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Some variable Krasnonsel’skiı̆-Mann iteration algorithms generate some sequences {xn}, {yn},
and {zn}, respectively, via the formula xn+1 = (1 − αn)xn + αnTN · · · T2T1xn, yn+1 = (1 − βn)yn +
βn

∑N
i=1 λiTiyn, zn+1 = (1 − γn+1)zn + γn+1T[n+1]zn, where T[n] = TnmodN and the mod function

takes values in {1, 2, . . . ,N}, {αn}, {βn}, and {γn} are sequences in (0, 1), and {T1, T2, . . . , TN} are
sequences of nonexpansive mappings. We will show, in a fairly general Banach space, that the
sequence {xn}, {yn}, {zn} generated by the above formulas converge weakly to the common
fixed point of {T1, T2, . . . , TN}, respectively. These results are used to solve the multiple-set split
feasibility problem recently introduced by Censor et al. (2005). The purpose of this paper is to
introduce convergence theorems of some variable Krasnonsel’skiı̆-Mann iteration algorithms in
Banach space and their applications which solve the multiple-set split feasibility problem.

1. Introduction

The Krasnonsel’skiı̆-Mann (K-M) iteration algorithm [1, 2] is used to solve a fixed point
equation

Tx = x, (1.1)

where T is a self-mapping of closed convex subset C of a Banach spaceX. The K-M algorithm
generates a sequence {xn} according to the recursive formula

xn+1 = (1 − αn)xn + αnTxn, (1.2)
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where {αn} is a sequence in the interval (0, 1) and the initial guess x0 ∈ C is chosen arbitrarily.
It is known [3] that ifX is a uniformly convex Banach spacewith a Frechet differentiable norm
(in particular, a Hilbert space), if T : C → C is nonexpansive, that is, T satisfies the property

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥ ∀x, y ∈ C (1.3)

and if T has a fixed point, then the sequence {xn} generated by the K-M algorithm (1.2)
converges weakly to a fixed point of T provided that {αn} fulfils the condition

∞∑

n=0

αn(1 − αn) = ∞. (1.4)

(See [4, 5] for details on the fixed point theory for nonexpansive mappings.)
Many problems can be formulated as a fixed point equation (1.1)with a nonexpansive

T and thus K-M algorithm (1.2) applies. For instance, the split feasibility problem (SFP)
introduced in [6–8], which is to find a point

x ∈ C such that Ax ∈ Q, (1.5)

where C and Q are closed convex subsets of Hilbert spacesH1 andH2, respectively, and A is
a linear bounded operator from H1 to H2. This problem plays an important role in the study
of signal processing and image reconstruction. Assuming that the SFP (1.5) is consistent (i.e.,
(1.5) has a solution), it is not hard to see that x ∈ C solves (1.5) if and only if it solves the
fixed point equation

x = PC

(
I − γA∗(I − PQ

)
A
)
x, x ∈ C, (1.6)

where PC and PQ are the (orthogonal) projections onto C and Q, respectively, γ > 0 is any
positive constant and A∗ denotes the adjoint of A. Moreover, for sufficiently small γ > 0, the
operator PC(I − γA∗(I − PQ)A)which defines the fixed point equation (1.6) is nonexpansive.

To solve the SFP (1.5), Byrne [7, 8] proposed his CQ algorithm (see also [9]) which
generates a sequence {xn} by

xn+1 = PC

(
I − γA∗(I − PQ

)
A
)
xn, n ≥ 0, (1.7)

where γ ∈ (0, 2/λ) with λ being the spectral radius of the operator A∗A. In 2005, Zhao and
Yang [10] considered the following perturbed algorithm:

xn+1 = (1 − αn)xn + αnPCn

(
I − γA∗(I − PQn

)
A
)
xn, (1.8)

where Cn and Qn are sequences of closed and convex subsets of H1 and H2, respectively,
which are convergent to C and Q, respectively, in the sense of Mosco (c.f. [11]). Motivated
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by (1.8), Zhao and Yang [10, 12] also studied the following more general algorithm which
generates a sequence {xn} according to the recursive formula

xn+1 = (1 − αn)xn + αnTnxn, (1.9)

where {Tn} is a sequence of nonexpansive mappings in a Hilbert space H, under certain
conditions, they proved convergence of (1.9) essentially in a finite-dimensional Hilbert space.
Furthermore, with regard to (1.9), Xu [13] extended the results of Zhao and Yang [10] in the
framework of fairly general Banach space.

The multiple-set split feasibility problem (MSSFP) which finds application in
intensity-modulated radiation therapy [14] has recently been proposed in [15] and is
formulated as finding a point

x ∈ C =
N⋂

i=1

Ci such that Ax ∈ Q =
M⋂

j=1

Qj, (1.10)

where N and M are positive integers, {C1, C2, . . . , CN} and {Q1, Q2, . . . , QM} are closed and
convex subsets of H1 and H2, respectively, and A is a linear bounded operator from H1 to
H2.

Assuming consistency of the MSSFP (1.10), Censor et al. [15] introduced the following
projection algorithm:

xn+1 = PΩ

⎛

⎝xn − γ

⎛

⎝
N∑

i=1

αi(xn − PCixn) +
M∑

j=1

βjA
∗
(
Axn − PQjAxn

)
⎞

⎠

⎞

⎠, (1.11)

where Ω is another closed and convex subset of H1, 0 < γ < 2/L with L =
∑N

i=1 αi +
ρ(A∗A)

∑M
j=1 βj and ρ(A∗A) being the spectral radius of A∗A, and αi > 0 for all i and βj > 0

for all j. They studied convergence of the algorithm (1.11) in the case where both H1 and H2

are finite dimensional. In 2006, Xu [13] demonstrated some projection algorithms for solving
the MSSFP (1.10) in Hilbert space as follows:

xn+1 =
[
PCN

(
I − γ∇q

)] · · · [PC1

(
I − γ∇q

]
xn, n ≥ 0,

yn+1 =
N∑

i=1

λiPCi

⎛

⎝yn − γ
M∑

j=1

βjA
∗
(
I − PQj

)
Ayn

⎞

⎠, n ≥ 0,

zn+1 = PC[n+1]

⎛

⎝zn − γ
M∑

j=1

βjA
∗
(
I − PQj

)
Azn

⎞

⎠, n ≥ 0,

(1.12)

where q(x) = (1/2)
∑M

j=1 βj‖PQjAx −Ax‖2, ∇q(x) =
∑M

j=1 βjA
∗(I − PQj )Ax, x ∈ C, and C[n] =

Cn mod N and the mod function takes values in {1, 2, . . . ,N}. This is a motivation for us to
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study the following more general algorithm which generate the sequences {xn}, {yn}, and
{zn}, respectively, via the formulas

xn+1 = (1 − αn)xn + αnTN · · · T2T1xn, (1.13)

yn+1 =
(
1 − βn

)
yn + βn

N∑

i=1

λiTiyn, (1.14)

zn+1 =
(
1 − γn+1

)
zn + γn+1T[n+1]zn, (1.15)

where T[n] = Tn mod N , {αn}, {βn}, and {γn} are sequences in (0, 1), and {T1, T2, . . . , TN} are
sequences of nonexpansive mappings. We will show, in a fairly general Banach space X, that
the sequences {xn}, {yn}, and {zn} generated by (1.13), (1.14), and (1.15) converge weakly to
the common fixed point of {T1, T2, . . . , TN}, respectively. The applications of these results are
used to solve the multiple-set split feasibility problem recently introduced by [15].

Note that, letting C be a nonempty subset of Banach space X and A, B are self-
mappings of C, we use Dρ(A,B) to denote sup{‖Ax − Bx‖ : ‖x‖ ≤ ρ}, that is,

Dρ(A,B) := sup
{‖Ax − Bx‖ : ‖x‖ ≤ ρ

}
. (1.16)

This paper is organized as follows. In the next section, we will prove a weak
convergence theorems for the three variable K-M algorithms (1.13), (1.14), and (1.15) in a
uniformly convex Banach space with a Frechet differentiable norm (the class of such Banach
spaces include Hilbert space and Lp and lp space for 1 < p < ∞). In the last section, we
will present the applications of the weak convergence theorems for the three variable K-M
algorithms (1.13), (1.14), and (1.15).

2. Convergence of Variable Krasnonsel’skiı̆-Mann Iteration Algorithm

To solve the multiple-set split feasibility problem (MSSFP) in Section 3, we firstly present
some theorems of the general variable Krasnonsel’skiı̆-Mann iteration algorithms.

Theorem 2.1. Let X be a uniformly convex Banach space with a Frechet differentiable norm, let C
be a nonempty closed and convex subset of X, and let Ti : C → C be nonexpansive mapping, i =
1, 2, . . . ,N. Assume that the set of common fixed point of {T1, T2, . . . , TN},⋂N

i=1 Fix(Ti), is nonempty.
Let {xn} be any sequence generated by (1.13), where 0 < αn < 1 satisfy the conditions

(i)
∑∞

n=0 αn(1 − αn) = ∞;

(ii)
∑∞

n=0 αnDρ(TN · · · T1, Ti) < ∞ for every ρ > 0 and i = 1, 2, . . . ,N, where Dρ(TN · · · T1,
Ti) = sup{‖TN · · · T1x − Tix‖ : ‖x‖ ≤ ρ}.

Then {xn} converges weakly to a common fixed point p of {T1, T2, . . . , TN}.
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Proof. Since Ti : C → C is nonexpansive mapping, for i = 1, 2, . . . ,N, then, the composition
TN · · · T2T1 is nonexpansive mapping from C to C. Let U := TN · · · T2T1.

Take x ∈ ⋂N
j=1 Fix(Tj) (x ∈ Fix(U)) to deduce that

‖xn+1 − x‖ ≤ (1 − αn)‖xn − x‖ + αn‖Uxn − x‖
≤ ‖xn − x‖.

(2.1)

Thus, {‖xn − x‖} is a decreasing sequence, and we have that limn→∞‖xn − x‖ exists. Hence,
{xn} is bounded, so are {Tixn}, i = 1, 2, . . . ,N, and {Uxn}. Let ρ = sup{‖xn‖, ‖Uxn − Tixn‖ :
n ≥ 0, i = 1, 2, . . . ,N} < ∞, and let r = 2ρ + ‖x‖ < ∞.

Now sinceX is uniformly convex, by [16, Theorem 2], there exists a continuous strictly
convex function ϕ, with ϕ(0) = 0, so that

∥
∥λx + (1 − λ)y

∥
∥2 ≤ λ‖x‖2 + (1 − λ)

∥
∥y

∥
∥2 − λ(1 − λ)ϕ

(∥
∥x − y

∥
∥
)
, (2.2)

for all x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r and for all λ ∈ [0, 1]. Let Uxn − Tixn, i =
1, 2, . . . ,N, be replaced by en,i (note that ‖en,i‖ ≤ Dρ(U, Ti)), and taking a constant M so that
M ≥ sup{2‖xn − x‖ + αn‖en,i‖ : n ≥ 0}, by the above (2.2), we obtain that

‖xn+1 − x‖2 = ‖(1 − αn)(xn − x + αnen,i) + αn(Tixn − x + αnen,i)‖2

≤ (1 − αn)‖xn − x + αnen,i‖2 + αn‖Tixn − x + αnen,i‖2

− αn(1 − αn)ϕ(‖xn − Tixn‖)

≤ (1 − αn)
(
‖xn − x‖2 + 2αn‖xn − x‖‖en,i‖ + α2

n‖en,i‖2
)

+ αn

(
‖Tixn − x‖2 + 2αn‖en,i‖‖Tixn − x‖ + α2

n‖en,i‖2
)

− αn(1 − αn)ϕ(‖xn − Tixn‖)

≤ ‖xn − x‖2 +MαnDρ(U, Ti) − αn(1 − αn)ϕ(‖xn − Tixn‖).

(2.3)

It follows that

αn(1 − αn)ϕ(‖xn − Tixn‖) ≤ ‖xn − x‖2 − ‖xn+1 − x‖2 +MαnDρ(U, Ti). (2.4)

Since limn→∞‖xn − x‖ exists, by condition (ii) and (2.4), it implies that

∞∑

n=1

αn(1 − αn)ϕ
(∥
∥xn − Tiyn

∥
∥
)
< ∞ (2.5)



6 Fixed Point Theory and Applications

which further implies that by (i) lim infn→∞ ϕ(‖xn − Tixn‖) = 0, hence,

lim inf
n→∞

‖xn − Tixn‖ = 0. (2.6)

On the other hand, it is not hard to deduce from (1.13) that

‖xn+1 − Tixn+1‖ = ‖(1 − αn)xn + αnUxn − Tixn+1‖

= ‖(1 − αn)xn + αnUxn − Tixn + Tixn − Tixn+1‖

≤ (1 − αn)‖xn − Tixn‖ + αn‖Uxn − Tixn‖ + ‖xn+1 − xn‖

= (1 − αn)‖xn − Tixn‖ + αn‖Uxn − Tixn‖ + αn‖xn −Uxn‖

≤ (1 − αn)‖xn − Tixn‖ + αn‖Uxn − Tixn‖

+ αn‖xn − Tixn‖ + αn‖Tixn −Uxn‖

= ‖xn − Tixn‖ + 2αn‖Uxn − Tixn‖

≤ ‖xn − Tixn‖ + 2αnDρ(Ti,U).

(2.7)

Since
∑∞

n=1 αnDρ(U, Ti) < ∞, we see that limn→∞‖xn − Tixn‖ exists. This together with (2.6)
implies that

lim
n→∞

‖xn − Tixn‖ = 0. (2.8)

The demiclosedness principle for nonexpansive mappings (see [5, 17]) implies that

ωw(xn) ⊂
N⋂

i=1

F(Ti), (2.9)

where ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.
To prove that {xn} is weakly convergent to a common fixed point p of {T1, T2, . . . , TN},

it now suffices to prove that ωw(xn) consists of exactly one point.
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Indeed, if there are x, x̃ ∈ ωw(xn)(xni ⇀ x, xmj ⇀ x̃), since limn→∞‖xn − x‖ and
limn→∞‖xn − x̃‖ exist, if x̃ /=x, then

lim
n→∞

‖xn − x̃‖2 = lim
j→∞

∥
∥
∥
(
xmj − x

)
+ (x − x̃)

∥
∥
∥
2

= lim
j→∞

∥
∥
∥xmj − x

∥
∥
∥
2
+ ‖x − x̃‖2 + 2 lim

j→∞

〈
xmj − x, x − x̃

〉

= lim
j→∞

∥
∥
∥xmj − x

∥
∥
∥
2
+ ‖x − x̃‖2

> lim
i→∞

‖xmi − x‖2 = lim
i→∞

‖xni − x‖2

= lim
i→∞

‖(xni − x̃) + (x̃ − x)‖2

= lim
i→∞

‖xni − x̃‖2 + ‖x̃ − x‖2 + 2 lim
j→∞

〈xni − x̃, x̃ − x〉

= lim
i→∞

‖xni − x̃‖2 + ‖x̃ − x‖2

> lim
i→∞

‖xni − x̃‖2 = lim
n
‖xn − x̃‖2.

(2.10)

This is a contradiction.
The proof is completed.

Theorem 2.2. Let X be a uniformly convex Banach space with a Frechet differentiable norm, let C
be a nonempty closed and convex subset of X, and let Ti : C → C be nonexpansive mapping, i =
1, 2, . . . ,N, assume that the set of common fixed point of {T1, T2, . . . , TN}, ⋂N

i=1 Fix(Ti), is nonempty.
Let {yn} be defined by (1.14), where 0 < βn < 1 satisfy the following conditions

(i)
∑∞

n=0 βn(1 − βn) = ∞;

(ii)
∑∞

n=0 βnDρ(
∑N

i=1 λiTi, Ti) < ∞ for every ρ > 0 and i = 1, 2, . . . ,N, where
Dρ(

∑N
i=1 λiTi, Ti) = sup{‖∑N

i=1 λiTix − Tix‖ : ‖x‖ ≤ ρ}.
Then {yn} converges weakly to a common fixed point q of {T1, T2, . . . , TN}.

Proof. Since Ti : C → C is a nonexpansive mapping, i = 1, 2, . . . ,N, then, it is not hard to see
that

∑N
i=1 λiTi is a nonexpansive mapping from C to C.
The remainder of the proof is the same as Theorem 2.1.
The proof is completed.

Theorem 2.3. Let X be a uniformly convex Banach space with a Frechet differentiable norm, let C be
a nonempty closed convex subset of X, and let Ti : C → C be nonexpansive mapping, i = 1, 2, . . . ,N,
assume that the set of common fixed point of {T1, T2, . . . , TN}, ⋂N

i=1 Fix(Ti), is nonempty. Let {zn} be
defined by (1.15), where 0 < γn < 1 satisfy the conditions

(i)
∑∞

n=0 γn(1 − γn) = ∞;

(ii)
∑∞

n=0 γnDρ(T[n+1], Ti) < ∞ for every ρ > 0 and i = 1, 2, . . . ,N, where Dρ(T[n+1], Ti) =
sup{‖T[n+1]x − Tix‖ : ‖x‖ ≤ ρ}.

Then {zn} converges weakly to a common fixed point w of {T1, T2, . . . , TN}.
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Proof. Since T[n] = Tn mod N and {T1, T2, . . . , TN} is a sequence of nonexpansive mappings from
C to C, so, the proof of this theorem is similar to Theorems 2.1 and 2.2.

The proof is completed.

3. Applications for Solving the Multiple-Set Split
Feasibility Problem (MSSFP)

Recall that a mapping T in a Hilbert space H is said to be averaged if T can be written as
(1 − λ)I + λS, where λ ∈ (0, 1) and S is nonexpansive. Recall also that an operator A in H is
said to be γ-inverse strongly monotone (γ-ism) for a given constant γ > 0 if

〈
x − y, Ax −Ay

〉 ≥ γ
∥
∥Ax −Ay

∥
∥2

, ∀x, y ∈ H. (3.1)

A projection PK ofH onto a closed convex subsetK is both nonexpansive and 1-ism. It is also
known that a mapping T is averaged if and only if the complement I − T is γ-ism for some
γ > 1/2; see [8] for more property of averaged mappings and γ-ism.

To solve the MSSFP (1.10), Censor et al. [15] proposed the following projection
algorithm (1.11), the algorithm (1.11) involves an additional projection PΩ. Though the
MSSFP, (1.10) includes the SFP (1.5) as a special case, which does not reduced to (1.7), let
alone (1.8). In this section, we will propose some new projection algorithms which solve
the MSSFP (1.10) and which are the application of algorithms (1.13), (1.14), and (1.15) for
solving the MSSFP. These projection algorithms can also reduce to the algorithm (1.8) when
the MSSFP (1.10) is reduced to the SFP (1.5).

The first one is a K-M type successive iteration method which produces a sequence
{xn} by

xn+1 = (1 − αn)xn + αn

[
PCN

(
I − γ∇q

)] · · · [PC1

(
I − γ∇q

]
xn, n ≥ 0. (3.2)

Theorem 3.1. Assume that the MSSFP (1.10) is consistent. Let {xn} be the sequence generated by
the algorithm (3.2), where 0 < γ < 2/L with L = ‖A‖2 ∑M

j=1 βj and 0 < αn < 1 satisfy the condition:
∑∞

n=0 αn(1 − αn) = ∞. Then {xn} converges weakly to a solution of the MSSFP (1.10).

Proof. Let Ti := PCi(I − γ∇q), i = 1, 2, . . . ,N.
Hence,

U = TN · · · T1 =
[
PCN

(
I − γ∇q

)] · · · [PC1

(
I − γ∇q

)]
. (3.3)

Since

∇q(x) =
M∑

j=1

βjA
∗
(
I − PQj

)
Ax, x ∈ C, (3.4)

and I − PQj is nonexpansive, it is easy to see that ∇q is L-Lipschitzian, with L = ‖A‖2 ∑M
j=1 βj .

Therefore, ∇q is (1/L)-ism [18]. This implies that for any 0 < γ < 2/L, I − γ∇q is
averaged. Hence, for any closed and convex subset K of H1, the composite PK(I − γ∇q) is
averaged.

SoU = TN · · · T1 = [PCN (I−γ∇q)] · · · [PC1(I−γ∇q)] is averaged, thusU is nonexpansive.
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By the position 2.2 [8], we see that the fixed point set ofU, Fix(U), is the common fixed
point set of the averaged mappings {TN · · · T1}.

By Reich [3], we have {xn} converges weakly to a fixed point of U which is also a
common fixed point of {TN · · · T1} or a solution of the MSSFP (1.10).

The proof is completed.

The second algorithm is also a K-M type method which generates a sequence {yn} by

yn+1 =
(
1 − βn

)
yn + βn

N∑

i=1

λiPCi

⎛

⎝yn − γ
M∑

j=1

βjA
∗
(
I − PQj

)
Ayn

⎞

⎠, n ≥ 0. (3.5)

Theorem 3.2. Assume that the MSSFP (1.10) is consistent. Let {xn} be any sequence generated by
the algorithm (3.5), where 0 < γ < 2/L with L = ‖A‖2 ∑M

j=1 βj and 0 < βn < 1 satisfy the condition:
∑∞

n=0 βn(1 − βn) = ∞. Then {yn} converges weakly to a solution of the MSSFP (1.10).

Proof. From the proof of Theorem 3.1, it is easy to know that Ti := PCi(I − γ∇q) is averaged,
so, the convex combination S :=

∑N
i=1 λiTi is also averaged.

Thus S is nonexpansive.
By Reich [3], we have {yn} converges weakly to a fixed point of S.
Next, we only need to prove the fixed point of S is also the common fixed point of

{TN · · · T1}which is the solution of the MSSFP (1.10), that is, Fix(S) =
⋂N

i=1 Fix(Ti).
Indeed, it suffices to show that

⋂N
n=1 Fix(Ti) ⊃ Fix(

∑N
i=1 λiTi).

Pick an arbitrary x ∈ Fix(
∑N

i=1 λiTi), thus
∑N

i=1 λiTix = x. Also pick a y ∈ Fix(
⋂N

n=1 Ti),
thus Tiy = y, i = 1, 2, . . . ,N.

Write Ti = (1 − βi)I + βiT̃i, i = 1, 2, . . . ,N with βi ∈ (0, 1) and T̃i is nonexpansive.
We claim that if z is such that Tiz /= z, then ‖Tix − y‖ < ‖x − y‖, i = 1, 2, . . . ,N.
Indeed, we have

∥
∥Tiz − y

∥
∥2 =

∥
∥
∥
(
1 − βi

)(
z − y

)
+ βi

(
T̃iz − y

)∥
∥
∥
2

=
(
1 − βi

)∥
∥z − y

∥
∥2 + βi

∥
∥
∥T̃iz − y

∥
∥
∥
2 − βi

(
1 − βi

)∥∥
∥z − T̃iz

∥
∥
∥
2

≤ ∥
∥z − y

∥
∥2 − (

1 − βi
)‖z − Tiz‖2

<
∥
∥z − y

∥
∥2

, as ‖z − Tiz‖ > 0.

(3.6)

If we can show that Tix = x, then we are done. So assume that Tx /=x. Now since
∑N

i=1 λiTix =
x /= Tx, we have

∥
∥x − y

∥
∥ =

∥
∥
∥
∥
∥

N∑

i=1

λiTix − y

∥
∥
∥
∥
∥

≤
N∑

i=1

λi
∥
∥Tix − y

∥
∥

<
∥
∥x − y

∥
∥.

(3.7)
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This is a contradiction. Therefore, wemust have Tix = x, i = 1, 2, . . . ,N, that is,
⋂N

n=1 Fix(Ti)x =
x.

This proof is completed.

We now apply Theorem 2.3 to solve the MSSFP (1.10). Recall that the ρ-distance
between two closed and convex subsets E1 and E2 of a Hilbert space H is defined by

dρ(E1, E2) = sup
‖x‖≤ρ

{‖PE1x − PE2x‖}. (3.8)

The third method is a K-M type cyclic algorithm which produces a sequence {zn} in
the following manner: apply T1 to the initial guess z0 to get z1 = (1 − γ1)z0 + γ1PC1(z0 −
γ
∑M

j=1 βjA
∗(I −PQj )Az0), next apply T2 to z1 to get z2 = (1− γ2)z1 + γ2PC2(z1 − γ

∑M
j=1 βjA

∗(I −
PQj )Az1), and continue this way to get zN = (1 − γN)z0 + γNPCN (zN−1 − γ

∑M
j=1 βjA

∗(I −
PQj )AzN−1); then repeat this process to get zN+1 = (1 − γN+1)z0 + γNPC1(zN − γ

∑M
j=1 βjA

∗(I −
PQj )AzN), and so on. Thus, the sequence {zn} is defined and we write it in the form

zn+1 =
(
1 − γn+1

)
z0 + γn+1PC[n+1]

⎛

⎝zn − γ
M∑

j=1

βjA
∗
(
I − PQj

)
Azn

⎞

⎠, n ≥ 0, (3.9)

where C[n] = Cn mod N .

Theorem 3.3. Assume that the MSSFP (1.10) is consistent. Let {xn} be the sequence generated by
the algorithm (3.9), where 0 < γ < 2/L with L = ‖A‖2 ∑M

j=1 βj and 0 < γn < 1 satisfy the following
conditions:

(i)
∑∞

n=0 γn(1 − γn) = ∞;

(ii)
∑∞

n=0 γndρ(C[n+1], Ci) < ∞ and
∑∞

n=0 γndρ(Q[n+1], Qi) < ∞ for each ρ > 0, i =
1, 2, . . . ,N.

Then {zn} converges weakly to a solution of the MSSFP (1.10).

Proof. From the proof of application (3.2), it is easy to verify that Ti := PCi(I−γ∇q) is averaged,
so, T[n+1] := Tn+1 mod N is also averaged.

Thus T[n+1] is nonexpansive.
The projection iteration algorithm (3.9) can also be written as

zn+1 =
(
1 − γn+1

)
zn + γn+1T[n+1]zn. (3.10)

Given ρ > 0, let

ρ̃ = sup
{
max

{‖Ax‖, ∥∥x − γA∗(I − PQ

)
Ax

∥
∥
}
: ‖x‖ ≤ ρ

}
< ∞. (3.11)
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We compute, for x ∈ H1, such that ‖x‖ ≤ ρ,

∥
∥T[n+1]x − Tix

∥
∥

≤ ∥
∥PC[n+1]

(
x − γA∗(I − PQ[n+1]

)
Ax

) −PC[n+1]

(
x − γA∗(I − PQi

)
Ax

)∥
∥

+
∥
∥PC[n+1]

(
x − γA∗(I − PQi

)
Ax

) −PCi

(
x − γA∗(I − PQi

)
Ax

)∥
∥

≤ ∥
∥PC[n+1]

(
x − γA∗(I − PQi

)
Ax

) −PCi

(
x − γA∗(I − PQi

)
Ax

)∥
∥

+ γ
∥
∥A∗(PQ[n+1]Ax − PQiAx

)∥
∥

≤ dρ̃

(
C[n+1], Ci

)
+ γ‖A‖dρ̃

(
Q[n+1], Qi

)
.

(3.12)

This shows that

Dρ

(
T[n+1], Ti

) ≤ dρ̃

(
C[n+1], Ci

)
+ γ‖A‖dρ̃

(
Q[n+1], Qi

)
. (3.13)

It then follows from condition (ii) that

∞∑

n=0

γnDρ

(
T[n+1], Ti

) ≤
∞∑

n=0

γndρ̃

(
C[n+1], Ci

)
+

∞∑

n=0

γndρ̃

(
Q[n+1], Qi

)
< ∞. (3.14)

Now we cam apply Theorem 2.3 to conclude that the sequence {zn} given by the
projection Algorithm (3.9) converges weakly to a solution of the MSSFP (1.10).

The proof is completed.

Remark 3.4. The algorithms (3.12), (3.13), and (3.15) of Xu [13] are some projection algorithms
for solving the MSSEP (1.10), which are concrete projection algorithms. In this paper, firstly,
we present some general variable K-M algorithms (1.13), (1.14), and (1.15), and prove the
weak convergence for them in Section 2. Secondly, through the applications of the weak
convergence for three general variable K-M algorithms (1.13), (1.14), and (1.15), we solve
the MSSEP (1.10) by the algorithms (3.2), (3.5), and (3.9).
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