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Using the setting of generalized metric space, the so-called G-metric space, fixed point theorems
for mappings with a contractive and a generalized contractive iterate at a point are proved. These
results generalize some comparable results in the literature. A common fixed point result is also
proved.

1. Introduction

Sehgal in [1] proved fixed point theorem for mappings with a contractive iterate at a point
and therefore generalized a well-known Banach theorem.

Theorem 1.1. Let (X, d) be a complete metric space and let T : X → X be a continuous mapping
with property that for every x ∈ X there exists n(x) ∈ N so that for every y ∈ X

d
(
Tn(x)x, Tn(x)y

)
≤ q · d(x, y), where q ∈ [0, 1). (1.1)

Then T has a unique fixed point u in X and limkT
k(x0) = u, for each x0 ∈ X.

Guseman [2] extended Sehgal’s result by removing the condition of continuity of T
and weakening (1.1) to hold on some subset B of X such that T(B) ⊆ B, where, for some
x0 ∈ B, B contains the closure of the iterates of x0. Further extensions appear in [3, 4]. Our
aim in this study is to show that these results are valid in more general class of spaces.

In 1963, S. Gähler introduced the notion of 2-metric spaces but different authors proved
that there is no relation between these two function and there is no easy relationship between
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results obtained in the two settings. Because of that, Dhage [5] introduced a new concept of
the measure of nearness between three or more object. But topological structure of so called
D-metric spaces was incorrect. Finally, Mustafa and Sims [6] introduced correct definition of
generalized metric space as follows.

Definition 1.2 (see [6]). Let X be a nonempty set, and let G : X × X × X → R
+ be a function

satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z;

(G2) 0 < G(x, x, y); for all x, y ∈ X, with x /=y;

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X, with z/=y;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all three variables);

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X.

Then the function G is called a generalized metric, or, more specifically, a G-metric on X, and
the pair (X,G) is called a G-metric space.

Clearly these properties are satisfied when G(x, y, z) is the perimeter of triangle with
vertices at x, y, and z ∈ R

2, moreover taking a in the interior of the triangle shows that (G5)
is the best possible.

Example 1.3. Let (X, d) be an ordinary metric apace, then (X, d) can defineG-metrics onX by

(Es) Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z),

(Em) Gm(x, y, z) = max{d(x, y), d(y, z), d(x, z)}.

Example 1.4 (see [6]). Let x = {a, b}. Define G on X ×X ×X by

G(a, a, a) = G(b, b, b) = 0, G(a, a, b) = 1, G(a, b, b) = 2, (1.2)

and extend G to X ×X ×X by using the symmetry in the variables. Then it is clear the (X,G)
is a G-metric space.

Definition 1.5 (see [6]). Let (X,G) be a G-metric space, and let {xn} be sequence of points of
X, a point x ∈ X is said to be the limit of the sequence {xn}, if limn,m→∞G(x, xn, xm) = 0, and
one says that the sequence {xn} is G-convergent to x

Thus, if xn → x in a G-metric space (X,G), then for any ε > 0, there existsN ∈ N such
that G(x, xn, xm) < ε, for all n,m ≥ N.

Definition 1.6 (see [6]). Let (X,G) be a G-metric space, a sequence {xn} is called G-Cauchy
if for every ε > 0, there is N ∈ N such that G(xn, xm, xl) < ε, for all n,m, l ≥ N; that is, if
G(xn, xm, xl) → 0 as n,m, l → ∞.

A G-metric space (X,G) is said to be G-complete (or complete G-metric) if every G-
Cauchy sequence in (X,G) is G-convergent in (X,G).

Proposition 1.7 (see [6]). Let (X,G) be a G-metric space, then the function G(x, y, z) is jointly
continuous in all three of its variables.
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Definition 1.8 (see [6]). A G-metric space (X,G) is called symmetric G-metric space if
G(x, y, y) = G(y, x, x), for all x, y ∈ X.

Proposition 1.9 (see [6]). Every G-metric space (X,G) will define a metric space (X, dG) by

dG

(
x, y

)
= G

(
x, y, y

)
+G

(
y, x, x

)
, ∀x, y ∈ X. (1.3)

Note that if (X,G) is a symmetric G-metric space, then

dG

(
x, y

)
= 2G

(
x, y, y

)
, ∀x, y ∈ X. (1.4)

However, if (X,G) is nonsymmetric, then by the G-metric properties it follows that

3
2
G
(
x, y, y

) ≤ dG

(
x, y

) ≤ 3G
(
x, y, y

)
, ∀x, y ∈ X, (1.5)

and that in general these inequalities cannot be improved.

Proposition 1.10 (see [6]). A G-metric space (X,G) is G-complete if and only if (X, dG) is a
complete metric space.

In recent years a lot of interesting papers were published with fixed point results in G-
metric spaces, see [7–18]. This paper is our contribution to the fixed point theory in G-metric
spaces.

2. Fixed Point Results

Let (X,G) be a G-metric space, f : X → X a mapping, B ⊆ X such that for some q ∈ (0, 1)
and each for x ∈ B there exists a positive integer n = n(x) such that

G
(
fn(x)(z), fn(x)(x), fn(x)(x)

)

≤ q ·max
{
G(z, x, x), G

(
z, fn(x)(x), fn(x)(x)

)
, G

(
fn(x)(z), x, x

)} (2.1)

for all z ∈ B. Then we write f ∈ 〈1〉. If

G
(
fn(x)(z), fn(x)(x), fn(x)(x)

)

≤ q ·max
{
G(z, x, x),

1
2

[
G
(
z, fn(x)(z), fn(x)(z)

)
+G

(
x, fn(x)(x), fn(x)(x)

)]
,

1
2

[
G
(
z, fn(x)(x), fn(x)(x)

)
+G

(
fn(x)(z), x, x

)]}
(2.2)

for all z ∈ B, we write f ∈ 〈2〉.
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Theorem 2.1. Let f ∈ 〈1〉 or f ∈ 〈2〉. Let B ⊆ X, with f(B) ⊆ B. If there exists u ∈ B such that for
n = n(u), fn(u) = u, then u is the unique fixed point of f in B. Moreover, fk(y0) → u, k → ∞, for
any y0 ∈ B for f ∈ 〈1〉, and for f ∈ 〈2〉 if q < 2/3.

Proof. If (X,G) is a symmetric space than dG(z, x) = 2G(z, x, x) and (2.1) becomes

dG

(
fn(x)(z), fn(x)(x)

)
≤ qmax

{
dG(z, x), dG

(
z, fn(x)(x)

)
, dG

(
x, fn(x)(z)

)}
, (2.3)

and (2.2) becomes

dG

(
fn(x)(z), fn(x)(x)

)
≤ qmax

{
dG(z, x),

1
2

[
dG

(
z, fn(x)(z)

)
+ dG

(
x, fn(x)(x)

)]
,

1
2

[
dG

(
z, fn(x)(x)

)
+ dG

(
x, fn(x)(z)

)]}
,

(2.4)

thus the result follows from Theorem 12 in [3] and it is valid for any q < 1. Suppose now that
(X,G) is nonsymmetric space. Then by inequality (1.5)we have that (2.1) becomes

G
(
fn(x)(z), fn(x)(x), fn(x)(x)

)

≤ 2q ·max
{
G(z, x, x), G

(
z, fn(x)(x), fn(x)(x)

)
, G

(
fn(x)(z), x, x

)}
,

(2.5)

and (2.2) becomes

G
(
fn(x)(z), fn(x)(x), fn(x)(x)

)

≤ 2q ·max
{
G(z, x, x),

1
2

[
G
(
z, fn(x)(z), fn(x)(z)

)
+G

(
x, fn(x)(x), fn(x)(x)

)]
,

1
2

[
G
(
z, fn(x)(x), fn(x)(x)

)
+G

(
fn(x)(z), x, x

)]}
.

(2.6)

Since 2q need not be less then 1 we can use metric fixed point results only for q < 1/2.
On the other side, using the concept of G-metric space, we are going to prove the result, if the
first case for any 0 < q < 1, and in the second one for 0 < q < 2/3. This means that our results
are real generalization in the case of nonsymmetric G-metric spaces.

Let f ∈ 〈1〉. Uniqueness follows from (2.1), since for fn(z) = z, it follows that
G(z, u, u) = G(fn(z), fn(u), fn(u)) ≤ qG(z, u, u). Now fn(f(u)) = f(u) implies that f(u) = u.
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Let y0 ∈ B, and assume fm(y0)/=u for eachm. Form sufficiently large writem = kn+r,
k ≥ 1, and 1 ≤ r < n. Then

G
(
fm(y0

)
, u, u

)
= G

(
fkn+r(y0

)
, fn(u), fn(u)

)

≤ qmax
{
G
(
f (k−1)n+r(y0

)
, u, u

)
, G

(
f (k−1)n+r(y0

)
, fn(u), fn(u)

)
,

G
(
fm(y0

)
, u, u,

)}

= qG
(
f (k−1)n+r(y0

)
, u, u

)
≤ · · · ≤ qkG

(
fr(y0

)
, u, u

)

≤ qk max
{
G
(
fp(y0

)
, u, u

)
: 1 ≤ p < n

}
,

(2.7)

so G(fm(y0), u, u) → 0, m → ∞.
If f ∈ 〈2〉, uniqueness follows from (2.2) since for fn(z) = z, it follows thatG(z, u, u) =

G(fn(z), fn(u), fn(u)) ≤ qmax{G(z, u, u), 0} and further f(u) = u. Now for any y0 ∈ B

G
(
fm(y0

)
, u, u

)
= G

(
fkn+r(y0

)
, fn(u), fn(u)

)
≤ qM

(
y0, m, u

)
, (2.8)

where

M
(
y0, m, u

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G
(
f (k−1)n+r(y0

)
, u, u

)
,

1
2
[
G
(
f (k−1)n+r(y0

)
, fm

(
y0
)
, fm

(
y0
))

+ 0
]
,

1
2
[
G
(
f (k−1)n+r(y0

)
, u, u

)
+G

(
fm

(
y0
)
, u, u

)]
.

(2.9)

For M(y0, m, u) = (1/2)[G(f (k−1)n+r(y0), u, u) +G(fm(y0), u, u)] we have

1
2
G
(
f (k−1)n+r(y0

)
, u, u

)
<

1
2
G
(
fm(y0

)
, u, u

)
,

1
2
G
(
fm(y0

)
, u, u

)
<

1
2
G
(
f (k−1)n+r(y0

)
, u, u

) (2.10)

which is a contradiction, and therefore

M
(
y0, m, u

)
= max

{
G
(
f (k−1)n+r(y0

)
, u, u

)
,
1
2
G
(
f (k−1)n+r(y0

)
, fm(y0

)
, fm(y0

))}
. (2.11)
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IfM(y0, m, u) = (1/2)G(f (k−1)n+r(y0), fm(y0), fm(y0)) then

G
(
fm(y0

)
, u, u

) ≤ q

2
G
(
f (k−1)n+r(y0

)
, u, u

)
+ qG

(
u, u, fm(y0

))
. (2.12)

So

2
(
1 − q

)
G
(
fm(y0

)
, u, u

) ≤ qG
(
f (k−1)n+r(y0

)
, u, u

)
. (2.13)

Therefore, G(fm(y0), u, u) ≤ hG(f (k−1)n+r(y0), u, u), where h = max{q, q/2(1 − q)}. For h < 1,
G(fm(y0), u, u) → ∞,m → ∞.

For f : X → X the set O(f ;x0) = {fn(x0) : n ∈ N} is called the orbit for x0 ∈ X.

Theorem 2.2. Let (X,G) be a complete G-metric space and let f : X → X be a mapping. Suppose
that for some x0 ∈ X the orbitO(f ;x0) is complete, and that: for some q ∈ [0, 1) and each x ∈ O(f ;x0)
there is an integer n(x) ≥ 1 such that

G
(
fn(x)(z), fn(x)(x), fn(x)(x)

)
≤ q ·G(z, x, x) (2.14)

for all z ∈ O(f ;x0).
Then xk = fn(xk−1)(xk−1), k ∈ N, converges to some u ∈ X and for allm, k ∈ N, m > k

G(xk, xk, xm) ≤
qk

(
1 − q

)2 max
{
G
(
fp(x0), x0, x0

)
: 1 ≤ p ≤ n(x0)

}
(2.15)

If inequality in (2.14) holds for all x ∈ O(f ;x0), then fn(u)(u) = u and fk(x0) → u,k → ∞.
Moreover, if f(O(f ;x0)) ⊆ O(f ;x0), then u is the fixed point of f .

Proof. If (X,G) is a symmetric G-metric space the statement easily follows from Guseman
fixed point result [2]. Let (X,G) be nonsymmetric G-metric space. Then by inequality (1.5)

dG

(
fn(x)(z), fn(x)(x)

)
≤ 2qdG(z, x). (2.16)

Thus, one can use the fixed point result in metric space only for q < 1/2. But here, using the
concept of G-metric, we prove the result for any 0 < q < 1. At first let us show that

sup
m

G
(
fm(x0), x0, x0

)
= M < +∞. (2.17)
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For any m ∈ N, sufficiently large, there exist k, r ∈ N, 1 ≤ r ≤ n(x0) − 1 such that
m = k · n(x0) + r. Then

G
(
fm(x0), x0, x0

) ≤ G
(
fkn(x0)+r(x0), fn(x0)(x0), fn(x0)(x0)

)
+G

(
fn(x0)(x0), x0, x0

)

≤ qG
(
f (k−1)n(x0)+r(x0), x0, x0

)
+G

(
fn(x0)(x0), x0, x0

)

≤ qG
(
f (k−1)n(x0)+r(x0), fn(x0)(x0), fn(x0)(x0)

)
+
(
1 + q

)
G
(
fn(x0)(x0), x0, x0

)

≤ q2G
(
f (k−2)n(x0)+r(x0), x0, x0

)
+
(
1 + q

)
G
(
fn(x0)(x0), x0, x0

)
≤ · · ·

≤ qkG
(
fr(x0), x0, x0

)
+
(
1 + q + · · · + qk−1

)
G
(
fn(x0)(x0), x0, x0

)

≤ 1
1 − q

max
{
G
(
fp(x0), x0, x0

)
: 1 ≤ p ≤ n(x0)

}
= M < +∞.

(2.18)

Now, for each k ∈ N

G(xk, xk, xk+1) = G
(
fn(xk−1)(xk−1), fn(xk−1)(xk−1), fn(xk)fn(xk−1)(xk−1)

)

≤ qG
(
xk−1, xk−1, fn(xk)(xk−1)

)
≤ · · ·

≤ qkG
(
x0, x0, f

n(xk)(x0)
)
≤ qkM.

(2.19)

For all m, k ∈ N, m > k, it follows that

G(xk, xk, xm) ≤ G(xk, xk, xk+1) +G(xk+1, xk+1, xk+2) + · · · +G(xm−1, xm−1, xm) ≤
qk

1 − q
M,

(2.20)

so {xk} is Cauchy sequence and there exists u = limkxk, for some u ∈ X, and inequality (2.15)
is proved.

If we suppose that inequality in (2.14) is satisfied for all x ∈ O(f ;x0), then, for all
k ∈ N,

G
(
fn(u)(u), fn(u)(u), fn(u)(xk)

)
≤ qG(u, u, xk) (2.21)

so limkf
n(u)(xk) = fn(u)(u).

On the other hand,

G
(
fn(u)(xk), xk, xk

)
= G

(
fn(u)fn(xk−1)(xk−1), fn(xk−1)(xk−1), fn(xk−1)(xk−1)

)

≤ qG
(
fn(u)(xk−1), xk−1, xk−1

)
≤ · · · ≤ qkG

(
fn(u)(x0), x0, x0

) (2.22)

implies that limkG(fn(u)(xk), xk, xk) = 0.
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Since G is continuous it means that

G
(
fn(u)(u), u, u

)
= 0. (2.23)

Hence fn(u)(u) = u.
Now, let us suppose that f(O(f ;x0)) ⊆ O(f ;x0). Since f ∈ 〈1〉 by Theorem 2.1 u is the

fixed point of f in X and limkf
k(x0) = u.

For n(x) = 1, in inequality (2.14) independently on x, we are going to simplify the
proof and to relax the condition in (2.14).

Corollary 2.3. Let (X,G) be a complete G-metric apace and let f : X → X. Suppose that there exist
a point x0 ∈ X and q ∈ [0, 1) with O(f ;x0) complete and

G
(
f(z), f(x), f(x)

) ≤ qG(z, x, x) (2.24)

for each x, z = f(x) ∈ O(f ;x0). Then {fk(x0)} converges to some point u ∈ X and for all k,m ∈ N,
m > k,

G(xk, xk, xm) ≤
qk

1 − q
G
(
x0, x0, f(x0)

)
. (2.25)

If (2.24) holds, for all x ∈ O(f ;x0) or f is orbitally continuous at u, then u is a fixed point of f .

Proof. If (X,G) is a symmetric space than dG(x, z) = 2G(z, x, x) so (2.24) becomes

dG

(
f(z), f(x)

) ≤ qdG(z, x), (2.26)

and result follows from Theorem 2 in [19].
Now, let (X,G) be a nonsymmetric G-metric space. Then since xk = f(xk−1), k ∈ N,

G(xk, xk, xk+1) ≤ qG(xk−1, xk−1, xk) ≤ · · · ≤ qkG
(
x0, x0, f(x0)

)
, (2.27)

so for all m, k ∈ N, m > k,

G(xk, xk, xm) ≤
qk

1 − q
G
(
x0, x0, f(x0)

)
, (2.28)

and there exists u = limkxk. If (2.24) holds for all x ∈ O(f ;x0), then by Theorem 2.2, since
n(u) = 1, it follows that f(u) = u.

The fact that f is orbitally continuous at x = u, and that limkf
k(x0) = u, implies that

limkf
k+1(x0) = f(u), and therefore u = f(u).
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Remark 2.4. Let us note that this result is very close to Theorem 2.1 in [8].

Remark 2.5. In the statements above f does not have to be continuous.

The next theorems are generalizations of Ćirić fixed point results in [4].

Theorem 2.6. Let (X,G) be a complete metric space and T : X → X a mapping. Suppose that for
each x ∈ X there exists a positive integer n = n(x) such that

G
(
Tnx, Tnx, Tny

)

≤ q max
{
G
(
x, x, y

)
, G

(
x, x, Ty

)
, . . . , G

(
x, x, Tny

)
,
1
2
[G(x, x, Tnx) +G(x, Tnx, Tnx)]

}

(2.29)

holds for some q < 2/3 and all y ∈ X. Then T has a unique fixed point u ∈ X. Moreover, for every
x ∈ X, limmT

m(x) = u.

Proof. If (X,G) is a symmetric space then dG(x, y) = 2G(x, x, y) and inequality (2.29) becomes

dG

(
Tnx, Tny

) ≤ qmax
{
dG

(
x, y

)
, dG

(
x, Ty

)
, . . . , dG(x, Tnx)

}
, (2.30)

for all y ∈ X. Then the result follows from Theorem 2.1 in [4] and it is true for all q < 1.
Now suppose that (X,G) is nonsymmetric space. Then, by definition of the metric dG

and inequality (1.5)we have

dG

(
Tnx, Tny

) ≤ 2qmax
{
dG

(
x, y

)
, dG

(
x, Ty

)
, . . . , dG

(
x, Tny

)
, dG(x, Tnx)

}
. (2.31)

But 2q need not to be less than 1, so we will prove the statement by using G-metric.
First, let us prove prove that

G(x, x, Tmx) ≤ 1
1 − q

b(x), m = 1, 2, . . . , (2.32)

where

b(x) = max
{
G(x, x, Tx), G

(
x, x, T2x

)
, . . . , G(x, x, Tnx),

1
2
[G(x, x, Tnx) +G(x, Tnx, Tnx)]

}
.

(2.33)

Clearly (2.32) is true for m = 1, 2, . . . , n. Suppose that m > n, and that (2.32) is true for i ≤ m
and let us prove it for i = m + 1. Let m + 1 − n = r. Now

G
(
x, x, Tm+1x,

)
≤ G(x, x, Tnx) +G

(
Tnx, Tnx, Tm+1x

)
,

G
(
Tnx, Tnx, Tm+1x

)
≤ qb(x),

(2.34)
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where

b(x) = max
{
G(x, x, Trx), G

(
x, x, Tr+1x

)
, . . . , G(x, x, Tr+nx),

1
2
[G(x, x, Tnx) +G(x, Tnx, Tnx)]

}
.

(2.35)

If b(x) = G(x, x, Tn+r), then (2.34) imply

G
(
x, x, Tm+1x

)
≤ 1

1 − q
G(x, x, Tnx) ≤ 1

1 − q
b(x). (2.36)

If b(x)/=G(x, x, Tn+r), then (2.34) imply

G
(
x, x, Tm+1x

)
≤ G(x, x, Tnx) +

q

1 − q
b(x) ≤ 1

1 − q
b(x). (2.37)

Thus by induction we obtain (2.32).
Let us prove that {Tmx}m is a Cauchy sequence. Let x0 = x, n0 = n(x0), x1 = Tn0x0, and

we define inductively a sequence of integers and a sequence of points {xk}k in X as follows:
nk = n(xk), and xk+1 = Tnkxk, k = 0, 1, . . .. Evidently, {xk}k is a subsequence of the orbit
{Tmx0}m. Using this sequence we will prove that {Tmx0}m is a Cauchy sequence.

Let xk be any fixed member of {xk}k and let xp = Tpx0 and xq = Tqx0 be any two
members of the orbit which follow after xk. Then xp = Trxk and xq = Tsxk for some r and s,
respectively. Now, using (2.29) we get

G
(
xk, xk, xp

)
= G

(
Tnk−1xk−1, Tnk−1xk−1, Tnk−1Trxk−1

)
≤ 3

2
qG(xk−1, xk−1, Tr1xk−1), (2.38)

where

G(xk−1, xk−1, Tr1xk−1)

= max
{
G(xk−1, xk−1, Trxk−1), G

(
xk−1, xk−1, Tr+1xk−1

)
, . . . ,

G(xk−1, xk−1, Tr+nk−1xk−1), G(xk−1, xk−1, Tnk−1xk−1)
}
.

(2.39)

Similarly, G(xk−1, xk−1, Tr1xk−1) ≤ (3/2)qG(xk−2, xk−2, Tr2xk−2), where

G(xk−2, xk−2, Tr2xk−2) = max{G(xk−2, xk−2, Tr1xk−2), . . . , G(xk−2, xk−2, Tnk−2xk−2)} (2.40)

Repeating this argument k times we get

G
(
xk, xk, xp

) ≤
(
3
2
q

)k

G(x0, x0, T
rkx0). (2.41)
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Hence G(xk, xk, xp) ≤ ((3/2)q)kb(x0). Similarly G(xk, xk, xq) ≤ ((3/2)q)kb(x0), so

G
(
xp, xp, xq

) ≤ 2G
(
xk, xk, xp

)
+G

(
xk, xk, xq

) ≤
(
3
2
q

)k

· 3b(x0). (2.42)

Since q < 2/3, it follows that {Tmx0}m is a Cauchy sequence. Let limmT
m(x0) = u ∈ X.

We show that u is a fixed point of T . First, let us prove that Tnu = u, where n = n(u). For
m ≥ n = n(u), we now have

G(Tnu, Tnu, TnTmx0)

≤ qmax
{
G(u, u, Tmx0), G

(
u, u, Tm+1x0

)
, . . . , G(u, u, Tm+nx0),

1
2
[G(u, u, Tnu) +G(u, Tnu, Tnu)]

}
,

(2.43)

and on letting m tend to infinity it follows that

G(Tnu, Tnu, u) ≤ qmax
{
0,

1
2
[G(u, u, Tnu) +G(u, Tnu, Tnu)]

}
. (2.44)

For q < 2/3 we have Tnu = u.
To show that u is a fixed point of T , let us suppose that Tu/=u and let G(u, u, Tku) =

max{G(u, u, Tru) : 1 ≤ r ≤ n = n(u)}. Then

G
(
u, u, Tku

)
= G

(
Tnu, Tnu, TnTku

)

≤ qmax
{
G
(
u, u, Tku

)
, G

(
u, u, Tk+1u

)
, . . . , G

(
u, u, Tk+nu

)
, . . . ,

1
2
[G(u, u, Tnu) +G(u, Tnu, Tnu)]

}

≤ 3
2
qG

(
u, u, Tku

)
.

(2.45)

Since q < 2/3, it follows that G(u, u, Tku) = 0, which implies that u is a fixed point of T .
Let us suppose that for some z ∈ X, Tz = z. Then,

G(u, u, z) = G(Tnu, Tnu, Tnz) ≤ q max{G(u, u, z), 0} (2.46)

implies that z = u and thus u is the unique fixed point in X.
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If we suppose that T is continuous, then we may prove the following theorem.

Theorem 2.7. Let (X,G) be a complete G-metric space and let T : X → X be a continuous mapping
which satisfies the condition: for each x ∈ X there is a positive integer n = n(x) such that

G
(
Tnx, Tnx, Tny

)

≤ max
{
G
(
x, x, y

)
, G

(
x, x, Ty

)
, . . . , G

(
x, x, Tny

)
, G(x, x, Tx), . . . , G(x, x, Tnx)

} (2.47)

for some q < 1 and all y ∈ X. Then T has a unique fixed point u ∈ X and limmT
m(x) = u ∈ X, for

every x ∈ X.

Proof. Let x be an arbitrary point in X. Then, as in the proof of Theorem 2.6, the orbit {Tmx}m
is bounded and is a Cauchy sequence in the complete G-metric space X and so it has a limit
u in X. Since by the hypothesis T is continuous,

Tn(u)u = Tn(u)lim
m

Tmx = lim
m

Tm+n(u) = u. (2.48)

Therefore, u is a fixed point of Tn(u). By the same argument as in the proof of Theorem 2.6, it
follows that u is a unique fixed point of T .

Remark 2.8. The condition that T is a continuous mapping can be relaxed by the following
condition: Tn(x) is continuous at a point x ∈ X.

3. A Common Fixed Point Result

Now, we are going to prove Hadžić [20] fixed point theorem in 2-metric space, in a manner
of G-metric spaces.

Theorem 3.1. Let (X,G) be a complete G-metric space, S and T : X → X one to one continuous
mappings, A : X → SX ∩ TX continuous mapping commutative with S and T . Suppose that there
exists a point x0 ∈ X such that O(A;x0) is complete and that the following conditions are satisfied:

(i) For every x ∈ O(A;x0) there exists n(x) ∈ N so that for all z ∈ X and some q ∈ [0, 1)

G
(
An(x)z,An(x)x,An(x)x

)

≤ qmin{G(Tx, Tx, Sz), G(Tx, Sx, Tz), G(Tx, Sx, Sz), G(Sx, Sx, Tz)}.
(3.1)

(ii) There existsM > 0 such that for all z ∈ O(A;x0)

G(Sx0, Sx0, z) ≤ M < +∞. (3.2)
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Then there exists one and only one element u ∈ X such that

Au = Su = Tu = u. (3.3)

(e.g., there exists a unique common fixed point for A,S, and T)

Proof. Since AX ⊆ SX ∩ TX starting with x0 we can define the sequence {xn} ⊆ X such that

Tx2k−1 = An(x2k−2)x2k−2,

Sx2k = An(x2k−1)x2k−1.
(3.4)

Let

yn =

⎧
⎨
⎩
Tx2k−1, n = 2k − 1,

Sx2k, n = 2k,
k ∈ N. (3.5)

We are going to prove that {yn} is Cauchy sequence

G
(
y2k−1, y2k−1, y2k

)
= G

(
An(x2k−2)x2k−2, An(x2k−2)x2k−2, An(x2k−1)x2k−1

)

= G
(
An(x2k−2)x2k−2, An(x2k−2)x2k−2, An(x2k−1)T−1An(x2k−2)x2k−2

)

≤ qG
(
Sx2k−2, Sx2k−2, An(x2k−1)x2k−2

)

= qG
(
An(x2k−3)x2k−3, An(x2k−3)x2k−3, An(x2k−1)S−1An(x2k−3)x2k−3

)

≤ · · · ≤ q2k−2G
(
Tx1, Tx1, A

n(x2k−1)x1

)

= q2k−2G
(
An(x0)x0, A

n(x0)x0, A
n(x2k−1)T−1An(x0)x0

)

≤ q2k−1G
(
Sx0, Sx0, A

n(x2k−1)x0

)
≤ q2k−1M.

(3.6)

Similarly one can prove that G(y2k, y2k, y2k+1) ≤ q2kM, k ∈ N, for all m, k ∈ N, m > k,

G
(
yk, yk, ym

) ≤ G
(
yk, yk, yk+1

)
+G

(
yk+1, yk+1, ym

) ≤ · · ·

≤
m−1∑
j=k

G
(
yj, yj , yj+1

) ≤ qk

1 − q
M.

(3.7)
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Thus we proved that {yn} is a Cauchy sequence, so there exists u ∈ X such that

lim
n

yn = u. (3.8)

It obvious that limkTx2k−1 = limkSx2k = u.
At first we will prove that Au = u

G
(
y2k, y2k,Ay2k+1

)
= G(Sx2k, Sx2k,ATx2k+1)

= G
(
An(x2k−1)x2k−1, An(x2k−1)x2k−1, AAn(x2k)x2k

)

= G
(
An(x2k−1)x2k−1, An(x2k−1)x2k−1, AAn(x2k)S−1An(x2k−1)x2k−1

)

≤ qG
(
Tx2k−1, Tx2k−1, AAn(x2k)x2k−1

)

= qG
(
An(x2k−2)x2k−2, An(x2k−2)x2k−2, AAn(x2k)T−1An(x2k−2)x2k−2

)

≤ q2G
(
Sx2k−2, Sx2k−2, AAn(x2k)x2k−2

)
≤ · · ·

≤ q2kG
(
Sx0, Sx0, AAn(x2k)x0

)
≤ q2k ·M,

(3.9)

so limkG(y2k, y2k,Ay2k+1) = 0.
Now, since that G and A are continuous we have that G(u, u,Au) = 0 so Au = u.
Further, let us prove that Tu = u.

G
(
y2k, y2k, Ty2k

)
= G

(
An(x2k−1)x2k−1, An(x2k−1)x2k−1, TAn(x2k−1)x2k−1

)

≤ qG(Tx2k−1, Tx2k−1, STx2k−1)

= qG
(
An(x2k−2)x2k−2, An(x2k−2)x2k−2, SAn(x2k−2)x2k−2

)

≤ q2G(Sx2k−2, Sx2k−2, TSx2k−2)

= q2G
(
An(x2k−3)x2k−3, An(x2k−3)x2k−3, TAn(x2k−3)x2k−3

)
≤ · · ·

≤ q2kG(Sx0, Sx0, TSx0)

(3.10)

implies that

lim
k

G
(
y2k, y2k, Ty2k

)
= G(u, u, Tu) = 0, (3.11)

and Tu = u. Similarly one can see that Su = u, so we prove that

Au = Su = Tu = u. (3.12)
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If we suppose that ω is some other common fixed point for A,S, and T then we have that

G(u, u,ω) = G
(
An(u)u,An(u)u,An(u)ω

)

≤ qG(Su, Su, Tω) = qG(u, u,ω) < G(u, u,ω)
(3.13)

which is contradiction!
So, the common fixed point for A,S, and T is unique, and proof is completed.

Remark 3.2. For S = T = IdX condition (2.14) is satisfied but the Theorem 2.2 is not just a
consequence of Theorem 3.1 since in Theorem 2.2 we do not suppose that f is continuous.
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