principle that generalizes the
Schauder fixed-point theorem and the Banach contraction principle as follows.

Krasnosel’skii Fixed-Point Theorem

LetM be a nonempty closed convex subset of a Banach space E, S : M → E, and T : M → E.
Suppose that

(a) S is compact and continuous;

(b) T is a k-contraction;

(c) Sx + Ty ∈ M for every x, y ∈ M.

Then there exists x∗ ∈ M such that Sx∗ + Tx∗ = x∗.
This theorem has been extensively used in differential and functional differential

equations and was motivated by the observation that the inversion of a perturbed differential
operator may yield the sum of a continuous compact map and a contraction map. Note
that the conclusion of the theorem does not need to hold if the convexity of M is relaxed
even if T is the zero operator. Ok [2] noticed that the Krasnosel’skii fixed-point theorem can
be reformulated by relaxing or removing the convexity hypothesis of M and by allowing
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the fixed-point to be a fixed-set. For variants or extensions of Krasnosel’skii-type fixed-point
results, see [3–9], and for other interesting results see [10–13].

In this paper, we prove several new Krasnosel’skii-type fixed-set theorems for the
sum S + T , where S is a multimap and T is a self-map. The common domain of S and T
is not convex. Our results extend, generalize, or improve several fixed-point and fixed-set
results including that given by Ok [2]. A positive answer to Ok’s question [2] is provided.
Applications to the theory of self-similarity are also given.

2. Preliminaries

Let M be a nonempty subset of a metric space X := (X, d), E := (E, ‖ · ‖) a normed space,
∂M the boundary of M, intM the interior of M, clM the closure of M, 2X \ {∅} the set all
nonempty subsets ofX, B(X) the set of nonempty bounded subsets ofX, CD(X) the family of
nonempty closed subsets of X,K(X) the family of nonempty compact subsets of X, R the set
of real numbers, and R+ := [0,∞). A map αK : B(M) → R+ is called the Kuratoswki measure
of noncompactness on M if

αK(A) := inf

{
ε > 0 : A ⊆

n⋃
i=1

Ai and diamAi ≤ ε

}
, (2.1)

for every A ∈ B(M), where diamAi denotes the diameter of Ai. Let T : M → X and S :
M → 2X \ {∅}. We write S(M) := ∪{S(x) : x ∈ M}. We say that (a) x ∈ M is a fixed point
of T if x = Tx, and the set of fixed points of T will be denoted by F(T); (b) T is nonexpansive
if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ M; (c) T is k-contraction if d(Tx, Ty) ≤ kd(x, y) for
all x, y ∈ M and some k ∈ (0, 1); (d) T is αK-condensing if it is continuous and, for every
A ∈ B(M) with αK(A) > 0, T(A) ∈ B(X) and αK(T(A)) < αK(A); (e) T is 1-set-contractive if it
is continuous and, for everyA ∈ B(M), T(A) ∈ B(X), and αK(T(A)) ≤ αK(A); (f) S is compact
if clS(M) is a compact subset of X.

Definition 2.1. Let T : M → X, and let ϕ : R+ → R+ be either “a nondecreasing map
satisfying limn→∞ϕn(t) = 0 for every t > 0” or “an upper semicontinuous map satisfying
ϕ(t) < t for every t > 0.” One says that T is a ϕ-contraction if d(Tx, Ty) ≤ ϕ(d(x, y)) for all
x, y ∈ M.

Remark 2.2. A mapping T : M → X is said to be a ϕ-contraction in the sense of Garcia-Falset
[6] if there exists a function ϕ : R+ → R+ satisfying either “ϕ is continuous and ϕ(t) < t for
t > 0” or “there exists ψ : R+ → R+ with ψ(0) = 0 and nondecreasing such that 0 < ψ(r) ≤
r−ϕ(r)” for which the inequality d(Tx, Ty) ≤ ϕ(d(x, y)) holds for all x, y ∈ M.Our definition
for ϕ-contraction is different in some sense from that of Garcia-Falset.

Lemma 2.3 (see [2]). LetM be a nonempty closed subset of a normed space E. If T : M → 2M \{∅}
is compact and continuous, then there exists a minimal A ∈ K(M) such that A = cl(T(A)).

Theorem 2.4 (see [14]). Let M be a nonempty bounded closed convex subset of a Banach space E.
Suppose that T : M → M is an αK-condensing map. Then T has a fixed point inM.

Theorem 2.5 (see [15–17]). Let X be a complete metric space. If T : X → X is a ϕ-contraction,
then T has a unique fixed point in X.
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Theorem 2.6 (see [14]). Let M be a closed subset of a Banach space E such that intM is bounded,
open, and containing the origin. Suppose that T : M → E is an αK-condensing map satisfying
Tx /=μx for all x ∈ ∂M and μ > 1. Then T has a fixed point inM.

Theorem 2.7 (see [14]). Let M be a closed subset of a Banach space E such that intM is bounded,
open, and containing the origin. Suppose that T : M → E is a 1-set-contractive map satisfying
Tx /=μx for all x ∈ ∂M and μ > 1. If (I − T)(M) is closed, then T has a fixed point inM.

3. Fixed-Set Results

We now reformulate the Krasnosel’skii fixed-point theorem by allowing the fixed-point to be
a fixed-set and removing the convexity hypothesis of M. Under suitable conditions, we look
for a nonempty compact subset A of M such that

S(A) + T(A) = A (3.1)

or

(I − T)(A) = S(A). (3.2)

Theorem 3.1. Let M be a nonempty closed subset of a Banach space E, S : M → CD(E), and
T : M → E. Suppose that

(a) S is compact and continuous;

(b) T is αK-condensing and T(M) is a bounded subset of E;

(c) S(M) + T(M) ⊆ M.

Then there exists A ∈ K(M) such that S(A) + T(A) = A.

Proof. Fix y ∈ S(M) + T(M). Let A denote the set of closed subsets C of M for which y ∈ C
and S(C) + T(C) ⊆ C. Note that A is nonempty since M ∈ A. Take C0 := ∩C∈AC. As C0 is
closed, y ∈ C0, and S(C0) + T(C0) ⊆ C0, we have C0 ∈ A. Let L =: cl((S(C0) + T(C0)) ∪ {y}).
Notice that cl((S(M) + T(M)) is a bounded subset ofM containing L. So L is a closed subset
of C0, y ∈ L, and

S(L) + T(L) ⊆ S(C0) + T(C0) ⊆ L. (3.3)

This shows that L = C0 ∈ A andK(L) ⊆ K(M). Since L is a bounded subset ofM and clS(L)
is compact, we have

αK(L) = αK

(
cl
(
(S(L) + T(L)) ∪ {

y
}))

= αK(S(L) + T(L))

≤ αK(S(L)) + αK(T(L))

= αK(clS(L)) + αK(T(L)) = 0 + αK(T(L)).

(3.4)
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As T is αK-condensing, it follows that αK(L) = 0. Thus L is a compact subset of M. As the
Vietoris topology and the Hausdorffmetric topology coincide onK(L) [18, page 17 and page
41], K(L) is compact and hence closed. Define F : K(L) → 2M by F(A) := S(A) + T(A). It
follows that

F(A) = S(A) + T(A) ⊆ S(L) + T(L) ⊆ L (3.5)

for every A ∈ K(L). Since T is continuous and S is compact-valued and continuous, both
S(A) and T(A) are compact subsets of E and hence F : K(L) → K(L). Moreover, the maps
A → S(A) and A → T(A) are continuous, so F is continuous. By Lemma 2.3, there exists
C ∈ K(K(L)) such that C = cl(F(C)) = F(C) since F(C) is compact and hence closed. Let
A := ∪C∈CC. As C = F(C), we have

A =
⋃
C∈C

F(C) = F

(⋃
C∈C

C

)
= F(A) = S(A) + T(A). (3.6)

However A is a compact subset of L [18, page 16], so A ∈ K(M).

Corollary 3.2 (see [2, Theorem 2.4]). Let M be a nonempty closed subset of a Banach space E,
S : M → CD(E), and T : M → E. Suppose that

(a) S is compact and continuous;

(b) T is compact and continuous;

(c) S(M) + T(M) ⊆ M.

Then there exists A ∈ K(M) such that S(A) + T(A) = A.

In the following corollary, we assume that lim inft→∞(t−ϕ(t)) > 0 whenever ϕ is upper
semicontinuous.

Corollary 3.3. Let M be a nonempty closed subset of a Banach space E, S : M → CD(E), and
T : M → E. Suppose that

(a) S is compact and continuous;

(b) T is a ϕ-contraction and T(M) is bounded;

(c) S(M) + T(M) ⊆ M.

Then there exists A ∈ K(M) such that S(A) + T(A) = A.

Remark 3.4. The following statements are equivalent [19]:

(i) T is a ϕ-contraction, where ϕ is nondecreasing, right continuous such that ϕ(t) < t
for all t > 0 and limt→∞(t − ϕ(t)) > 0;

(ii) T is a ϕ-contraction, where ϕ is upper semicontinuous such that ϕ(t) < t for all t > 0
and lim inft→∞(t − ϕ(t)) > 0.

Note that Corollary 3.3 provides a positive answer to the following question of Ok
[2]. We do not know at present if the fixed-set can be taken to be a compact set in the statement of
[2, Corollary 3.3].
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Theorem 3.5. Let M be a nonempty closed subset of a normed space E, S : M → CD(E), and
T : M → E. Suppose that

(a) S is compact and continuous;

(b) clS(M) ⊆ (I − T)(M);

(c) (I − T)−1 is a continuous single-valued map on S(M).

Then

(i) there exists a minimal L ∈ K(M) such that (I − T)(L) = S(L) and L ⊆ S(L) + T(L);

(ii) there exists a maximal A ∈ 2M such that S(A) + T(A) = A.

Proof. Let y ∈ M. Then, by (b), there exists A ⊆ M such that Sy ⊆ (I − T)A, and, as (I − T)−1

is a single-valued map on S(M),

(
(I − T)−1 ◦ S

)
y = (I − T)−1

(
Sy

) ⊆ A ⊆ M. (3.7)

So (I−T)−1◦S : M → 2M\{∅}.Note that S is compact-valued and clS(M) is a compact subset
of (I − T)(M). The continuity of (I − T)−1 ◦ S follows from that of S and (I − T)−1. Moreover,
(I−T)−1(clS(M)) is a compact subset ofM, and hence cl((I−T)−1◦S(M)) is a compact subset
of M. By Lemma 2.3, there exists a minimal L ∈ K(M) such that L = cl((I − T)−1 ◦ S(L)).
But, since (I − T)−1 is continuous and S is compact-valued, (I − T)−1 ◦ S is compact-valued
and maps compact sets to compact sets. Then (I − T)−1 ◦ S(L), is a compact subset of M, so
L = (I − T)−1 ◦ S(L). Thus (I − T)(L) = S(L), and hence L ⊆ S(L) + T(L).

Let

C :=
{
C ∈ 2M : C ⊆ S(C) + T(C)

}
(3.8)

and A := ∪C∈CC. Clearly A is nonempty since L ∈ C. Then A ⊆ S(A) + T(A). Take y ∈
S(A) + T(A). It follows that

A ∪ {
y
} ⊆ S(A) + T(A) ⊆ S

(
A ∪ {

y
})

+ T
(
A ∪ {

y
})

, (3.9)

and hence A ∪ {y} ∈ C and y ∈ A. Thus S(A) + T(A) = A.

Theorem 3.6. Let M be a nonempty closed subset of a normed space E, S : M → CD(E), and
T : M → E. Suppose that

(a) S is compact and continuous;

(b) T is a ϕ-contraction;

(c) if (I − T)xn → y, then (xn) has a convergent subsequence;

(d) S(M) + T(M) ⊆ M.
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Then

(i) there exists a minimal L ∈ K(M) such that (I − T)(L) = S(L) and L ⊆ S(L) + T(L);

(ii) there exists a maximal A ∈ 2M such that S(A) + T(A) = A.

Proof. Let z ∈ clS(M). By (b), (d), and the closeness of M, the map x → z + Tx is a ϕ-
contraction from M into M. So, by Theorem 2.5, there exists a unique x0 ∈ M such that x0 =
z+Tx0. Then z = x0−Tx0 ∈ (I−T)(M), and so clS(M) ⊆ (I−T)(M). Since the map → z+Tx
has a unique fixed-point, its fixed-point set (I−T)−1z is singleton. So (I−T)−1 : clS(M) → M
is a single-valued map. To show that (I −T)−1 is continuous, let (yn) be a sequence in clS(M)
such that yn → y ∈ (I − T)(M). Define xn := (I − T)−1yn and x := (I − T)−1y. Then (I − T)xn =
yn, and (I − T)x = y. We claim that (xn) is convergent. First, notice that (xn) is bounded;
otherwise, (xn) has a subsequence (xnk) such that ‖xnk‖ → ∞. As (I − T)xnk → (I − T)x, (c)
implies that (xnk) has a convergent subsequence, a contradiction. Next, as I − T is continuous
and one-to-one, it follows from (c) that the sequence (xn) converges to x. Therefore, (I − T)−1

is continuous. Now the result follows from Theorem 3.5.

In the following result, we assume that lim inft→∞(t − ϕ(t)) > 0 whenever ϕ is upper
semicontinuous.

Theorem 3.7. Let M be a nonempty compact subset of a Banach space E, S : M → CD(E), and
T : M → E. Suppose that

(a) S is continuous;

(b) T is a ϕ-contraction;

(c) S(M) + T(M) ⊆ M.

Then

(i) there exists a minimal L ∈ K(M) such that (I − T)(L) = S(L) and L ⊆ S(L) + T(L);

(ii) there exists a maximal A ∈ 2M such that S(A) + T(A) = A.

(iii) there exists B ∈ K(M) such that S(B) + T(B) = B.

Proof. Parts (i) and (ii) follow from Theorem 3.6. Part (iii) follows from Theorem 3.1.

Theorem 3.8. Let M be a closed subset of a Banach space E such that intM is bounded, open, and
containing the origin, S : M → CD(E), and T : M → E. Suppose that

(a) S is compact and continuous;

(b) T is an αK-condensing map satisfying clS(M) ∩ (μI − T)(∂M) = ∅ for all μ > 1;

(c) (I − T)−1 is a continuous single-valued map on S(M);

(d) S(M) + T(M) ⊆ M.

Then

(i) there exists a minimal L ∈ K(M) such that (I − T)(L) = S(L) and L ⊆ S(L) + T(L);

(ii) there exists a maximal A ∈ 2M such that S(A) + T(A) = A.

(iii) there exists B ∈ K(M) such that S(B) + T(B) = B.
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Proof. Let z ∈ clS(M). As T is αK-condensing, part (d) and the closeness ofM imply that the
map x → z+Tx is an αK-condensing self-map ofM.Moreover, this map satisfies z+Tx /=μx
for all x ∈ ∂M and μ > 1; otherwise, there are x0 ∈ ∂M and μ0 > 1 such that z + Tx0 = μ0x0.
This implies that

z = μ0x0 − Tx0 =
(
μ0I − T

)
x0 ∈

(
μ0I − T

)
(∂M) (3.10)

which contradicts the second part of (b). It follows from Theorem 2.6 that there exists v ∈ M
such that z + Tv = v. Then z = v − Tv ∈ (I − T)(M), and so clS(M) ⊆ (I − T)(M).Now parts
(i) and (ii) follow from Theorem 3.5. Part (iii) follows from Theorem 3.1.

Theorem 3.9. Let M be a closed subset of a Banach space E such that intM is bounded, open, and
containing the origin, S : M → CD(E), and T : M → E. Suppose that

(a) S is compact and continuous;

(b) T is a 1-set-contractive map satisfying clS(M) ∩ (μI − T)(∂M) = ∅ for all μ > 1;

(c) (I − T)(M) is closed, and (I − T)−1 is a continuous single-valued map on S(M);

(d) S(M) + T(M) ⊆ M.

Then

(i) there exists a minimal L ∈ K(M) such that (I − T)(L) = S(L) and L ⊆ S(L) + T(L);

(ii) there exists A ∈ 2M such that S(A) + T(A) = A.

Proof. Let z ∈ clS(M).As T is 1-set-contractive, part (d) and the closeness ofM imply that the
map x → z+Tx is a 1-set-contractive self-map ofM. Moreover, this map satisfies z+Tx /=μx
for all x ∈ ∂M and μ > 1; otherwise, there are x0 ∈ ∂M and μ0 > 1 such that z + Tx0 = μ0x0.
This implies that

z = μ0x0 − Tx0 =
(
μ0I − T

)
x0 ∈

(
μ0I − T

)
(∂M) (3.11)

which contradicts the second part of (b). It follows from Theorem 2.7 that there exists v ∈ M
such that z + Tv = v. Then z = v − Tv ∈ (I − T)(M), and so clS(M) ⊆ (I − T)(M). Now the
result follows from Theorem 3.5.

Definition 3.10 (self-similar sets). Let M be a nonempty closed subset of a Banach space
E. If F1, . . . , Fn are finitely many self-maps of M, then the list (M, {F1, . . . , Fn}) is called
aniterated function system (IFS). This IFS is continuous (resp., contraction, αK-condensing,
etc.) if each Fi is so. A nonempty subset A of M is said to be self-similar with respect to the
IFS (M, {F1, . . . , Fn}) if

F1(A) ∪ · · · ∪ Fn(A) = A. (3.12)

Remark 3.11. It is well known that there exists a unique compact self-similar set with respect
to any contractive IFS; see [20].
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Example 3.12. Consider an IFS (M, {F1, . . . , Fn, Fn+1}) such that

(a) F1 ∪ · · · ∪ Fn is a compact and continuous multimap;

(b) Fi(M) + Fn+1(M) ⊆ M for each i = 1, 2, . . . , n.

Then the existence of a compact self-similar set with respect to the IFS (M, {F1, . . . , Fn})
is ensured by letting Fn+1 to be zero in each of the following situations.

(i) Suppose that Fn+1 is an αK-condensing map such that Fn+1(M) is bounded. Then
Theorem 3.1 ensures the existence of a compact subset A of M such that

(F1(A) ∪ · · · ∪ Fn(A)) + Fn+1(A) = A. (3.13)

(ii) Suppose that Fn+1 is a ϕ-contraction satisfying condition (c) of Theorem 3.6. Then
there exists a minimal compact subset L of M such that

(I − Fn+1)(L) = F1(L) ∪ · · · ∪ Fn(L). (3.14)

(iii) Suppose that M is a closed subset of a Banach space E such that intM is
bounded, open, and containing the origin, Fn+1 is an αK-condensing map satisfying
cl(F1(M) ∪ · · · ∪ Fn(M)) ∩ (μI − Fn+1)(∂M) = ∅ for all μ > 1, and (I − Fn+1)

−1 is a
continuous single-valued map on (F1 ∪ · · · ∪Fn)(M). Then Theorem 3.8 ensures the
existence of a minimal compact subset L of M such that

(I − Fn+1)(L) = F1(L) ∪ · · · ∪ Fn(L). (3.15)

(iv) Suppose that M is a closed subset of a Banach space E such that intM is
bounded, open, and containing the origin, Fn+1 is a 1-set-contractive map satisfying
cl(F1(M) ∪ · · · ∪ Fn(M)) ∩ (μI − Fn+1)(∂M) = ∅ for all μ > 1, (I − Fn+1)(M) is closed,
and (I − Fn+1)

−1 is a continuous single-valued map on (F1 ∪ · · · ∪ Fn)(M). Then
Theorem 3.9 ensures the existence of a minimal compact subset L of M such that

(I − Fn+1)(L) = F1(L) ∪ · · · ∪ Fn(L). (3.16)
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[7] A. Petruşel, Operatorial Inclusions, House of the Book of Science, Cluj-Napoca, Romania, 2002.
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