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We prove two general fixed theorems for maps in G-metric spaces and then show that these maps
satisfy property P .

1. Introduction

Metric fixed point theory is an important mathematical discipline because of its applications
in areas such as variational and linear inequalities, optimization, and approximation theory.
Generalizations of metric spaces were proposed by Gahler [1, 2] (called 2-metric spaces)
and Dhage [3, 4] (called D-metric spaces). Hsiao [5] showed that, for every contractive
definition, with xn := Tnx0, every orbit is linearly dependent, thus rendering fixed
point theorems in such spaces trivial. Unfortunately, it was shown that certain theorems
involving Dhage’s D-metric spaces are flawed, and most of the results claimed by Dhage
and others are invalid. These errors were pointed out by Mustafa and Sims in [6],
among others. They also introduced a valid generalized metric space structure, which
they call G-metric spaces. Some other papers dealing with G-metric spaces are those in
[7–11].

Let T be a self-map of a complete metric space (X, d) with a nonempty fixed point set
F(T). Then T is said to satisfy property P if F(T) = F(Tn) for each n ∈ N. An interesting
fact about maps satisfying property P is that they have no nontrivial periodic points. Papers
dealing with property P are those in [12–14].

In this paper, we will prove two general fixed point theorems for maps in G-metric
spaces and then show that these maps satisfy property P . Throughout this paper, we mean
byN the set of all natural numbers.
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Definition 1.1 (see [8]). Let X be a nonempty set, and let G : X × X × X → R+ be a function
satisfying the following axioms:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y) for all x, y ∈ X with x /=y,

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X, with z/=y,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables),

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a generalized metric, or, more specifically, a G-metric on X, and
the pair (X,G) is called a G-metric space.

Definition 1.2 (see [8]). Let (X,G) and (X′, G′) be G-metric spaces and let f : (X,G) →
(X′, G′) be a function, then f is said to be G-continuous at a point a ∈ X; if given ε > 0,
there exists δ > 0 such that x, y ∈ X; G(a, x, y) < δ implies that G′(f(a), f(x), f(y)) < ε. A
function f is G-continuous on X if and only if it is G-continuous at all a ∈ X.

Proposition 1.3 (see [8]). Let (X,G), (X′, G′) be G-metric spaces, then a function f : X → X′ is
G-continuous at a point x ∈ X if and only if it is G-sequentially continuous at x; that is, whenever
{xn} is G-convergent to x, {f(xn)} is G-convergent to f(x).

Definition 1.4 (see [8]). Let (X,G) be a G-metric space, and let {xn} be a sequence of points
of X; therefore, we say that {xn} is G-convergent to x if limn,m→∞G(x, xn, xm) = 0; that is, for
any ε > 0, there exists N ∈ N such that G(x, xn, xm) < ε, for all n,m ≥ N. We call x the limit
of the sequence and write xn → x or limxn = x.

Proposition 1.5 (see [8]). Let (X,G) be a G-metric space. Then the following are equivalent:

(1) {xn} is G-convergent to x,

(2) G(xn, xn, x) → 0, as n → ∞,

(3) G(xn, x, x) → 0, as n → ∞,

(4) G(xm, xn, x) → 0, as m,n → ∞.

Definition 1.6 (see [8]). Let (X,G) be a G-metric space. A sequence {xn} is called G-Cauchy
if, for each ε > 0, there is N ∈ N such that G(xn, xm, xl) < ε, for all n, m, l ≥ N; that is,
G(xn, xm, xl) → 0 as n,m, l → ∞.

Proposition 1.7 (see [8]). In a G-metric space (X,G) the following are equivalent

(1) The sequence {xn} is G-Cauchy.

(2) For every ε > 0, there existsN ∈ N such that G(xn, xm, xm) < ε, for all

n,m ≥ N.

Proposition 1.8 (see [8]). Let (X,G) be a G-metric space. Then the function G(x, y, z) is jointly
continuous in all three of its variables.

Definition 1.9 (see [8]). A G-metric space (X,G) is called a symmetric G-metric space if

G
(
x, y, y

)
= G

(
y, x, x

) ∀x, y ∈ X. (1.1)
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Proposition 1.10 (see [8]). Every G-metric space (X,G) defines a metric space (X, dG) by

dG

(
x, y

)
= G

(
x, y, y

)
+G

(
y, x, x

) ∀x, y ∈ X. (1.2)

Note that, if (X,G) is a symmetric G-metric space, then

dG

(
x, y

)
= 2G

(
x, y, y

)
, ∀x, y ∈ X. (1.3)

However, if (X,G) is not symmetric, then it holds by the G-metric properties that

3
2
G
(
x, y, y

) ≤ dG

(
x, y

) ≤ 3G
(
x, y, y

)
, ∀x, y ∈ X. (1.4)

In general, these inequalities cannot be improved.

Proposition 1.11 (see [8]). A G-metric space (X,G) is G-complete if and only if (X, dG) is a
complete metric space.

Proposition 1.12 (see [8]). Let (X,G) be a G-metric space. Then, for any x, y, z, a ∈ X, it follows
that

(1) if G(x, y, z) = 0, then x = y = z,

(2) G(x, y, z) ≤ G(x, x, y) +G(x, x, z),

(3) G(x, y, y) ≤ 2G(y, x, x),

(4) G(x, y, z) ≤ G(x, a, z) +G(a, y, z),

(5) G(x, y, z) ≤ (2/3){G(x, a, a) +G(y, a, a) +G(z, a, a)}.

Theorem 1.13 (see [15]). Let T be a self-map of a metric spaceX such thatX is T -orbitally complete.
Suppose that T satisfies

d
(
Tx, Ty

) ≤ kmax
{
d
(
x, y

)
, d(x, Tx), d

(
y, Ty

)
, d

(
x, Ty

)
, d

(
y, Tx

)}
, (1.5)

where k is a real number satisfying 0 ≤ k < 1. Then T has a unique fixed point u ∈ X. Moreover, for
each x ∈ X, lim Tnx = u and

d(Tnx, u) ≤ qn

1 − q
d(x, Tx). (1.6)
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2. Fixed Point Theorems

Theorem 2.1. Let (X,G) be a complete G-metric space, and let T be a self-mapof X satisfying, for all
x, y, z ∈ X,

G
(
Tx, Ty, Tz

) ≤ kmax

{

G
(
x, y, z

)
, G(x, Tx, Tx), G

(
y, Ty, Ty

)
, G(z, Tz, Tz),

[
G
(
x, Ty, Ty

)
+G(z, Tx, Tx)

]

2
,

[
G
(
x, Ty, Ty

)
+G

(
y, Tx, Tx

)]

2
,

[
G
(
y, Tz, Tz

)
+G

(
z, Ty, Ty

)]

2
,
[G(x, Tz, Tz) +G(z, Tx, Tx)]

2

}

,

(2.1)

where k is a constant satisfying 0 ≤ k < 1. Then T has a unique fixed point (say p) and T is G-
continuous at p.

Proof. Let x0 ∈ X and define the sequence {xn} by xn = Tnx0. We may assume that xn /=xn+1

for each n ∈ N ∪ {0}. For, if there exists anN such that xN = xN+1, then xN is a fixed point of
T .

From (2.1), with x = xn−1, y = z = xn,

G(xn, xn+1, xn+1) ≤ kmax
{
G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn, xn+1, xn+1),

G(xn, xn+1, xn+1),
[G(xn−1, xn+1, xn+1) + 0]

2
,
[G(xn−1, xn+1, xn+1) + 0]

2
,

G(xn, xn+1, xn+1),
[G(xn−1, xn+1, xn+1) + 0]

2

}
,

(2.2)

G(xn, xn+1, xn+1) ≤ kMn, say.
Suppose that, for some n ∈ N,Mn = G(xn, xn+1, xn+1). Then we have

G(xn, xn+1, xn+1) ≤ kG(xn, xn+1, xn+1), (2.3)

which is a contradiction, since xn’s are distinct.
Suppose that there is an n ∈ N for which Mn = G(xn−1, xn+1, xn+1)/2. Using property

(G5),

G(xn−1, xn+1, xn+1) ≤ G(xn−1, xn, xn) +G(xn, xn+1, xn+1), (2.4)

and one obtains

G(xn, xn+1, xn+1) ≤ k

2
{G(xn−1, xn, xn) +G(xn, xn+1, xn+1)}, (2.5)
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which leads to

G(xn, xn+1, xn+1) ≤ k

2 − k
G(xn−1, xn, xn) < kG(xn−1, xn, xn), since k < 1. (2.6)

Thus, we get

G(xn, xn+1, xn+1) ≤ kG(xn−1, xn, xn) ≤ · · · ≤ knG(x0, x1, x1). (2.7)

For every m,n ∈ N,m > n, using (G5),

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) + · · · +G(xm−1, xm, xm)

≤
(
kn + · · · + km−1

)
G(x0, x1, x1) ≤ kn

1 − k
G(x0, x1, x1).

(2.8)

Therefore {xn} is G-Cauchy, hence G-convergent, since X is G-complete. Call the limit p.
From (2.1) with x = xn, y = z = p,

G
(
xn+1, Tp, Tp

)

≤ kmax
{
G
(
xn, p, p

)
, G(xn, xn+1, xn+1), G

(
p, Tp, Tp

)
, G

(
p, Tp, Tp

)
,

[
G
(
xn, Tp, Tp

)
+G

(
p, xn+1, xn+1

)]

2
,

[
G
(
xn, Tp, Tp

)
+G

(
p, xn+1, xn+1

)]

2
,

G
(
p, Tp, Tp

)
,

[
G
(
xn, Tp, Tp

)
+G

(
p, xn+1, xn+1

)]

2

}

.

(2.9)

Taking the limit of both sides of (2.9) as n → ∞ yields

G
(
p, Tp, Tp

) ≤ kG
(
p, Tp, Tp

)
, (2.10)

which implies that G(p, Tp, Tp) = 0 and hence p = Tp.
Suppose that q is also a fixed point of T . Then, from (2.1) with x = p, y = z = q,

G
(
p, q, q

) ≤ kmax

{

G
(
p, q, q

)
, 0, 0, 0,

[
G
(
p, q, q

)
+G

(
q, p, p

)]

2
,

[
G
(
p, q, q

)
+G

(
q, p, p

)]

2
, 0,

[
G
(
p, q, q

)
+G

(
q, p, p

)]

2

}

,

(2.11)

which implies that

G
(
p, q, q

) ≤ k

2 − k
G
(
q, p, p

)
. (2.12)
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Using (2.1) again, this time with x = q, y = z = p, one obtains

G
(
q, p, p

) ≤ kmax

{

G
(
q, p, p

)
, 0, 0, 0,

[
G
(
q, p, p

)
+G

(
p, q, q

)]

2
,

[
G
(
q, p, p

)
+G

(
p, q, q

)]

2
, 0,

[
G
(
q, p, p

)
+G

(
p, q, q

)]

2

}

,

(2.13)

which implies that

G
(
q, p, p

) ≤ k

2 − k
G
(
p, q, q

)
. (2.14)

Combining (2.12) and (2.14) gives

G
(
p, q, q

) ≤
(

k

2 − k

)2

G
(
p, q, q

)
. (2.15)

Therefore, p = q, since k/(2 − k) < 1.
Let {yn} ⊂ X be any sequence with limit p. Using (2.1) with x = z = yn, y = p,

G
(
Tyn, Tp, Tyn

) ≤ kmax

{

G
(
yn, p, yn

)
, G

(
yn, Tyn, Tyn

)
, 0, G

(
yn, Tyn, Tyn

)
,

[
G
(
yn, p, p

)
+G

(
yn, Tyn, Tyn

)]

2
,

[
G
(
yn, p, p

)
+G

(
p, Tyn, Tyn

)]

2

}

,

(2.16)

That is,

G
(
Tyn, p, Tyn

) ≤ kmax

{

G
(
yn, p, yn

)
, G

(
yn, Tyn, Tyn

)
,

[
G
(
yn, p, p

)
+G

(
yn, Tyn, Tyn

)]

2
,

[
G
(
yn, p, p

)
+G

(
p, Tyn, Tyn

)]

2

}

.

(2.17)

Using the fact that, from (G5),

G
(
yn, Tyn, Tyn

) ≤ G
(
yn, p, p

)
+G

(
p, Tyn, Tyn

)
,

G
(
Tyn, p, Tyn

) ≤ kL, say.
(2.18)
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If, for some n, L is equal to G(yn, p, yn), then we have

G
(
Tyn, p, Tyn

) ≤ kG
(
yn, p, yn

)
. (2.19)

If, for some n, L is equal to G(yn, Tyn, Tyn), then, using (G5),

G
(
Tyn, p, Tyn

) ≤ kG
(
yn, Tyn, Tyn

) ≤ G
(
yn, p, p

)
+G

(
p, Tyn, Tyn

)
, (2.20)

which implies that

G
(
Tyn, p, Tyn

) ≤ k

1 − k
G
(
yn, p, p

)
. (2.21)

If, for some n, L is equal to [G(yn, p, p) +G(yn, Tyn, Tyn)]/2, then, using (G5),

G
(
Tyn, p, Tyn

) ≤ k

2
[
G
(
yn, p, p

)
+G

(
yn, p, p

)
+G

(
p, Tyn, Tyn

)]
, (2.22)

which implies that

G
(
Tyn, p, Tyn

) ≤ 2k
2 − k

G
(
yn, p, p

)
. (2.23)

If, for some n, L is equal to [G(yn, p, p) +G(p, Tyn, Tyn)]/2, then, using (G5),

G
(
Tyn, p, Tyn

) ≤ k

2
[
G
(
yn, p, p

)
+G

(
p, Tyn, Tyn

)]
, (2.24)

which implies that

G
(
Tyn, p, Tyn

) ≤ k

2 − k
G
(
yn, p, p

)
. (2.25)

Therefore, for all n, limG(p, Tyn, Tyn) = 0 and T is G-continuous at p.

Special cases of Theorem 2.1 are Theorem 2.1 of [9] and Theorems 2.1, 2.4, 2.6, and 2.8
of [10].

Theorem 2.2. Let (X,G) be a complete G-metric space, and let T be a self-map of X satisfying, for all
x, y, z ∈ X,

G
(
Tx, Ty, Tz

) ≤ kmax
{
G
(
x, y, z

)
, G(x, Tx, Tx), G

(
y, Ty, Ty

)
,

G
(
x, Ty, Ty

)
, G

(
y, Tx, Tx

)
, G(z, Tz, Tz)

}
,

(2.26)
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or

G
(
Tx, Ty, Tz

) ≤ kmax
{
G
(
x, y, z

)
, G(x, x, Tx), G

(
y, y, Ty

)
,

G
(
x, x, Ty

)
, G

(
y, y, Tx

)
, G(z, z, Tx)

}
,

(2.27)

where k is a constant satisfying 0 ≤ k < 1. Then T has a unique fixed point (call it p) and T is
G-continuous at p.

Proof. Suppose that T satisfies (2.26). Using (2.26)with z = y, we have

G
(
Tx, Ty, Ty

) ≤ kmax
{
G
(
x, y, y

)
, G(x, Tx, Tx), G

(
y, Ty, Ty

)
, G

(
x, Ty, Ty

)
, G

(
y, Tx, Tx

)}
.

(2.28)

Suppose that (X,G) is symmetric.
From Proposition 1.10, dG, defined by dG(x, y) = 2G(x, y, y) makes, (X, dG) into a

metric space. Substituting into (2.28) and then multiplying by 2 yield

dG

(
Tx, Ty

) ≤ kmax
{
dG

(
x, y

)
, dG(x, Tx), dG

(
y, Ty

)
, dG

(
x, Ty

)
, dG

(
y, Tx

)}
. (2.29)

From Theorem 1.13, T has a unique fixed point.
Suppose that (X,G) is not symmetric. Define

An =
{
G
(
Tix, Tjx, Tjx

)
: 0 ≤ i, j ≤ n

}
,

δn = max
i,j

An.
(2.30)

Then δn = G(Tix, Tmx, Tmx) for some i,m satisfying 0 ≤ i,m ≤ n.
Suppose that i > 0. Then, from (2.26),

δn = G(xi, xm, xm)

≤ kmax{G(xi−1, xm−1, xm−1), G(xi−1, xi, xi), G(xm−1, xm, xm), G(xi−1, xm, xm), G(xm−1, xi, xi)}
≤ kδn,

(2.31)

a contradiction. Therefore, i = 0.
Thus, for some m satisfying 0 ≤ m ≤ n, using property (G5) and (2.26),

δn = G(x0, xm, xm) ≤ G(x0, x1, x1) +G(x1, xm, xm)

≤ G(x0, x1, x1) + kmax{G(x0, xm−1, xm−1), G(x0, x1, x1) ,

G(xm−1, xm, xm), G(x0, xm, xm), G(xm−1, x1, x1)}
≤ G(x0, x1, x1) + kδn,

(2.32)
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which implies that

δn ≤ 1
1 − k

G(x0, x1, x1), (2.33)

and δn is bounded in n. Call this bound δ.
Define xn = Txn−1. Without loss of generality, we may assume that xn /=xn+1 for each n.

For, if there exists an N for which xN = xN+1, then xN+1 = TxN and xN is a fixed point of T .
Again from (2.26),

G(xn, xn+1, xn+1)

≤ kmax{G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn−1, xn+1, xn+1), 0}
= kmax{G(xn−1, xn, xn), G(xn−1, xn+1, xn+1)}
≤ kmax{G(xn−1, xn, xn), δ}
≤ · · · ≤ kn max{G(x0, x1, x1), δ} ≤ knδ.

(2.34)

For any m,n ∈ N;m > n,

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+ · · · +G(xm−1, xm, xm)

≤
(
kn + kn+1 + · · · + km−1

)
δ ≤ knδ

1 − k
.

(2.35)

Therefore, limG(xn, xm, xm) = 0 as m,n → ∞ and {xn} is G-Cauchy, hence G-convergent,
since X is G-complete. Call the limit p.

From (2.26),

G
(
xn, Tp, Tp

) ≤ kmax
{
G
(
xn−1, p, p

)
, G(xn, xn+1, xn+1), G

(
p, Tp, Tp

)
,

G
(
xn−1, Tp, Tp

)
, G

(
p, xn, xn

)}
.

(2.36)

Taking the limit of both sides of (2.36) as n → ∞ yields

G
(
p, Tp, Tp

) ≤ kG
(
p, Tp, Tp

)
, (2.37)

which implies that p = Tp.
Suppose that q is another fixed point of T with p /= q. Then, from (2.26),

G
(
p, q, q

) ≤ kmax
{
G
(
p, q, q

)
, 0, 0, G

(
p, q, q

)
, G

(
q, p, p

)}
= kG

(
q, p, p

)
. (2.38)



10 Fixed Point Theory and Applications

Again using (2.26),

G
(
q, p, p

) ≤ kmax
{
G
(
q, p, p

)
, 0, 0, G

(
q, p, p

)
, G

(
p, q, q

)}
= kG

(
p, q, q

)
. (2.39)

Combining (2.36) and (2.38) gives G(p, q, q) ≤ k2G(p, q, q), a contradiction. Therefore p = q
and the fixed point is unique.

Now let {yn} ⊂ X with limyn = p. Using (2.26),

G
(
Tyn, p, Tyn

) ≤ kmax
{
G
(
yn, p, yn

)
, G

(
yn, Tyn, Tyn

)
, 0, G

(
yn, p, p

)
,

G
(
p, Tyn, Tyn

)
, G

(
yn, Tyn, Tyn

)} (2.40)

But from (G5), we have

G
(
yn, Tyn, Tyn

) ≤ G
(
yn, p, p

)
+G

(
p, Tyn, Tyn

)
. (2.41)

Therefore, (2.40) reduces to

G
(
Tyn, p, Tyn

) ≤ max
{
kG

(
yn, p, yn

)
,

k

1 − k
G
(
yn, p, p

)
}
. (2.42)

Taking the limit of both sides of the above equation as n → ∞ gives limG(Tyn, p, Tyn) = 0,

which implies that lim Tyn = p, and T is G-continuous at p.

The proof using (2.27) is similar. Special cases of Theorem 2.2 are Theorems 2.5, 2.8,
and 2.9 of [9].

3. Property P

In this section we shall show that maps satisfying (2.1) or (2.26) possess property P .

Theorem 3.1. Under the conditions of Theorem 2.1, T has property P .

Proof. From Theorem 2.1, T has a fixed point. Therefore F(Tn)/= ∅ for each n ∈ N. Fix n > 1
and assume that p ∈ F(Tn). We wish to show that p ∈ F(T).
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Suppose that p /= Tp. Using (2.1),

G
(
p, Tp, Tp

)
= G

(
Tnp, Tn+1p, Tn+1p

)

≤ kmax
{
G
(
Tn−1p, Tnp, Tnp

)
, G

(
Tn−1p, Tnp, Tnp

)
, G

(
Tnp, Tn+1p, Tn+1p

)
,

G
(
Tnp, Tn+1p, Tn+1p

)
,

[
G
(
Tn−1p, Tn+1p, Tn+1p

)
+ 0

]

2
,

[
G
(
Tn−1p, Tn+1p, Tn+1p

)
+ 0

]

2
,

[
G
(
Tnp, Tn+1p, Tn+1p

)
+G

(
Tnp, Tn+1p, Tn+1p

)]

2
,

[
G
(
Tn−1p, Tn+1p, Tn+1p

)
+ 0

]

2

}

= kG
(
Tn−1p, Tnp, Tnp

)
≤ k2G

(
Tn−2p, Tn−1p, Tn−1p

)

≤ · · · ≤ knG
(
p, Tp, Tp

)
,

(3.1)

a contradiction.
Therefore p ∈ F(T) and T has property P .

Theorem 3.2. Under the conditions of Theorem 2.2, T has property P .

Proof. From Theorem 2.2, T has a fixed point. Therefore F(Tn)/= ∅for each n ∈ N. Fix n > 1
and assume that p ∈ F(Tn). Using (2.26) and assuming that p /= Tp, we have

G
(
p, Tp, Tp

)
= G

(
Tnp, Tn+1p, Tn+1p

)

≤ kmax
{
G
(
Tn−1p, Tnp, Tnp

)
, G

(
Tn−1p, Tnp, Tnp

)
,

G
(
Tnp, Tn+1p, Tn+1p

)
, G

(
Tn−1p, Tn+1p, Tn+1p

)
, 0, 0

}
.

(3.2)

Define Bn = {G(Tip, Tjp, Tjp) : 0 ≤ i, j ≤ n}. Then

δn = max
i,j

Bn. (3.3)

Then, δn = G(Tip, Tmp, Tmp) for some 0 ≤ i,m ≤ n.
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Assume that δn > 0. Then from (2.26),

δn = G
(
Tip, Tmp, Tmp

)

≤ kmax
{
G
(
Ti−1p, Tm−1p, Tm−1p

)
, G

(
Ti−1p, Tip, T ip

)
, G

(
Tm−1p, Tmp, Tmp

)
,

G
(
Ti−1p, Tmp, Tmp

)
, G

(
Tm−1p, Tip, T ip

)
, G

(
Tm−1p, Tmp, Tmp

)}

≤ kδn,

(3.4)

a contradiction. Therefore δn = 0. In particular, G(p, Tp, Tp) = 0 and p = Tp.
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