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A result of Hinchliffe (2003) is extended to transcendental entire function, and an alternative proof
is given in this paper. Our main result is as follows: let α(z) be an analytic function, F a family
of analytic functions in a domain D, and H(z) a transcendental entire function. If H ◦ f(z) and
H ◦ g(z) share α(z) IM for each pair f(z), g(z) ∈ F, and one of the following conditions holds: (1)
H(z)−α(z0) has at least two distinct zeros for any z0 ∈ D; (2) α(z) is nonconstant, and there exists
z0 ∈ D such that H(z) − α(z0) := (z − β0)

pQ(z) has only one distinct zero β0, and suppose that the
multiplicities l and k of zeros of f(z)−β0 and α(z)−α(z0) at z0, respectively, satisfy k /= lp, for each
f(z) ∈ F, where Q(β0)/= 0; (3) there exists a z0 ∈ D such thatH(z) − α(z0) has no zero, and α(z) is
nonconstant, then F is normal in D.

1. Introduction and Main Results

Let f(z) and g(z) be two nonconstant meromorphic functions in the whole complex plane
C, and let a be a finite complex value or function. We say that f and g share a CM (or IM)
provided that f − a and g − a have the same zeros counting (or ignoring) multiplicity. It
is assumed that the reader is familiar with the standard notations and the basic results of
Nevanlinna’s value-distribution theory
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([1] or [2]). We denote by S(r, f) any function satisfying S(r, f) = o{T(r, f)}, as r → ∞,
possibly outside of a set of finite measure.
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A meromorphic function α(z) is called a small function related to f(z) if T(r, α) =
S(r, f).

In 1952, Rosenbloom [3] proved the following theorem.

Theorem A. Let P(z) be a polynomial of degree at least 2 and f(z) a transcendental entire function.
Then

lim
r→∞

inf
N
(
r, 1/

[
P
(
f
) − z

])

T
(
r, f

) ≥ 1. (1.2)

Influenced from Bloch’s principle ([1] or [4]), that is, there is a normal criterion
corresponding to every Liouville-Picard type theorem, Fang and Yuan [5] proved a
corresponding normality criterion for inequality (1.2).

Theorem B. Let F be a family of analytic functions in a domain D and P(z) a polynomial of degree
at least 2. If P(f(z))/= z for each f(z) ∈ F, then F is normal in D.

In 1995, Zheng and Yang [6] proved the following result.

Theorem C. Let P(z) be a polynomial of degree p at least 2, f(z) a transcendental entire function,
and α(z) a nonconstant meromorphic function satisfying T(r, α) = S(r, f). Then,
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Here μ = 2/(p − 1) if P ′(z) has only one zero; otherwise μ = 2.

In 2000, Fang and Yuan [7] improved (1.3) and obtained the best possible k.

TheoremD. Let P(z) be a polynomial of degree p at least 2 and f(z) a transcendental entire function,
and α(z) a nonconstant meromorphic function satisfying T(r, α) = S(r, f). If α(z) is a constant, we
also require that there exists a constant A/=α such that P(z) −A has a zero of multiplicity at least 2.
Then
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Here μ = 1/(p − 1) if P ′(z) has only one zero; otherwise μ = 1.
The corresponding normal criterion below to Theorem D was obtained by Fang and

Yuan [7].

Theorem E. Let F be a family of analytic functions in a domain D and P(z) a polynomial of degree
at least 2. Suppose that α(z) is either a nonconstant analytic function or a constant function such that
P(z) − α has at least two distinct zeros. If P ◦ f(z)/=α(z) for each f ∈ F, then F is normal in D.

In 2003, Hinchliffe [8] proved the following theorem.

Theorem F. Let α(z) = z, F a family of analytic functions in a domainD, and h(z) a transcendental
meromorphic function. If Ĉ \ h(C) = ∅, {∞} or {ξ1, ξ2}, where {ξ1, ξ2} are two distinct values in
Ĉ = C ∪ {∞}, suppose that h ◦ f(z)/=α(z) for each f ∈ F and all z ∈ D. Then, F is normal in D.
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In 2004, Bergweiler [9] deals also with the case that α(z) is meromorphic in Theorem
F and extended Theorem E as follows.

Theorem G. Let α(z) be a nonconstant meromorphic function, F a family of analytic functions in
a domain D, and R(z) a rational function of degree at least 2. Suppose that R ◦ f(z)/=α(z) for each
f ∈ F and all z ∈ D. Then, F is normal in D.

Recently, Yuan et al. [10] generalized Theorem G in another manner and proved the
following result.

Theorem H. Let α(z) be a nonconstant meromorphic function, F a family of analytic functions in a
domain D, and R(z) a rational function of degree at least 2. If R ◦ f(z) and R ◦ g(z) share α(z) IM
for each pair f(z), g(z) ∈ F and one of the following conditions holds:

(1) R(z) − α(z0) has at least two distinct zeros or poles for any z0 ∈ D;

(2) there exists z0 ∈ D such that R(z) − α(z0) := P(z)/Q(z) has only one distinct zero (or
pole) β0 and suppose that the multiplicities l and k of zeros of f(z)−β0 and α(z)−α(z0) at
z0, respectively, satisfy k /= lp (or k /= lq), for each f(z) ∈ F, where P(z) and Q(z) are two
of no common zero polynomials with degree p and q, respectively, and α(z0) ∈ C ∪ {∞}.

Then, F is normal in D.

In this paper, we improve Theorems E and F and obtain the main result Theorem 1.1
which is proved below in Section 3.

Theorem 1.1. Let α(z) be an analytic function, F a family of analytic functions in a domain D,
and H(z) a transcendental entire function. If H ◦ f(z) and H ◦ g(z) share α(z) IM for each pair
f(z), g(z) ∈ F, and one of the following conditions holds:

(1) H(z) − α(z0) has at least two distinct zeros for any z0 ∈ D;

(2) α(z) is nonconstant, and there exists z0 ∈ D such thatH(z)−α(z0) := (z− β0)
pQ(z) has

only one distinct zero β0 and suppose that the multiplicities l and k of zeros of f(z) − β0
and α(z) − α(z0) at z0, respectively, satisfy k /= lp, for each f(z) ∈ F, where Q(β0)/= 0;

(3) there exists a z0 ∈ D such that H(z) − α(z0) has no zero, and α(z) is nonconstant.

Then, F is normal in D.

2. Preliminary Lemmas

In order to prove our result, we need the following lemmas. Lemma 2.1 is an extending result
of Zalcman [11] concerning normal families.

Lemma 2.1 (see [12]). Let F be a family of functions on the unit disc. Then, F is not normal on the
unit disc if and only if there exist

(a) a number 0 < r < 1;

(b) points zn with |zn| < r;

(c) functions fn ∈ F;
(d) positive numbers ρn → 0
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such that gn(ζ) := fn(zn + ρnζ) converges locally uniformly to a nonconstant meromorphic function
g(ζ), which order is at most 2.

Remark 2.2. g(ζ) is a nonconstant entire function if F is a family of analytic functions on the
unit disc in Lemma 2.1.

The following Lemma 2.3 is very useful in the proof of our main theorem. We denote
by U(z0, r) the open disc of radius r around z0, that is, U(z0, r) := {z ∈ C : |z − z0| < r}.
U0(z0, r) := {z ∈ C : 0 < |z − z0| < r}.

Lemma 2.3 (see [13] or [14]). Let {fn(z)} be a family of analytic functions in U(z0, r). Suppose
that {fn(z)} is not normal at z0 but is normal inU0(z0, r). Then, there exists a subsequence {fnk(z)}
of {fn(z)} and a sequence of points {znk} tending to z0 such that fnk(znk) = 0, but {fnk(z)} tending
to infinity locally uniformly on U0(z0, r).

3. Proof of Theorem

Proof of Theorem 1.1. Without loss of generality, we assume thatD = {z ∈ C, |z| < 1}. Then, we
consider three cases:

Case 1. H(z) − α(z0) has at least two distinct zeros for any z0 ∈ D
Suppose that F is not normal inD. Without loss of generality, we assume that F is not

normal at z = 0.
Set H(z) − α(0) have two distinct zeros β1 and β2.
By Lemma 2.1, there exists a sequence of points zn → 0, fn ∈ F and ρn → 0+ such that

Fn(ξ) := fn
(
zn + ρnξ

) −→ F(ξ) (3.1)

uniformly on any compact subset of C, where F(ξ) is a nonconstant entire function.
Hence,

H ◦ fn
(
zn + ρnξ

) − α
(
zn + ρnξ

) −→ H ◦ F(ξ) − α(0) (3.2)

uniformly on any compact subset of C.
We claim that H ◦ F(ξ) − α(0) had at least two distinct zeros.
If F(ξ) is a nonconstant polynomial, then both F(ξ) − β1 and F(ξ) − β2 have zeros. So

H ◦ F(ξ) − α(0) has at least two distinct zeros.
If F(ξ) is a transcendental entire function, then either F(ξ) − β1 or F(ξ) − β2 has infinite

zeros. Indeed, suppose that it is not true, then by Picard’s theorem [2], we obtain that F(ξ) is
a polynomial, a contradiction.

Thus, the claim gives that there exist ξ1 and ξ2 such that

H ◦ F(ξ1) − α(0) = 0; H ◦ F(ξ2) − α(0) = 0 (ξ1 /= ξ2). (3.3)
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We choose a positive number δ small enough such that D1 ∩ D2 = ∅ and F(ξ) − α(0)
has no other zeros in D1 ∪D2 except for ξ1 and ξ2, where

D1 = {ξ ∈ C; |ξ − ξ1| < δ}, D2 = {ξ ∈ C; |ξ − ξ2| < δ}. (3.4)

By hypothesis and Hurwitz’s theorem [14], for sufficiently large n there exist points
ξ1n ∈ D1, ξ2n ∈ D2 such that

H ◦ fn
(
zn + ρnξ1n

) − α
(
zn + ρnξ1n

)
= 0,

H ◦ fn
(
zn + ρnξ2n

) − α
(
zn + ρnξ2n

)
= 0.

(3.5)

Note that H ◦ fm(z) and H ◦ fn(z) share α(z) IM; it follows that

H ◦ fm
(
zn + ρnξ1n

) − α
(
zn + ρnξ1n

)
= 0,

H ◦ fm
(
zn + ρnξ2n

) − α
(
zn + ρnξ2n

)
= 0.

(3.6)

Taking n → ∞, we obtain

H ◦ fm(0) − α(0) = 0. (3.7)

Since the zeros of

H ◦ fm(ξ) − α(ξ) (3.8)

have no accumulation points, we have

zn + ρnξ1n = 0, zn + ρnξ2n = 0, (3.9)

or equivalently

ξ1n = −zn
ρn

, ξ2n = −zn
ρn

. (3.10)

This contradicts with the facts that ξ1n ∈ D1, ξ2n ∈ D2, and D1 ∩D2 = ∅.

Case 2. α(z) is nonconstant, and there exists z0 ∈ D such thatH(z)−α(z0) := (z−β0)pQ(z) has
only one distinct zero β0, and suppose that the multiplicities l and k of zeros of f(z) − β0 and
α(z)−α(z0) at z0, respectively, satisfy k /= lp, possibly outside finite f(z) ∈ F, whereQ(β0)/= 0.

We shall prove that F is normal at z0 ∈ D. Without loss of generality, we can assume
that z0 = 0.

By α(z) nonconstant and analytic, we see that there exists a neighborhoodU(0, r) such
that

α(z)/=α(0). (3.11)
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Hypothesis implies that H(z) − α(0) has only one zero β0, that is, H(β0) = α(0).
We claim that F is normal at z0 ∈ U0(0, r) for small enough r. In fact, H(z) − α(z0)

has infinite zeros by Picard theorem. Hence, the conclusion of Case 1 tells us that this claim
is true.

Next, we prove F is normal at z = 0. For any {fn(z)} ⊂ F, by the former claim, there
exists a subsequence of {fn(z)}, denoted {fn(z)} for the sake of simplicity, such that

fn(z) −→ G(z), (3.12)

uniformly on a punctured disc U0(0, r) ⊂ U.
By hypothesis, we see that {H ◦ fn(z) − α(z)} is an analytic family in the disc U(0, r).
If {fn(z)} is not normal at z = 0, then Lemma 2.3 gives that G(z) = ∞, on a punctured

disc U0(0, r) and fn(z′n) = 0 for a sequence of points z′n → 0.
We claim that there exists a sequence of points zn ∈ U(0, r) (zn → 0) such that H ◦

fn(zn) − α(zn) = 0.
In fact we may find ρ, ε > 0 such that |H(z)− α(0)| > ε for |z− β0| = ρ.Next, we choose

δ with 0 < δ < r such that |α(z) − α(0)| < ε for |z| < δ.
Since fn(z) → ∞ onU0(0, r) and fn(z′n) = 0 for a sequence of points z′n → 0, we know

that if n sufficiently large, then

∣∣(fn(z) − β
) − fn(z)

∣∣ =
∣∣β
∣∣ ≤ ∣∣β0

∣∣ + ρ <
∣∣fn(z)

∣∣ (3.13)

for |z| = δ and β ∈ U(β0, ρ). For large n, we also have |z′n| < δ, and thus we deduce that
from Rouché’s theorem that fn(z) takes the value β ∈ U(0, δ), that is, we have fn(U(0, δ)) ⊃
U(β, ρ) for large n. Since also fn(∂U(0, δ)) ∩ U(β, ρ) = ∅ for large n, we find a component
U of f−1

n (U(β0, ρ)) contained in U(0, δ) for such n. Moreover, U is a Jordan domain, and
fn : U → U(β0, ρ) is a proper map.

For z ∈ ∂U, we then have fn(z) ∈ ∂U(β0, ρ), and thus |H ◦ fn(z) − α(0)| > ε. Hence

∣∣H ◦ fn(z) − α(z) − (
H ◦ fn(z) − α(0)

)∣∣ = |α(z) − α(0)| < ε <
∣∣H ◦ fn(z) − α(0)

∣∣ (3.14)

for z ∈ ∂U. Now fn, in particular, takes the value β0 inU, say, fn(z′′n) = β0 with z′′n ∈ U.Hence,
H ◦ fn(z′′n) − α(0) = 0, and thus Rouché’s theorem now shows that our claim holds.

By the similar argument as Case 1, we obtain that zn = 0 for sufficiently large n.
Because H(z) − α(0) = (z − ξ0)

pH(z), we have

H ◦ fn(z) − α(z) =
(
fn(z) − ξ0

)p
H
(
fn(z)

) − (α(z) − α(0)),
(
fn(0) − ξ0

)p
H
(
fn(0)

)
= H ◦ fn(0) − α(0) = 0.

(3.15)
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Hence,

H ◦ fn(z) − α(z) = zk
[
zlp−khn(z) − β(z)

]
, if lp > k;

H ◦ fn(z) − α(z) = zlp
[
hn(z) − zk−lpβ(z)

]
, if lp < k,

(3.16)

where hn(z), β(z) are analytic functions and hn(0)/= 0, β(0)/= 0.
Set Hn(z) := zlp−khn(z) − β(z), if lp > k; or Hn(z) := hn(z) − zk−lpβ(z), if lp < k. Thus,

Hn(0) = −β(0)/= 0 or Hn(0) = hn(0)/= 0. Noting that lp /= k, we see that {Hn(z)} is an analytic
family and normal inU0(0, r).

By the same argument as above, there exists a sequence of points z∗n ∈ U′ such that
z∗n → 0, and Hn(z∗n) = 0. Obviously, z∗n /= 0 and

H ◦ fn(z∗n) − α(z∗n) = z∗nHn(z∗n) = 0. (3.17)

Noting that H ◦ fn(z) and H ◦ fm(z) share α(z) IM, we obtain that

H ◦ fm(z∗n) − α(z∗n) = 0 (3.18)

for each m. That is, z∗nHm(z∗n) = 0. Noting that z∗n /= 0, we deduce that Hm(z∗n) = 0. Thus,
taking n → ∞,Hm(0) = 0, contradicting the hypothesis for Hm(0).

Case 3. There exists a z0 ∈ D such that H(z) − α(z0) has no zero, and α(z) is nonconstant.
Suppose that F is not normal inD. Without loss of generality, we assume that F is not

normal at z = 0.
By Picard theorem and (3.11), we know thatH(z)−α(z0) has at least two distinct zeros

at any z0 ∈ U0(0, r) for small enough r. The result of Case 1 tell us thatF is normal inU0(0, r).
Thus, for any {fn(z)} ⊂ F, by the former conclusion and Lemma 2.3, there exists a

subsequence of {fn(z)}, denoted by {fn(z)} for the sake of simplicity, such that

fn(z) −→ ∞, (3.19)

uniformly on a punctured disc U0(0, r) ⊂ U and fn(z′n) = 0 for a sequence of points z′n → 0.
Obviously, {H◦fn(z)−α(z)} is an analytic normal family in the punctured discU0(0, r)

for small enough r. We consider two subcases.

Subcase 1 ({H◦fn(z)−α(z)} is not normal at z = 0). Using Lemma 2.3 for {H◦fn(z)−α(z)}, we
get that there exists a sequence of points zn ∈ U(0, r) such that zn → 0 andH◦fn(zn)−α(zn) =
0.

Noting that H ◦ fm(z) and H ◦ fn(z) share α(z) IM, and H(z) − α(0) has no zero, it
follows that zn /= 0 andH ◦fm(zn)−α(zn) = 0. Taking n → ∞, we obtainH ◦fm(0)−α(0) = 0.
A contradiction with the hypothesis that H(z) − α(0) has no zero.
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Subcase 2 ({H ◦ fn(z) − α(z)} is normal at z = 0). Then, {(H ◦ fn(z) − α(0))/(α(z) − α(0))} is
normal in U0(0, r), which tends to a limit function h(z), which is either identically infinite or
analytic inU0(0, r). Set

Mn := min
{∣∣fn(z)

∣
∣ : |z| = r

}
, (3.20)

noting that Mn → ∞ as n → ∞. If n is large enough, we have z′n ∈ U(0, r), and hence
U(0,Mn) ⊆ fn(U(0, r)). Denote ∂fn(U(0, r)) by Γn, and note that the Γn are closed curves,
arbitrarily distant from and surrounding the origin.

Suppose that h(z) ≡ ∞ onU0(0, r). Since hn(z) := (H◦fn(z)−α(0))/(α(z)−α(0)) → ∞
locally uniformly on ∂U(0, r), there exists, for arbitrarily large positive M, an n0(M) such
that, for n ≥ n0, |hn(z)| ≥ M on ∂U(0, r). Thus, we have |H ◦ fn(z) − α(0)| ≥ M|α(z) − α(0)|
on ∂U(0, r). Hence, for large n,H(z) is bounded away from α(0) on the curves Γn, and this
contradicts Iversen’s theorem [15].

On the other hand, suppose that h(z) is analytic on U0(0, r). Then, there exists some
constant L such that |h(z)| ≤ L on ∂U(0, r), and so, for large n, |hn(z)| ≤ 2L on ∂U(0, r). Hence,
|H ◦ fn(z) − α(0)| ≤ 2L|α(z) − α(0)| on ∂U(0, r). Again,H(z) is therefore bounded away from
∞ of its omitted value on the curves Γn, contradicting Iversen’s theorem.

Therefore F is normal in Case 3.

Theorem 1.1 is proved completely.
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