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We show some geometric conditions on a Banach space X concerning the Jordan-von Neumann
constant, Zbăganu constant, characteristic of (separation) noncompact convexity, and the
coefficient R(1, X), the weakly convergent sequence coefficient, which imply the existence of fixed
points for multivalued nonexpansive mappings.

1. Introduction

Fixed point theory for multivalued mappings has many useful applications in Applied
Sciences, in particular, in game theory and mathematical economics. Thus it is natural to
try of extending the known fixed point results for single-valued mappings to the setting of
multivalued mappings.

In 1969, Nadler [1] established the multivalued version of Banach’s contraction
principle. One of the most celebrated results about multivalued mappings was given by
Lim [2] in 1974. Using Edelstein’s method of asymptotic centers, he proved the existence
of a fixed point for a multivalued nonexpansive self-mapping T : C → K(C) where C is a
nonempty bounded closed convex subset of a uniformly convex Banach space. Since then the
metric fixed point theory of multivalued mappings has been rapidly developed. Some other
classical fixed point theorems for single-valuedmappings have been extended tomultivalued
mappings. However, many questions remain open, for instance, the possibility of extending
the well-known Kirk’s theorem, that is, do Banach spaces with weak normal structure have
the fixed point property (FPP, in short) for multivalued nonexpansive mappings?

Since weak normal structure is implied by different geometrical properties of Banach
spaces, it is natural to study if those properties imply the FPP for multivalued mappings.
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Dhompongsa et al. [3, 4] introduced the Domnguez-Lorenzo condition ((DL) condition, in
short) and property (D) which imply the FPP for multivalued nonexpansive mappings.
A possible approach to the above problem is to look for geometric conditions in a Banach
space X which imply either the (DL) condition or property (D). In this setting the following
results have been obtained.

(1) Dhompongsa et al. [3] proved that uniformly nonsquare Banach spaces with
property WORTH satisfy the (DL) condition.

(2) Dhompongsa et al. [4] showed that the condition

CNJ(X) < 1 +
WCS(X)2

4
(1.1)

implies property (D).

(3) Satit Saejung [5] proved that the condition ε0(X) < WCS(X) implies property (D).

(4) Gavira [6] showed that the condition

J(X) < 1 +
1

R(1, X)
(1.2)

implies (DL) condition.
In 2007, Domı́nguez Benavides and Gavira [7] have established FFP for multivalued

nonexpansivemappings in terms of themodulus of squareness, universal infinite-dimension-
al modulus, and Opia modulus. Attapol Kaewkhao [8] has established FFP for multivalued
nonexpansive mappings in terms of the James constant, the Jordan-von Neumann Constants,
weak orthogonality.

Besides, In 2010, Domı́nguez Benavides and Gavira [9] have given a survey of this
subject and presented the main known results and current research directions.

In this paper, in terms of the Jordan-von Neumann constant, Zbăganu constant, εβ(X)
and the coefficient R(1, X), the weakly convergent sequence coefficient, we show some
geometrical properties which imply the property (D) or (DL) condition and so the FPP for
multivalued nonexpansive mappings.

2. Preliminaries

Let X be a Banach space and C be a nonempty subset of X; we denote all nonempty bounded
closed subsets of X by CB(X) and all nonempty compact convex subsets of X by KC(X).

A multivalued mapping T : C → CB(X) is said to be nonexpansive if the inequality

H
(
Tx, Ty

) ≤ ∥∥x − y
∥∥ (2.1)

holds for every x, y ∈ C, where H(·, ·) is the Hausdorff distance on CB(X), that is,

H(A,B) := max

{

sup
x∈A

inf
y∈B

∥∥x − y
∥∥, sup

y∈B
inf
x∈A

∥∥x − y
∥∥
}

, A, B ∈ CB(X). (2.2)
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Let C ⊂ X be a nonempty bounded closed convex subset and {xn} ∈ X a bounded
sequence; we use r(C, {xn}) and A(C, {xn}) to denote the asymptotic radius and the
asymptotic center of {xn} in C, respectively, that is,

r(C, {xn}) = inf
{
lim sup

n
‖xn − x‖ : x ∈ C

}
,

A(C, {xn}) =
{
x ∈ C : lim sup

n
‖xn − x‖ = r(C, {xn})

}
.

(2.3)

It is known that A(C, {xn}) is a nonempty weakly compact convex as C is.
Let {xn} and C be as above; then {xn} is called regular relative to C if r(C, {xn}) =

r(C, {xni}) for all subsequence {xni} of {xn}; further, {xn} is called asymptotically uniform
relative to C if A(C, {xn}) = A(C, {xni}) for all subsequence {xni} of {xn}. In Banach spaces,
we have the following results:

(1) (Goebel [10] and Lim [2]) there always exists a subsequence of {xn} which is
regular relative to C;

(2) (Kirk [11]) if C is separable, then {xn} contains a subsequence which is asymptoti-
cally uniform relative to C.

If D is a bounded subset of X, the Chebyshev radius of D relative to C is defined by

rC(D) = inf
x∈C

sup
y∈D

∥∥x − y
∥∥. (2.4)

In 2006, Dhompongsa et al. [3] introduced the Domnguez-Lorenzo condition ((DL)
condition, in short) in the following way.

Definition 2.1 (see [3]). We say that a Banach space X satisfies the (DL) condition if there
exists λ ∈ [0, 1) such that for every weakly compact convex subset C of X and for every
bounded sequence {xn} in C which is regular with respect to C,

rC(A(C, {xn})) ≤ λr(C, {xn}). (2.5)

The (DL) condition implies weak normal structure [3]. We recll that a Banach space X
is said to have a weak normal structure (w-NS) if for every weakly compact convex subset C
of X with diam(C) := sup{‖x −y‖ : x, y ∈ C} > 0 there exist x ∈ C such that sup{‖x −y‖ : y ∈
C} < diam(C).

The (DL) condition also implies the existence of fixed points for multivalued
nonexpansive mappings.

Theorem 2.2 (see [3]). Let C be a weakly compact convex subset of Banach space X; if C satisfies
(DL) condition, then multivalued nonexpansive mapping T : C → KC(C) has a fixed point.
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Definition 2.3 (see [4]). A Banach space X is said to have property (D) if there exists λ ∈ [0, 1)
such that for every weakly compact convex subset C of X and for every sequence {xn} ⊂ C
and for every {yn} ⊂ A(C, {xn}) which are regular asymptotically uniform relative to C,

r
(
C,

{
yn

}) ≤ λr(C, {xn}). (2.6)

It was observed that property (D) is weaker than the (DL) condition and stronger
than weak normal structure, and Dhompongsa et al. [4] proved that property (D) implies the
w-MFPP.

Theorem 2.4 (see [4]). Let C be a weakly compact convex subset of Banach space X; if C satisfies
property (D), then multivalued nonexpansive mapping T : C → KC(C) has a fixed point.

Before going to the results, let us recall some more definitions. Let X be a Banach space.
The Benavides coefficient R(1, X) is defined by Domı́nguez Benavides [12] as

R(1, X) = sup
{
lim inf
n→∞

{‖xn + x‖}
}
, (2.7)

where the supremum is taken over all x ∈ X with ‖X‖ ≤ 1 and all weakly null sequence {xn} in BX

such that

D[(xn)] := lim sup
n→∞

lim sup
m→∞

‖xn − xm‖ ≤ 1. (2.8)

Obviously, 1 ≤ R(1, X) ≤ 2.

The weakly convergent sequence coefficient WCS(X) is equivalently defined by (see
[13])

WCS(X) = inf
{ limn/=m‖xn − xm‖

lim supn‖xn‖
}
, (2.9)

where the infimum is taken over all weakly (not strongly) null sequences {xn} with
limn/=m‖xn − xm‖ existing.

The ultrapower of a Banach space has proved to be useful in many branches of
mathematics. Many results can be seen more easily when treated in this setting.

First we recall some basic facts about ultrapowers. Let F be a filter on an index set N
and let X be a Banach space. A sequence xn in X convergers to x with respect to F, denoted by
limFxn = x, if for each neighborhood U of x, {i ∈ I : xi ∈ U} ∈ F. A filter U on N is called an
ultrafilter if it is maximal with respect to the set inclusion. An ultrafilter is called trivial if it is
of the form {A ⊂ N, i0 ∈ A} for some fixed i0 ∈ N; otherwise, it is called nontrivial. Let l∞(X)
denote the subspace of the product space Πi∈NXi equipped with the norm

‖(xn)‖ := sup
n∈N

‖xn‖ < ∞. (2.10)
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Let U be an ultrafilter on N and let

NU =
{
(xn) ∈ l∞(X) : lim

U
‖xn‖ = 0

}
. (2.11)

The ultrapower of X, denoted by X̃, is the quotient space l∞(X)/NU equipped with
the quotient norm. Write (xn)U to denote the elements of ultrapower. It follows from the
definition of the quotient norm that

‖(xn)U‖ = lim
U

‖xn‖. (2.12)

Note that if U is nontrivial, then X can be embedded into X̃ isometrically. For more
details see [14].

3. Main Results

We first give some sufficient conditions which imply (DL) condition. The Jordan-von
Neumann constant CNJ(X)was defined in 1937 by Clarkson [15] as

CNJ(X) = sup

⎧
⎨

⎩

∥∥x + y
∥∥2 +

∥∥x − y
∥∥2

2
(
‖x‖2 + ∥∥y

∥∥2
) : x, y ∈ X, ‖x‖ + ∥∥y

∥∥/= 0

⎫
⎬

⎭
. (3.1)

Theorem 3.1. Let X be a Banach space and C a weakly compact convex subset of X. Assume that
{xn} is a bounded sequence in C which is regulary relative to C. Then

rC(A(C, {xn})) ≤
R(1, X)

√
2CNJ(X)

R(1, X) + 1
r(C, {xn}). (3.2)

Proof. Denote r = r(C, {xn}) and A = A(C, {xn}. We can assume that r > 0. Since {xn} ⊂ C is
bounded and C is a weakly compact set, by passing through a subsequence if necessary, we
can also assume that xn converges weakly to some element in x ∈ C and d = limn/=m‖xn −xm‖
exists. We note that since {xn} is regular, r(C, {xn}) = r(C, {yn}) for any subsequence {yn} of
{xn}. Observe that, since the norm is weak lower semicontinuity, we have

lim inf
n

‖xn − x‖ ≤ lim inf
n

lim inf
m

‖xn − xm‖ = lim inf
n/=m

‖xn − xm‖ = d. (3.3)

Let η > 0; taking a subsequence if necessary, we can assume that ‖xn − x‖ < d + η for all n.
Let z ∈ A. Then we have lim supn‖xn−z‖ = r and ‖x−z‖ ≤ lim infn‖xn−z‖ ≤ r. Denote

R = R(1, X); by definition, we have

R ≥ lim inf
n

∥∥∥∥
xn − x

d + η
+
z − x

r

∥∥∥∥ = lim inf
n

∥∥∥∥
xn − x

d + η
− x − z

r

∥∥∥∥. (3.4)
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On the other hand, observe that the convexity of C implies ((R−1)/(R+1))x+(2/(R+
1))z ∈ C; since the norm is weak lower semicontinuity, we have

lim inf
n

∥
∥
∥
∥
1
r
(xn − z) +

1
R

(
xn − x

d + η
− x − z

r

)∥
∥
∥
∥

= lim inf
n

∥
∥
∥
∥
∥

(
1
r
+

1
R
(
d + η

)

)

xn −
(

1
R
(
d + η

) +
1
Rr

)

x −
(
1
r
− 1
Rr

)
z

∥
∥
∥
∥
∥

≥
∥
∥
∥
∥

(
1
r
− 1
Rr

)
x +

2
Rr

z −
(
1
r
+

1
Rr

)
z

∥
∥
∥
∥ =

(
1
r
+

1
Rr

)∥
∥
∥
∥
R − 1
R + 1

x +
2

R + 1
z − z

∥
∥
∥
∥

≥
(
1
r
+

1
Rr

)
rC(A),

lim inf
n

∥
∥∥∥
1
r
(xn − z) − 1

R

(
xn − x

d + η
− x − z

r

)∥
∥∥∥

= lim inf
n

∥∥∥∥∥

(
1
r
− 1
R
(
d + η

)

)

(xn − x) −
(
1
r
+

1
Rr

)
(z − x)

∥∥∥∥∥

≥
(
1
r
+

1
Rr

)
‖z − x‖ ≥

(
1
r
+

1
Rr

)
rC(A).

(3.5)

In the ultrapower X̃ of X, we consider

ũ =
1
r
{xn − z}U ∈ SX̃, ṽ =

1
R

{
xn − x

d + η
− x − z

r

}

U
∈ BX̃. (3.6)

Using the above estimates, we obtain

‖ũ + ṽ‖ = lim
U

∥∥∥∥
1
r
(xn − z) +

1
R

(
xn − x

d + η
− x − z

r

)∥∥∥∥ ≥
(
1
r
+

1
Rr

)
rC(A),

‖ũ − ṽ‖ = lim
U

∥∥∥∥
1
r
(xn − z) − 1

R

(
xn − x

d + η
− x − z

r

)∥∥∥∥ ≥
(
1
r
+

1
Rr

)
rC(A).

(3.7)

Therefore, we have

CNJ

(
X̃
)
≥ ‖ũ + ṽ‖2 + ‖ũ − ṽ‖2

2
(
‖ũ‖2 + ‖ṽ‖2

)

≥ 2(1/r + 1/(Rr))2rC(A)2

2(1 + 1)

=
1
2

(
1
r
+

1
Rr

)2

rC(A)2.

(3.8)
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Since Jordan-von Neumann constant CNJ(X̃) of X̃ equals to CNJ(X) of X, we obtain

CNJ(X) ≥ 1
2

(
1
r
+

1
Rr

)2

rC(A)2. (3.9)

Hence we deduce the desired inequality.

By Theorems 2.2 and 3.1, we have the following result.

Corollary 3.2. Let C be a nonempty bounded closed convex subset of a Banach space X such that
CNJ(X) < (1/R(1, X) + 1)2/2 and T : C → KC(C) a nonexpansive mapping. Then T has a fixed
point.

Proof. since R(1, X) ≥ 1, if CNJ(X) < (1/R(1, X) + 1)2/2, then we have CNJ(X) < 2 which
implies that X is uniformly nonsquare; hence X is reflexive. Thus by Theorems 2.2 and 3.1,
the result follows.

Remark 3.3. Note that J(X)2/2 ≤ CNJ(X); it is easy to see that Theorem 3.1 includes
[6, Theorem 3] and Corollary 3.2 includes [6, Corollary 2].

To characterize Hilbert space, Zbăganu defined the following Zbăganu constant: (see
[16])

CZ(X) = sup

{∥∥x + y
∥∥∥∥x − y

∥∥

‖x‖2 + ∥∥y
∥∥2

: x, y ∈ X, ‖x‖ + ∥∥y
∥∥ > 0

}

. (3.10)

We first give the following tool.

Proposition 3.4. CZ(X) = CZ(X̃).

Proof. Clearly, CZ(X) ≤ CZ(X̃). To show CZ(X̃) ≤ CZ(X), suppose x̃, ỹ ∈ X̃ are not all zero.
Without loss of generality, we assume ‖x̃‖ = a > 0.

Let us choose η ∈ (0, a). Since ‖x̃‖ = limU‖xn‖ = a and

c :=
‖x̃ + ỹ‖‖x̃ + ỹ‖
‖x̃‖2 + ‖ỹ‖2 = lim

U
‖xn + yn‖‖xn − yn‖

‖xn‖2 + ‖yn‖2
:= lim

U
cn, (3.11)

the set A := {n ∈ N : |cn − c| < η and|‖xn‖ − a| < η} belongs to U. In particular, noticing that
xn /= 0 for n ∈ A, there exists n such that

∥∥x̃ + ỹ
∥∥∥∥x̃ + ỹ

∥∥

‖x̃‖2 + ∥∥ỹ
∥∥2

<

∥∥xn + yn

∥∥∥∥xn − yn

∥∥

‖xn‖2 +
∥∥yn

∥∥2
+ η

≤ CZ(X) + η.

(3.12)

Hence, the inequality CZ(X̃) ≤ CZ(X) follows from the arbitrariness of η.
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Theorem 3.5. Let X be a Banach space and C a weakly compact convex subset of X. Assume that
{xn} is a bounded sequence in C which is regulary relative to C. Then

rC(A(C, {xn})) ≤
R(1, X)

√
2CZ(X)

R(1, X) + 1
r(C, {xn}). (3.13)

Proof. Let ũ, ṽ be as in Theorem 3.1. Then

‖ũ + ṽ‖ ≥
(
1
r
+

1
Rr

)
rC(A), ‖ũ − ṽ‖ ≥

(
1
r
+

1
Rr

)
rC(A). (3.14)

Therefore, by the definition of Zbăganu constant, we have

CZ

(
X̃
)
≥ ‖ũ + tṽ‖‖ũ − tṽ‖

‖ũ‖2 + ‖ṽ‖2

≥ 1
2

(
1
r
+

1
Rr

)2

rC(A)2.

(3.15)

Since Zbăganu constant CZ(X̃)) of X̃ equals to CZ(X) of X, we obtain

CZ(X) ≥ 1
2

(
1
r
+

1
Rr

)2

rC(A)2. (3.16)

Hence we deduce the desired inequality.

Using Theorem 2.2, we obtain the following corollary.

Corollary 3.6. Let C be a nonempty weakly compact convex subset of a Banach space X such that
CZ(X) < (1 + 1/R(1, X))2/2 and let T : C → KC(C) be a nonexpansive mapping. Then T has a
fixed point.

In the following, we present some properties concerning geometrical constants of
Banach spaces which also imply the property (D).

Theorem 3.7. Let X be a Banach space. If CZ(X) < WCS(X); then X has property (D).

Proof. Let C be a weakly compact convex subset of X; suppose that {xn} ⊂ C and {yn} ⊂
A(C, {xn}) are regular and asymptotically uniform relative to C. Passing to a subsequence of
{yn}, still denoted by {yn}, we may assume that yn

w−→ y0 ∈ C and d = limn/=m‖yn−ym‖ exists.
Let r = r(C, {xn}). Again passing to a subsequence of {xn}, still denoted by {xn}, we

assume in addition that

lim
n→∞

∥∥xn − y2n
∥∥ = lim

n→∞
∥∥xn − y2n+1

∥∥ = lim
n→∞

∣∣∣∣

∣∣∣∣xn − 1
2
(
y2n + y2n+1

)
∣∣∣∣

∣∣∣∣ = r. (3.17)
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Let us consider an ultrapower X̃ of X. Put

ũ =
1
r

{
xn − y2n

}
U, ṽ =

1
r

{
xn − y2n+1

}
U; (3.18)

then we know that ũ ∈ SX̃, ṽ ∈ SX̃ . We see that

‖ũ + ṽ‖ = lim
U

∥
∥
∥
∥
xn − y2n

r
+
xn − y2n+1

r

∥
∥
∥
∥ = 2, (3.19)

‖ũ − ṽ‖ = lim
U

∥
∥
∥
∥
xn − y2n

r
− xn − y2n+1

r

∥
∥
∥
∥ = lim

U

∥
∥
∥
∥
y2n − y2n+1

r

∥
∥
∥
∥ =

d

r
. (3.20)

Thus, By the definition of Zbăganu constant, we have

CZ

(
X̃
)
≥ ‖ũ + ṽ‖‖ũ − ṽ‖

‖ũ‖2 + ‖ṽ‖2
≥ d

r
. (3.21)

Since the Zbăganu constants ofX and of X̃ are the same, we obtain CZ(X) ≥ d/r. Now
we estimate d as follows:

d = lim
n/=m

∥∥yn − ym

∥∥ = lim
n/=m

∥∥(yn − y0
) − (

ym − y0
)∥∥

≥ WCS(X)lim sup
n

∥∥yn − y0
∥∥

≥ WCS(X)r
(
C,

{
yn

})
.

(3.22)

Hence r(C, {yn}) ≤ (CZ(X)/WCS(X))r(C, {xn}) and the assertion follows by the definition
of property (D).

Using Theorems 2.4 and 3.7, we obtain the follwing corollary.

Corollary 3.8. Let C be a nonempty bounded closed convex subset of a reflexive Banach space X such
that CZ(X) < WCS(X) and let T : C → KC(C) be a nonexpansive mapping. Then T has a fixed
point.

The separation measure of noncompactness is defined by

β(B) = sup
{
ε : there exists a sequence {xn}in B such that sep({xn}) ≥ ε

}
(3.23)

for any bounded subset B of a Banach space X, where

sep({xn}) = inf{‖xn − xm‖ : n/=m}. (3.24)

The modulus of noncompact convexity associated to β is defined in the following way:

ΔX,β(ε) = inf
{
1 − d(0, A) : A ⊂ BX is convex, β(A) ≥ ε

}
. (3.25)



10 Fixed Point Theory and Applications

The characteristic of noncompact convexity of X associated with the measure of
noncompactness β is defined by

εβ(X) = sup
{
ε ≥ 0 : ΔX,β(ε) = 0

}
. (3.26)

When X is a reflexive Banach space, we have the following alternative expression for
the modulus of noncompact convexity associated with β,

εβ(X) = inf
{
1 − ‖x‖ : {xn} ⊂ BX, x = w − lim

n
xn, sep({xn}) ≥ ε

}
. (3.27)

It is known that X is NUC if and only if εβ(X) = 0. The above-mentioned definitions and
properties can be found in [17].

Theorem 3.9. Let X be a reflexive Banach space. If εβ(X) < WCS(X), then X has property (D).

Proof. Let C be a weakly compact convex subset of X; suppose that {xn} ⊂ C and {yj} ⊂
A(C, {xn}) are regular and asymptotically uniform relative to C. Passing to a subsequence of
{yj}, still denoted by {yj}, we may assume that yj

w−→ y0 ∈ C and d = limk /= l‖yk − yl‖ exists.
Let r = r(C, {xn}).

Since {y0, yj} ⊂ A(C, {xn}), we have

lim sup
n

∥∥xn − y0
∥∥ = r, lim sup

n

∥∥xn − yj

∥∥ = r, ∀j ∈ N. (3.28)

So for any η ≥ 0, there exists N ∈ N such that ‖xN − y0‖ ≥ r − η and ‖xN − yi‖ ≤ r + η, for all
j ∈ N.

Without loss of generality, we suppose that ‖yk − yl‖ ≥ d − η for all k /= l. Now we
consider sequence {(xN − yj)/(r + η)} ⊂ BX ; notice that

β

({
xN − yj

r + η

})
≥ d − η

r + η
,

xN − yj

r + η
w−→ xN − y0

r + η
. (3.29)

By the definition of ΔX,β(·), we have

ΔX,β

(
d − η

r + η

)
≤ 1 −

∣∣∣∣

∣∣∣∣
xN − y0

r + η

∣∣∣∣

∣∣∣∣ ≤ 1 − r − η

r + η
. (3.30)

Since the last inequality is true for any η > 0, we obtain ΔX,β(d/r) = 0; thus εβ(X) ≥ d/r.
Now we estimate d as follows:

d = lim
k /= l

∥∥yk − yl

∥∥ = lim
k /= l

∥∥(yk − y0
) − (

yl − y0
)∥∥

≥ WCS(X)lim sup
n

∥∥yn − y0
∥∥

≥ WCS(X)r
(
C,

{
yn

})
.

(3.31)
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Hence,

r
(
C,

{
yn

}) ≤ εβ(X)
WCS(X)

r(C, {xn}). (3.32)

Remark 3.10. Since εβ(X) ≤ ε0(X), Theorem 3.9 implies the [5, Theorem 3]. Furthermore,
it is easy to see CNJ(X) ≥ 1 + (ε0(X)2/4 ≥ 1 + (εβ(X)2/4; then Theorem 3.9 also includes
[4, Theorem 3.7].

By Theorem 3.9, we obtain the following Corollary.

Corollary 3.11. Let C be a nonempty bounded closed convex subset of a reflexive Banach space X
such that εβ(X) < WCS(X) and let T : C → KC(C) be a nonexpansive mapping. Then T has a fixed
point.

Noticing WCS(X) ≥ 1, obviously, Corollary 3.11 extends the following well-known
result.

Theorem 3.12 (see [18, Theorem 3.5]). Let C be a nonempty bounded closed convex subset of a
reflexive Banach space X such that εβ(X) < 1 and let T : C → KC(C) be a nonexpansive mapping.
Then T has a fixed point.
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