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Coincidence and fixed point theorems for a new class of contractive, nonexpansive and hybrid
contractions are proved. Applications regarding the existence of common solutions of certain
functional equations are also discussed.

1. Introduction

The following remarkable generalization of the classical Banach contraction theorem, due to
Suzuki [1], has led to some important contribution in metric fixed point theory (see, e.g.,
[1–8]).

Theorem 1.1. Let (X, d) be a complete metric space and S : X → X.Define a nonincreasing function
θ from [0, 1) onto (1/2, 1] by

θ(r) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ r ≤
√
5 − 1
2

,

1 − r

r2
if

√
5 − 1
2

≤ r ≤ 1
2
,

1
1 + r

if
1
2
≤ r < 1.

(1.1)

Assume that there exists r ∈ [0, 1) such that

θ(r)d(x, Sx) ≤ d
(
x, y

)
implies d

(
Sx, Sy

) ≤ rd
(
x, y

)
(SC)

for all x, y ∈ X. Then S has a unique fixed point. A map satisfying condition (SC) is called Suzuki
contraction and the above theorem as the Suzuki contraction theorem (see [9]).
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Following Theorem 1.1, Edelstein’s theorem for contractivemaps has been generalized
in [7] (cf. Theorem 2.1). Fixed point theorems for nonexpansive maps due to Browder [10,
11] and Göhde [12] have been generalized in [6] (cf. Theorem 3.1 below). Theorem 1.1 and
Nadler’s multivalued contraction theorem have been generalized by Kikkawa and Suzuki
[2] (cf. Theorem 4.1 below). Further, Theorem 4.1 has been generalized by Moţ and Petruşel
[3], Dhompongsa and Yingtaweesittikul [4], Singh and Mishra [9] and others. Combining
the ideas of Suzuki [6, 7], Goebel [13] and Naimpally et al. [14], first we generalize Theorems
2.1 and 3.1 to a wider class of maps on an arbitrary nonempty set with values in a metric
(resp. Banach) space. Using the notion of IT-commuting maps due to Itoh and Takahashi
[15], we obtain generalizations of multivalued fixed point theorems due to Reich [16], Iseki
[17], Kikkawa and Suzuki [2], Moţ and Petruşel [3], Dhompongsa and Yingtaweesittikul [4]
and others to the case of Suzuki generalized hybrid contraction (cf. Theorem 4.1). Various
examples presented in Section 5 demonstrate the generality of the assumptions used in our
results. An experimental approach regarding the sequence of Jungck iterates [18] for the new
class of contractive and nonexpansive maps is also discussed, which leads to a conjecture.
Finally, we deduce the existence of a common solution for the Suzuki class of functional
equations under much weaker conditions than those in [19–21].

2. Contractive Maps

The following result of Suzuki [7] generalizes the well-known fixed point theorem of
Edelstein [22].

Theorem 2.1. Let (X, d) be a compact metric space and S : X → X. Assume that

1
2
d(x, Sx) < d

(
x, y

)
implies d

(
Sx, Sy

)
< d

(
x, y

)
(2.1)

for x, y ∈ X. Then S has a unique fixed point.

Throughout this paper Y will denote an arbitrary nonempty set. As a generalization
of the results of Goebel [13], Edelstein [22] and Naimpally et al. [14, Corollary 3], we extend
Theorem 2.1 for a pair of Suzuki contractive maps S, T : Y → X (cf. (2.2) and (2.3)), wherein
(X, d) is a metric space.

Theorem 2.2. Let S, T : Y → X be such that S(Y ) ⊆ T(Y ) and T(Y ) is a compact subspace of X.
Assume that for x, y ∈ Y,

1
2
d(Tx, Sx) < d

(
Tx, Ty

)
(2.2)

implies

d
(
Sx, Sy

)
< d

(
Tx, Ty

)
, (2.3)

and Tx = Ty implies Sx = Sy. Then S and T have a coincidence, that is, there exists z ∈ Y such that
Sz = Tz. Further, if Y = X, then S and T have a unique common fixed point provided that S and T
commute at z.
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Proof. Define F : T(Y ) → T(Y ) by Fa = S(T−1a)) for each a ∈ T(Y ). To see that F is well
defined, observe by S(Y ) ⊆ T(Y ) that for x ∈ T−1(a),

Fa = Sx, Fa ⊆ T(Y ). (2.4)

Take x, y ∈ T−1a such that b = Sx, c = Sy. Then, since Tx = Ty,we have b = c. Therefore F is
well-defined.

Now, for a/= b and a, b ∈ T(Y ), T−1a∩T−1b = φ. So, for distinct a, b ∈ T(Y ), we suppose
(1/2)d(a, Fa) < d(a, b). Then for x ∈ T−1a and y ∈ T−1b,we have

1
2
d(Tx, Sx) =

1
2
d(a, Fa) < d(a, b) = d

(
Tx, Ty

)
. (2.5)

This inequality implies that d(Sx, Sy) < d(Tx, Ty). So d(Fa, Fb) < d(a, b). Therefore, by
Theorem 2.1, F has a unique fixed point w. Then for any z ∈ T−1w,Sz = Fw = w = Tz. So, z
is a coincidence point of S and T. If S and T are commuting at z, then Sz = Tz ⇒ SSz = STz =
TSz = TTz and Sw = Tw. If Sz/=SSz, then (1/2)d(Tz, Sz) = 0 < d(Tz, TTz) = d(Tz, TSz),
and this implies that d(w,Sw) = d(Sz, SSz) < d(Tz, TSz) = d(w,Sw), a contradiction. So, w
is a common fixed point of S and T.

We conclude the proof by showing the unicity of the common fixed point. Suppose
that v /=w is another common fixed point of S and T. Since (1/2)d(Tw, Sw) = 0 < d(Tw, Tv),
we have d(w,v) = d(Sw,Sv) < d(Tw, Tv) = (w,v), a contradiction. Hence v = w.

3. Nonexpansive Maps

A self-map S of a metric space X is nonexpansive if d(Sx, Sy) ≤ d(x, y) for all x, y ∈ X.
The theory of nonexpansive maps is exciting and plays a vital role in nonlinear analysis and
applications (see, e.g., [10–12, 23–28]). Recently, Suzuki [6] obtained the following theorem
that generalizes the results of Browder [10, 11] and Göhde [12].

Theorem 3.1. Let C be a convex subset of a Banach space E and S : C → C. Assume that

1
2
‖x − Sx‖ ≤ ∥

∥x − y
∥
∥ implies

∥
∥Sx − Sy

∥
∥ ≤ ∥

∥x − y
∥
∥ (3.1)

for all x, y ∈ C. Assume further that one of the following holds:

(i) C is compact;

(ii) C is weakly compact and E has the Opial property;

(iii) C is weakly compact and E is uniformly convex in every direction (UCED).

Then S has a fixed point.

For definitions and details of the Opial property [25], uniform convexity and UCED,
one may refer to Goebel [23], Goebel and Kirk [24], Prus [26], Suzuki [6] and Takahashi
[27, 28].

Now we present the following extension of Theorem 3.1 for a pair of Suzuki
nonexpansive maps (cf. (3.2)).
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Theorem 3.2. Let E be a Banach space and S, T : Y → E such that S(Y ) ⊆ T(Y ) and T(Y ) is a
convex subset of E. Assume that for x, y ∈ Y,

1
2
‖Tx − Sx‖ ≤ ∥

∥Tx − Ty
∥
∥ implies

∥
∥Sx − Sy

∥
∥ ≤ ∥

∥Tx − Ty
∥
∥, (3.2)

and Tx = Ty implies Sx = Sy. Assume further that either of the following holds:

(i) T(Y ) is compact;

(ii) T(Y ) is weakly compact and E has the Opial property;

(iii) T(Y ) is weakly compact and E is UCED.

Then S and T have a coincidence.

Proof. As in the proof of Theorem 2.1, letting Fa = S(T−1a) for a ∈ T(Y ), it suffices to show
that F : T(Y ) → T(Y ) has a fixed point.

Let a, b ∈ T(Y ) such that (1/2)‖a − Fa‖ ≤ ‖a − b‖. Then for x ∈ T−1a and y ∈ T−1b, we
have (1/2)‖Tx − Sx‖ = (1/2)‖a − Fa‖ ≤ ‖a − b‖ = ‖Tx − Ty‖. By (3.2), we obtain ‖Sx − Sy‖ ≤
‖Tx − Ty‖, and thus ‖Fa − Fb‖ ≤ ‖a − b‖. So, by Theorem 3.1, F has a fixed point.

4. Multivalued Contractions

In all that follows, let CB(X) (resp. CL(X)) denote the family of all nonempty closed bounded
(resp. closed) subsets of X. LetH denote the Hausdorffmetric induced by the metric d of the
metric spaceX. For any subsetsA,B ofX, d(A,B) denotes the gap between the subsetsA and
B,while ρ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B} and

BN(X) =
{
A : φ/=A ⊆ X and the diameter of A is finite

}
. (4.1)

The following result of Kikkawa and Suzuki [2] is a generalization of Nadler [29].

Theorem 4.1. Let (X, d) be a complete metric space and P : X → CB(X). Define a strictly
decreasing function η from [0, 1) onto (1/2, 1] by

η(r) =
1

1 + r
. (4.2)

Assume that there exists r ∈ [0, 1) such that

η(r)d(x, Px) ≤ d
(
x, y

)
implies H

(
Px, Py

) ≤ rd
(
x, y

)
(KSMC)

for all x, y ∈ X. Then P has a fixed point, that is, there exists z ∈ X such that z ∈ Pz.

Theorem 4.1 has further been generalized by Moţ and Petruşel [3], Dhompongsa and
Yingtaweesittikul [4] and Singh and Mishra [9].
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For a, b, c, e, f ∈ [0, 1), let β and γ be defined by

β =
1 − b − c

1 + a
, γ =

1 − c − e

1 + a
. (4.3)

For a metric space X, we consider P : Y → CL(X) and T : Y → X satisfying

γd(Tx, Px) ≤ d
(
Tx, Ty

)
implies H

(
Px, Py

) ≤ M
(
x, y

)
(4.4)

for all x, y ∈ Y,where

M
(
x, y

)
= ad

(
Tx, Ty

)
+ bd(Tx, Px) + cd

(
Ty, Py

)
+ ed

(
Tx, Py

)
+ fd

(
Ty, Px

)
(4.5)

and a + b + c + e + f < 1.
We remark that β, γ ∈ (1/2, 1]. As regards the generality of condition (4.4), we offer

the following remarks when Y = X and T is the identity map on X.

Remarks 4.2. (i) The Kikkawa-Suzuki multivalued contraction (KSMC) is (4.4)with a = r and
b = c = e = f = 0.

(ii) Generalizing the (KSMC), Moţ and Petrusel [3] have studied (4.4) with e = f = 0
and γ = β.

(iii) Dhompongsa and Yingtaweesittikul [4] have discussed (4.4)when

M
(
x, y

)
= γ ·max

{
d
(
x, y

)
, d(x, Px), d

(
y, Py

)}
(4.6)

with γ = θ(r) and some additional requirement.
(iv) Condition (4.4) includes a few important conditions for single-valued and

multivalued maps due to Reich [16, 30], Hardy and Rogers [31], and Iseki [17] (see also
condition (16) in Rhoades [32]).

By virtue of the symmetry in x and y in the expression M(x, y), it is appropriate to
consider (4.4) when b = c and e = f as follows:

βd(Tx, Px) ≤ d
(
Tx, Ty

)
implies H

(
Px, Py

) ≤ m
(
x, y

)
(KSG)

for all x, y ∈ Y,where

m
(
x, y

)
= ad

(
Tx, Ty

)
+ b

[
d(Tx, Px) + d

(
Ty, Py

)]
+ c

[
d
(
Tx, Py

)
+ d

(
Ty, Px

)]
, (4.7)

and a + 2b + 2c < 1.
In all that follows, we consider the nontrivial case 0 < a + 2b + 2c.
The condition (KSG) will be called Kikkawa-Suzuki generalized hybrid contraction

for the maps P and T. Following Itoh and Takahashi [15] (see also Singh and Mishra [33]),
maps P : X → CL(X) and T : X → X are IT-commuting at z ∈ X if TPz ⊆ PTz. We remark
that IT-commuting maps are more general than commuting maps, weakly commuting maps
and weakly compatible maps at a point. For details, one may refer to [33].
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Theorem 4.3. Let X be a metric space. Assume that the pair of maps P : Y → CL(X) and T : Y →
X is Kikkawa-Suzuki generalized hybrid contraction such that P(Y ) ⊆ T(Y ), and P(Y ) or T(Y ) is a
complete subspace of X. Then P and T have a coincidence point, that is, there exists z ∈ Y such that
Tz ∈ Pz. Further, if Y = X, then P and T have a common fixed point provided that P and T are
IT-commuting at z and Tz is a fixed point of T.

Proof. Let q = (a + 2b + 2c)−1/2. Pick x0 ∈ Y. Following Singh and Kulshrestha [34] and
Rhoades et al. [35], we construct two sequences {xn} ⊆ Y and {yn = Txn} ⊆ T(Y ) in the
following manner. Since P(Y ) ⊆ T(Y ), we choose an element x1 ∈ Y such that Tx1 ∈ Px0.
Analogously, choose Tx2 ∈ Px1 such that

d(Tx1, Tx2) ≤ qH(Px0, Px1). (4.8)

In general, we have sequences {xn} and {Txn} such that Txn+1 ∈ Pxn, n = 0, 1, . . . , q >
1 and

d(Txn+1, Txn+2) ≤ qH(Pxn, Pxn+1), n = 0, 1, . . . . (4.9)

Since β < 1, we see that βd(Txn, Pxn) ≤ d(Txn, Txn+1). Therefore by the assumption
(KSG),

d
(
yn+1, yn+2

) ≤ qH(Pxn, Pxn+1)

≤ q
[
ad

(
yn, yn+1

)
+ bd

(
yn, Pxn

)
+ bd

(
yn+1, Pxn+1

)

+c
{
d
(
yn, Pxn+1

)
+ d

(
yn+1,Pxn

)}]

≤ q
[
(a + b)d

(
yn, yn+1

)
+ bd

(
yn+1, yn+2

)
+ c

{
d
(
yn, yn+1

)
+ d

(
yn+1, yn+2

)}]
,

(4.10)

yielding

d
(
yn+1, yn+2

) ≤ λd
(
yn, yn+1

)
, (4.11)

where λ = q(a + b + c)/(1 − q(b + c)) < 1. So the sequence {yn} is Cauchy. If T(Y ) is complete,
then it has a limit in T(Y ). If P(Y ) is complete, then the limit is still in T(Y ) as P(Y ) ⊆ T(Y ).
Call the limit w. Let z ∈ T−1w. Then z ∈ Y and Tz = w. Now as in [2], we show that

d(Tz, Px) ≤ a + b + c

β(1 + a)
d(Tz, Tx) (4.12)

for any Tx ∈ T(Y ) − {Tz}. Since yn → Tz, there exists a positive integer n0 such that

d(Tz, Txn) ≤ 1
3
d(Tz, Tx) ∀n ≥ n0. (4.13)



Fixed Point Theory and Applications 7

Therefore for any n ≥ n0,

βd(Txn, Pxn) ≤ d(Txn, Txn+1)

≤ d(Txn, Tz) + d(Txn+1,Tz)

≤ 2
3
d(Tz, Tx) = d(Tz, Tx) − 1

3
d(Tz, Tx)

≤ d(Tz, Tx) − d(Tz, Txn) ≤ d(Txn, Tx).

(4.14)

Hence by the assumption (KSG),

d
(
yn+1, Px

) ≤ H(Pxn, Px) ≤ m(xn, x)

≤ ad
(
yn, Tx

)
+ b

[
d
(
yn, yn+1

)
+ d(Tx, Px)

]
+ c

[
d
(
yn,Px

)
+ d

(
Tx, yn+1

)]
.

(4.15)

Making n → ∞,we have

d(Tz, Px) ≤
(
a + b + c

1 − b − c

)

d(Tz, Tx). (4.16)

This yields (4.12), Tx /= Tz. Next we show that

H(Px, Pz) ≤ m(x, z) (4.17)

for any x ∈ Y. If x = z, then it holds trivially. So we take x /= z such that Tx /= Tz.We can do so
since, without any loss of generality, we take the map T nonconstant. By (4.12),

d(Tx, Px) ≤ d(Tx, Tz) + d(Tz, Px)

≤ d(Tx, Tz) +
(
a + b + c

1 − b − c

)

d(Tz, Tx).
(4.18)

Hence βd(Tx, Px) ≤ d(Tx, Tz). This implies (4.17). Therefore

d
(
yn+1, Pz

) ≤ H(Pxn, Pz) ≤ m(xn, z)

≤ ad
(
yn, Tz

)
+ b

[
d
(
yn, yn+1

)
+ d(Tz, Pz)

]
+ c

[
d
(
yn, Pz

)
+ d

(
Tz, yn+1

)]
.

(4.19)

Making n → ∞, this yields (1 − b − c)d(Tz, Pz) ≤ 0, and Tz ∈ Pz.
Further, if Y = X, TTz = Tz, and P and T are IT-commuting at z, then Tz ∈ Pz implies

that TTz ∈ TPz ⊆ PTz. This proves that Tz is a fixed point of P.

We remark that the assumption that T has a fixed point in Theorem 4.3 is essential.
Indeed, in general, a pair of continuous commuting maps on the space need not have a
common fixed point (see, e.g., [14, 33]).
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Corollary 4.4. Let X be a complete metric space and P : X → CL(X). Assume there exist a, b, c ∈
[0, 1) such that

βd(x, Px) ≤ d
(
x, y

)
implies H

(
Px, Py

) ≤ N
(
P ;x, y

)
(4.20)

for all x, y ∈ X, where

N
(
P ;x, y

)
= ad

(
x, y

)
+ b

[
d(x, Px) + d

(
y, Py

)]
+ c

[
d
(
x, Py

)
+ d

(
y, Px

)]
(4.21)

and a + 2b + 2c < 1.

Proof. It comes from Theorem 4.1 when Y = X and T is the identity map.

The following two results are the extensions of Suzuki contraction theorem.
Corollary 4.5 also generalizes the results of Kikkawa and Suzuki [2, Theorem 2], Jungck [18]
and Dhompongsa and Yingtaweesittikul [4, Theorem 3.4(v)].

Corollary 4.5. Let g, T : Y → X be such that g(Y ) ⊆ T(Y ) and g(Y ) or T(Y ) is a complete
subspace of X. Assume that there exist a, b, c ∈ [0, 1) such that

βd
(
Tx, gx

) ≤ d
(
Tx, Ty

)
(4.22)

implies

d
(
gx, gy

) ≤ ad
(
Tx, Ty

)
+ b

[
d
(
Tx, gx

)
+ d

(
Ty, gy

)]
+ c

[
d
(
Tx, gy

)
+ d

(
Ty, gx

)]
(4.23)

for all x, y ∈ X, where a + 2b + 2c < 1. Then g and T have a coincidence point z ∈ Y. Further, if
Y = X and g, T commute at z, then g and T have a unique common fixed point.

Proof. Set Px = {gx} for every x ∈ Y. Then it comes from Theorem 4.1 that there exists z ∈ Y
such that gz = Tz. Further, if Y = X and g, T commute at z, then ggz = gTz = Tgz. Also,
βd(Tz, gz) = 0 ≤ d(Tz, Tgz) and this implies

d
(
gz, ggz

) ≤ ad
(
Tz, Tgz

)
+ b

[
d
(
Tz, gz

)
+ d

(
Tgz, ggz

)]
+ c

[
d
(
Tz, ggz

)
+ d

(
Tgz, gz

)]

= (a + 2c)d
(
gz, ggz

)
.

(4.24)

This proves that gz is a common fixed point of g and T. The uniqueness of the common
fixed point follows easily.

Corollary 4.6. Let X be a complete metric space and g : X → X. Assume that there exist a, b, c ∈
[0, 1) such that βd(x, gx) ≤ d(x, y) implies d(gx, gy) ≤ N(g;x, y) for all x, y ∈ X, where a+ 2b +
2c < 1. Then g has a unique fixed point.

Proof. It follows from Corollary 4.5 if Y = X and T is the identity map on X.
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Theorem 4.7. Let X be a metric space, and let P : Y → BN(X) and T : Y → X be such that
P(Y ) ⊆ T(Y ) and T(Y ) is a complete subspace of X. Assume that there exist a, b, c ∈ [0, 1) such
that

βρ(Tx, Px) ≤ d
(
Tx, Ty

)
(4.25)

implies

ρ
(
Px, Py

) ≤ ad
(
Tx, Ty

)
+ b

[
ρ(Tx, Px) + ρ

(
Ty, Py

)]
+ c

[
d
(
Tx, Py

)
+ d

(
Ty, Px

)]
(4.26)

for all x, y ∈ Y, where a + 2b + 2c < 1. Then the maps T and P have a coincidence.

Proof. It may be completed following Reich [30] and Ćirić [36] and using Corollary 4.5.
However, for the sake of completeness, we give an outline of the same. Let t = a+ 2b+ 2c. For
p ∈ (0, 1); define a single-valued map g : Y → X as follows. For each x ∈ Y, let gx be a point
of Px such that d(Tx, gx) ≥ tpρ(Tx, Px). Notice that f(Y ) =

⋃{fx ∈ Px} ⊆ P(Y ) ⊆ T(Y ).
Since gx ∈ Px, d(Tx, gx) ≤ ρ(Tx, Px). So (4.25) gives βd(Tx, gx) ≤ βρ(Tx, Px) ≤ d(Tx, Ty),
and this implies condition (4.26). Therefore

d
(
gx, gy

) ≤ ρ
(
Px, Py

)

≤ t−p
{
atpd

(
Tx, Ty

)
+ btp

[
ρ(Tx, Px) + ρ

(
Ty, Py

)]
+ ctp

[
d
(
Tx, Py

)
+ d

(
Ty, Px

)]}

≤ t−p
{
ad

(
Tx, Ty

)
+ b

[
d
(
Tx, gx

)
+ d

(
Ty, gy

)]
+ c

[
d
(
Tx, gy

)
+ d

(
Ty, gx

)]}
.

(4.27)

So, taking a′ = at−p, b′ = bt−p, c′ = ct−p and β′ = (1 − b′ − c′)/(1 + a′),we see that β′d(Tx, gx) ≤
βd(Tx, gx) ≤ d(Tx, Ty) implies

d
(
gx, gy

) ≤ a′d
(
Tx, Ty

)
+ b′

[
d
(
Tx, gx

)
+ d

(
Ty, gy

)]
+ c′

[
d
(
Tx, gy

)
+ d

(
Ty, gx

)]
, (4.28)

where a′ + 2b′ + 2c′ = at−p + 2bt−p + 2ct−p = t1−p < 1. Hence, by virtue of Corollary 4.5, g and T
have a coincidence at z ∈ Y . Evidently Tz = gz implies Tz ∈ Pz.

Theorem 4.8. Let X be a complete metric space and P : Y → BN(X). Assume that there exist
a, b, c ∈ [0, 1) such that βρ(x, Px) ≤ d(x, y) implies

ρ
(
Px, Py

) ≤ ad
(
x, y

)
+ b

[
ρ(x, Px) + ρ

(
y, Py

)]
+ c

[
d
(
x, Py

)
+ d

(
y, Px

)]
(4.29)

for all x, y ∈ X, where a + 2b + 2c < 1. Then P has a unique fixed point.

Proof. It may be completed, as above, using Corollary 4.6.
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5. Examples and Discussion

The following example shows that the Suzuki contractive condition (cf. (2.2) and (2.3)) for a
pair of maps is indeed more useful than condition (2.1) for a map on a metric space. In all the
examples of this section, spaces are endowed with the usual metric.

Example 5.1. Let X = [0, 11/10] and let S, T : X → X be defined by,

Sx =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ x ≤ 1
2
,

1
2

if
1
2
< x ≤ 11

10
,

Tx =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if x = 0,

1
2

if 0 < x ≤ 1
2
,

11
10

if
1
2
< x ≤ 11

10
.

(5.1)

Then assumption (2.1) of Theorem 2.1 is not satisfied for the map S (take, e.g., x =
25/100, y = 51/100). However, S and T satisfy all the assumptions of Theorem 2.2. Notice
that Sx = Sy whenever Tx = Ty for any x, y ∈ Y. Moreover, S(X) = {0, 1/2} ⊂
{0, 1/2, 11/10} = T(X). So, Theorem 2.2 guarantees the existence of a coincidence point,
namely, 0 which is the unique common fixed point of S and T.

Sequence of Iterates

For maps S and T studied in Theorems 2.2 and 3.2, a sequence of iterates may be constructed
following Jungck [18]. For any x0 ∈ Y, choose an x1 ∈ Y such that Tx1 = Sx0. We can do
this since S(Y ) ⊆ T(Y ). Now choose x2 ∈ Y such that Tx2 = Sx1. Continuing this process,
we choose xn+1 ∈ Y such that Txn+1 = Sxn, n = 0, 1, 2, . . .. For the sake of brevity and
appropriate reference, the sequence {Txn}will be called Jungck sequence of iterates or simply
Jungck iterates. Notice that the sequence {Txn} is the usual Picard sequence of iterates when
T is the identity map on Y = X. In the case of Example 5.1, take x0 = 11/10. Then {Txn} =
{1/2, 0, 0, . . .}which converges to 0.However, in general, under the assumptions of Theorems
2.2 or 3.2, there may not exist a sequence {Txn} which converges. The following examples
illustrate this fact.

Example 5.2. Let X = [−11,−10] ∪ {0} ∪ [10, 11],

Sx =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

11x + 100
x + 9

, if − 11 ≤ x < −10,
0, if x = −10, 0, 10,

−11x − 100
x − 9

, if 10 < x ≤ 11,

(5.2)

and Tx = x, x ∈ X.
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Suzuki [7] has shown that S satisfies the assumption of Theorem 2.2 with Y = X and
T the identity map onX. It is also shown in [7] that the Picard sequence of iterates of the map
S does not converge when the initial choice x0 falls in X − {−10, 0, 10}, although S satisfies all
the hypotheses of Theorem 2.1. Thus, under the hypotheses of Theorem 2.2, Jungck iterates
for (S, T) need not converge.

Example 5.3. Let X = [3, 7], and let S, T : X → X be such that

Sx =

⎧
⎪⎨

⎪⎩

3 if x /= 6,

5 if x = 6,

Tx =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3 if x = 3,

5 if x /= 3, x /= 6,

7 if x = 6.

(5.3)

Evidently, S is not nonexpansive. Further, S is also not Suzuki nonexpansive. Indeed, for
x = 6, y = 5,

1
2
|x − Sx| = 1

2
|6 − 5| = 1

2
≤ 1 =

∣
∣x − y

∣
∣, (5.4)

while

∣
∣Sx − Sy

∣
∣ = |5 − 3| = 2 /≤ 1 =

∣
∣x − y

∣
∣. (5.5)

Notice that S(X) ⊆ T(X), and the assumption (3.2), namely,

1
2
|Tx − Sx| ≤ ∣

∣Tx − Ty
∣
∣ =⇒ ∣

∣Sx − Sy
∣
∣ ≤ ∣

∣Tx − Ty
∣
∣, (5.6)

is satisfied for all x, y ∈ X. Also Sx = Sy whenever Tx = Ty for any x, y ∈ X.
The sequence {Txn} constructed before Example 5.2 may be used to approximate the

coincidence values of the maps S and T under the hypotheses of Theorem 3.2. Note that if z is
such that Sz = Tz = w, then w is the coincidence value of S and T at their coincidence point.
For example, in the case of Example 5.3, for any x0 ∈ X, the sequence {Txn} converges to
3. The following example reveals some strange pattern regarding the convergence of Jungck
iterates {Txn} under the assumption (3.2).
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Example 5.4. Let X = [3, 7] and S, T : X → X be defined by

Sx =

⎧
⎨

⎩

3, if x /= 6

5, if x = 6,

Tx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

7, if x = 3

3, if x /= 3, /= 6

5 if x = 6.

(5.7)

Notice the following.

(1) S is not nonexpansive.

(2) S is not Suzuki nonexpansive (take x = 5, y = 6).

(3) S(X) ⊆ T(X).

(4) S and T satisfy assumption (3.2) with Y = E = X.

(5) Sx = Sy whenever Tx = Ty for any x, y ∈ X.

(6) For any z/= 3, /= 6, Sz = Tz = 3. Note that coincidence point z is different from the
coincidence value w = 3.

(7) As regards the Jungck sequence of iterates {Txn}, we examine some cases below.

(i) For x0 = 3, consider xn = 3 + n/(n + 1), n = 1, 2, . . . . Evidently, Txn → 3.
(ii) For x0 = 6 and xn = 6, n = 1, 2, . . . , Txn → 5 and S6 = T6 = 5.

Here it is very interesting to note that S and T are commuting at x = 6,which is not a common
fixed point of S and T.

The following example illustrates the validity and superiority of the Kikkawa-Suzuki
generalized contraction for a pair of maps.

Example 5.5. LetX = [0,∞) and for every x ∈ X, define Px = [0, 3x] and Tx = 5x. Then P does
not satisfy the assumption (KSMC) of Theorem 4.1. Indeed, for any r ∈ [0, 1) and x = 3 and
y = 1, η(r)d(3, P3) = 0 ≤ d(3, 1) and H(P3, P1) = 6 > d(3, 1). Further, as d(1, P1) = d(2, P2) =
0, the map P does not satisfy either of the conditions studied by Moţ and Petruşel [3] and
Dhompongsa and Yingtaweesittikul [4] (see Remarks 4.2(ii)–(iii)). However, for every x, y ∈
X,H(Px, Py) ≤ ad(Tx, Ty), where a ∈ [3/5, 1), b = c = 0. So, P and T satisfy the assumption
(KSG) of Theorem 4.3 with Y = X.

The following example shows the usefulness of domain Y different from X in
Theorem 4.3.

Example 5.6. Let R be the set of real numbers, Y = C (the set of complex numbers) and X =
[0,∞). For x, y ∈ R and z = (x, y) ∈ Y, define Pz = [0, x2 + y2] and Tz = 2(x2 + y2). Then
P(Y ) ⊆ T(Y ) and P satisfies the assumption (KSG) with a = (1/2), b = c = 0. Evidently
Theorem 4.3 applies and Tz ∈ Pz for z = (0, 0).
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In view of the foregoing discussion regarding the convergence of Jungck iterates of
Suzuki class of nonexpansive pair of maps, we present the following.

Conjecture 5.7. Let C be a nonempty subset of a Banach space E and S, T : C → C satisfying
assumption (3.2). Let S(C) ⊆ T(C) and let T(C) be a compact convex subset of E. For x0 ∈ C, define
a sequence {Txn} such that

Txn+1 = λSxn + (1 − λ)Txn, n = 0, 1, 2, . . . , (5.8)

where λ ∈ [1/2, 1). Then the sequence {Txn} converges to a coincidence point of S and T.

We remark that its particular case with Y = X and T the identity map is Theorem 2 of
Suzuki [6].

6. Applications

Throughout this section, we assume that U and V are Banach spaces, W ⊆ U and D ⊆ V. Let
R denote the field of reals, τ : W ×D → W,f, g : W ×D → R and G,F : W ×D × R → R.
Considering W and D as the state and decision spaces respectively, the problem of dynamic
programming reduces to the problem of solving the functional equations:

p := sup
y∈D

{
f
(
x, y

)
+G

(
x, y, p

(
τ
(
x, y

)))}
, x ∈ W, (6.1)

q := sup
y∈D

{
g
(
x, y

)
+ F

(
x, y, q

(
τ
(
x, y

)))}
, x ∈ W. (6.2)

In the multistage process, some functional equations arise in a natural way (cf.,
Bellman [19] and Bellman and Lee [20]) (see also [37–39]). In this section, we study the
existence of a common solution of the functional equations (6.1) and (6.2) arising in dynamic
programming.

Let B(W) denote the set of all bounded real-valued functions on W. For an arbitrary
h ∈ B(W), define ‖h‖ = supx∈W |h(x)|. Then (B(W), ‖ · ‖) is a Banach space. Suppose that the
following conditions hold.

(DP-1) G,F, f and g are bounded.

(DP-2a) Assume that for every (x, y) ∈ W ×D, h, k ∈ B(W) and t ∈ W,

1
2
|Kh(t) − Jh(t)| ≤ |Jh(t) − Jk(t)| (6.3)

implies

∣
∣G

(
x, y, h(t)

) −G
(
x, y, k(t)

)∣
∣ ≤ |Jh(t) − Jk(t)|, (6.4)
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where K and J are defined as follows:

Kh(x) = sup
y∈D

{
f
(
x, y

)
+G

(
x, y, h

(
τ
(
x, y

)))}
, x ∈ W, h ∈ B(W), (∗)

Jh(x) = sup
y∈D

{
g
(
x, y

)
+ F

(
x, y, h

(
τ
(
x, y

)))}
, x ∈ W, h ∈ B(W). (6.5)

(DP-2b) Let β be defined as in Section 4. Assume that there exist a, b, c ∈ [0, 1) such that
for every (x, y) ∈ W ×D,h, k ∈ B(W) and t ∈ W,

β|Kh(t) − Jh(t)| ≤ |Jh(t) − Jk(t)| (6.6)

implies

∣
∣G

(
x, y, h(t)

) −G
(
x, y, k(t)

)∣
∣ ≤ a|Jh(t) − Jk(t)| + b[|Jh(t) −Kh(t)| + |Jk(t) −Kk(t)|]

+ c[|Jh(t) −Kk(t)| + |Jk(t) −Kh(t)|],
(6.7)

where a + 2b + 2c < 1.

(DP-2c) Jh1 = Jh2 implies Kh1 = Kh2.

(DP-3) For any h ∈ B(W), there exists k ∈ B(W) such that

Kh(x) = Jk(x), x ∈ W. (6.8)

(DP-4) There exists h ∈ B(W) such that

Jh(x) = Kh(x) implies JKh(x) = KJh(x). (6.9)

Theorem 6.1. Assume that conditions (DP-1), (DP-2a), (DP-2c) and (DP-3) are satisfied. If
J(B(W)) is a compact convex subspace of B(W), then the functional equations (6.1) and (6.2) have
a conicidence bounded solution.

Proof. Let d be themetric induced by the supremumnorm onB(W). Then B(W) is a complete
metric space. By (DP-1), J and K are self-maps of B(W). Condition (DP-3) implies that
K(B(W)) ⊆ J(B(W)).

Let λ be an arbitrary positive number and h1, h2 ∈ B(W). Let x ∈ W be arbitrary and
choose y1, y2 ∈ D such that

Khj < f
(
x, yj

)
+G

(
x, yj , hj

(
xj

))
+ λ, (6.10)

where xj = τ(x, yj), j = 1, 2.
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Further,

Kh1(x) ≥ f
(
x, y2

)
+G

(
x, y2, h1(x2)

)
, (6.11)

Kh2(x) ≥ f
(
x, y1

)
+G

(
x, y1, h2(x1)

)
. (6.12)

Therefore, the first inequality in (DP-2a) becomes

1
2
|Kh1(x) − Jh1(x)| ≤ |Jh1(x) − Jh2(x)|, (6.13)

and this together with (6.10) and (6.12) implies

Kh1(x) −Kh2(x) < G
(
x, y1, h1(x1)

) −G
(
x, y1, h2(x1)

)
+ λ

≤ ∣
∣G

(
x, y1, h1(x1)

) −G
(
x, y1, h2(x1)

)∣
∣ + λ,

(6.14)

that is

Kh1(x) −Kh2(x) ≤ |Jh1(x) − Jh2(x)| + λ. (6.15)

Similarly, (6.10), (6.11) and (6.13) imply

Kh2(x) −Kh1(x) ≤ |Jh1(x) − Jh2(x)| + λ. (6.16)

So, from (6.15) and (6.16), we have

|Kh1(x) −Kh2(x)| ≤ |Jh1(x) − Jh2(x)| + λ. (6.17)

Since x ∈ W and λ > 0 is arbitrary, we find from (6.13) that

1
2
d(Kh1, Jh1) ≤ d(Jh1, Jh2) (6.18)

implies

d(Kh1, Kh2) ≤ d(Jh1, Jh2). (6.19)

Hence taking also the notice of (DP-2c), we see that Theorem 3.2(i) applies, whereinK
and J correspond, respectively, to the maps S and T So,K and J have a coincidence point h∗,
that is, h∗(x) is a bounded coincidence solution of the functional equations (6.1) and (6.2).
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Corollary 6.2. Suppose that the following conditions hold:

(i) G and f are bounded.

(ii) for every (x, y) ∈ W ×D, h, k ∈ B(W) and t ∈ W,

1
2
|h(t) −Kh(t)| ≤ |h(t) − k(t)| (6.20)

implies

∣
∣G

(
x, y, h(t)

) −G
(
x, y, k(t)

)∣
∣ ≤ |h(t) − k(t)|, (6.21)

whereK is defined by (∗). Then the functional equation (6.1) has a bounded solution inW
provided that B(W) is compact.

Proof. It comes from Theorem 6.1 when g = 0, τ(x, y) = x and F(x, y, t) = t as the
assumptions (DP-2c) and (DP-3) become redundant in this context.

We remark that Theorem 6.1 does not guarantee the existence of a common solution
even if we add to it the commutativity requirement (DP-4). Further, a solution guaranteed
by Corollary 6.2 need not be unique. These observations add importance to the following
formulation regarding the existence of a unique common bounded solution.

Theorem 6.3. Assume that conditions (DP-1), (DP-2b), (DP-3), and (DP-4) are satisfied. If
K(B(W)) or J(B(W)) is a closed convex subspace of B(W), then the functional equations (6.1)
and (6.2) have a unique common bounded solution.

Proof. Recall that (B(W), d) is a complete metric space. The self-maps J and K of B(W) are
commuting at their coincidence points by (DP-4). Proceeding as in the proof of Theorem 6.1,
we see that K and J correspond, respectively, to the maps g and T of Corollary 4.5. Hence K
and J have a unique bounded common solution h∗(x) of the functional equations (6.1) and
(6.2).
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