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We consider another class of generalized Lipschitzian type mappings and utilize the same to
prove fixed point theorems for asymptotically regular and uniformly generalized Lipschitzian
one-parameter semigroups of self-mappings defined on bounded metric spaces equipped with
uniform normal structure which yield corresponding results in respect of semigroup of iterates of
a self-mapping as corollaries. Our results also generalize some relevant results due to the work of
Lim and Xu (1995), Yao and Zeng (2007), and Soliman (2009) .

1. Introduction

In 1989, Khamsi [1] defined normal structure and uniform normal structure for metric spaces
and utilized the same to prove that nonexpansive mappings on a complete bounded metric
space (X, d) equipped with uniform normal structure have fixed point property and further
satisfy a kind of intersection property which extends results of Maluta [2] to metric spaces.
In 1995, Lim and Xu [3] proved a fixed point theorem for uniformly Lipschitzian mappings
in metric spaces equipped with both property (P) and uniform normal structure which, in
turn, extends a result of Khamsi [1]. This result is indeed the metric space version of a result
contained in the work of Casini and Maluta [4]. Recently, Yao and Zeng [5] established
a fixed point theorem for an asymptotically regular semigroup of uniformly Lipschitzian
mappings in a complete bounded metric space equipped with uniform normal structure and
the property (∗)which is an improvement over certain relevant results contained in Lim and
Xu [3]. Here, it may be pointed out that there exists extensive literature on weak and strong
convergence theorems via iterative procedures in respect of semigroups of nonexpansive
operators in Banach spaces (e.g., [6–8]).

In this paper, we introduce yet another class of uniformly generalized Lipschitzian
one-parameter semigroups of self mappings defined on bounded metric spaces equipped
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with uniform normal structure and utilize the same to prove our results. Our results are
generalizations of certain results due to Yao and Zeng [5] and also Soliman [9].

2. Preliminaries

Throughout this paper, (X, d) (also X) stands for a metric space. In what follows, we recall
some relevant definitions and results in respect of uniformly Lipschitzian mappings and
uniformly generalized Lipschitzian mappings in metric spaces.

Definition 2.1 (see [4]). A mapping T : X → X is said to be a Lipschitzian mapping if for
each integer n ≥ 1, there exists a constant kn > 0, such that

d
(
Tnx, Tny

) ≤ knd
(
x, y

) ∀x, y ∈ X. (2.1)

If kn = k for all n ≥ 1, then T is called uniformly Lipschitzian, and if kn = 1 for all n ≥ 1, then
T is called nonexpansive.

In 2001, Jung and Thakur [10] introduced and studied the following class of mappings.

Definition 2.2 (see [10]). A mapping T : X → X is said to be generalized Lipschitzian
mapping (in short G1-Lipschitzian) if

d
(
Tnx, Tny

) ≤ and
(
x, y

)
+ bn

(
d(x, Tnx) + d

(
y, Tny

))

+ cn
(
d
(
x, Tny

)
+ d

(
y, Tnx

))
,

(2.2)

for each x, y ∈ X and n ≥ 1, where an, bn, and cn are nonnegative constants such that
there exists an integer n0 such that bn + cn < 1 for all n > n0. Here it may be pointed
out that this class of generalized Lipschitzian mappings is relatively larger than the classes
of nonexpansive, asymptotically nonexpansive, Lipschitzian, and uniformly k-Lipschitzian
mappings. The earlier mentioned facts can be realized by choosing constants an, bn, and cn
suitably.

Recently, in 2009, Soliman [9] defined another class of generalized Lipschitzian
mappings on metric spaces as follows.

Definition 2.3. A mapping T : X → X is said to be a generalized Lipschitzian (in short G2-
Lipschitzian) mapping if for each integer n ≥ 1 there exists a constant kn > 0 (depending on
n) such that

d
(
Tnx, Tny

) ≤ kn max
{
d
(
x, y

)
,
1
2
d(x, Tnx),

1
2
d
(
y, Tny

)
}

(2.3)

for every x, y ∈ X. If kn = k for all n ≥ 1, then T is called uniformly G2-Lipschitzian.

In the following (motivated by Khan and Imdad [11]), we define yet another class of
generalized Lipschitzian mappings on metric spaces.
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Definition 2.4. A mapping T : X → X is said to be a generalized Lipschitzian (in short G3-
Lipschitzian) mapping if for each integer n ≥ 1 there exists a constant kn > 0 (depending on
n) such that

d
(
Tnx, Tny

) ≤ kn max
{
d
(
x, y

)
,
1
2
d(x, Tnx),

1
2
d
(
y, Tny

)
,
1
2
d
(
x, Tny

)
,
1
2
d
(
y, Tnx

)
}

(2.4)

for every x, y ∈ X. If kn = k for all n ≥ 1, then T is called uniformly G3-Lipschitzian.

Definition 2.5 (see [12]). A mapping T : X → X is called asymptotically regular, if

lim
n→∞

d
(
Tn+1x, Tnx

)
= 0 ∀ x ∈ X. (2.5)

Let G be a sub-semigroup of [0,∞) with addition ”+” such that

t − h ∈ G ∀ t, h ∈ G with t ≥ h. (2.6)

Notice that the foregoing condition is satisfied if we take G = [0,∞) or G = Z+, the set of
nonnegative integers.

Let I = {T(t) : t ∈ G} be a family of self mappings on X. Then I is called a (one-
parameter) semigroup on X if the following conditions are satisfied:

(i) T(0)x = x for all x ∈ X;

(ii) T(s + t)x = T(s)(T(t)x) for all s, t ∈ G and x ∈ X;

(iii) for all x ∈ X, a mapping t → T(t)x from G into X is continuous when G has the
relative topology of [0,∞);

(iv) for each t ∈ G, T(t) : X → X is continuous.

A semigroup I = {T(t) : t ∈ G} on X is said to be asymptotically regular at a point x ∈ X if

lim
t→∞

d(T(t + h)x, T(t)x) = 0 ∀ h ∈ G. (2.7)

If I is asymptotically regular at each x ∈ X, then I is called an asymptotically regular
semigroup on X.

Definition 2.6. A semigroup I = {T(t) : t ∈ G} of self mappings defined on X is called a
uniformly G1-Lipschitzian semigroup if

d
(
T(t)x, T(t)y

) ≤ a(t)d
(
x, y

)
+ b(t)(d (x, T(t)x) + d

(
y, T(t)y

)

+ c(t)(d
(
x, T(t)y

)
+ d

(
y, T(t)x

)
,

(2.8)

for each x, y ∈ X, where a(t), b(t), and c(t) are nonnegative constants, b(t)+c(t) < 1, sup{a(t) :
t ∈ G} = a < ∞, sup{b(t) : t ∈ G} = b < ∞, and sup{c(t) : t ∈ G} = c < ∞with b + c < 1.

The simplest uniformly G1-Lipschitzian semigroup is a semigroup of iterates of a
mapping T : X → X whenever sup{an : n ∈ N} = a < ∞, sup{bn : n ∈ N} = b < ∞
and sup{cn : n ∈ N} = c < ∞with b + c < 1.
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The following definition is introduced by Soliman [9].

Definition 2.7. A semigroup I = {T(t) : t ∈ G} of self mappings defined on X is called a
uniformly G2-Lipschitzian semigroup if

sup{k(t) : t ∈ G} = k < ∞, (2.9)

whenever

d
(
T(t)x, T(t)y

) ≤ k(t)max
{
d
(
x, y

)
,
1
2
d(x, T(t)x),

1
2
d
(
y, T(t)y

)
}
, (2.10)

for each x, y ∈ X and max{d(x, y), (1/2)d(x, T(t)x), (1/2)d(y, T(t)y)}/= 0.

Definition 2.8. A semigroup I = {T(t) : t ∈ G} of self mappings defined on X is called a
uniformly G3-Lipschitzian semigroup if

sup{k(t) : t ∈ G} = k < ∞, (2.11)

whenever

d
(
T(t)x, T(t)y

) ≤ k(t)M
(
x, y

)
(2.12)

for each x, y ∈ X and M(x, y) = max{d(x, y), (1/2)d(x, T(t)x), (1/2)d(y, T(t)y),
(1/2)d(x, T(t)y), (1/2)d(y, T(t)x)}/= 0.

The simplest uniformly G3-Lipschitzian semigroup is a semigroup of iterates of a
mapping T : X → X with sup{kn : n ∈ N} = k < ∞.

Here it may be pointed out that the different terms, namely, uniformly k-Lipschitzian
semigroups of self mappings, uniformly G1-Lipschitzian semigroups of self mappings, uni-
formly G2-Lipschitzian semigroups of self mappings, uniformly G3-Lipschitzian semigroups
of self mappings, and uniformly k-Lipschitzian semigroups of self mappings are adopted to
facilitate the statements of our results.

Remark 2.9. Notice that the class of uniformly G3-Lipschitzian semigroups is relatively
larger than the other classes, namely, uniformly G1-Lipschitzian semigroups, uniformly G2-
Lipschitzian semigroups, and also uniformly k-Lipschitzian semigroups.

In a metric space (X, d), let F stand for a nonempty family of subsets of X. Following
Khamsi [1], we say that F defines a convexity structure on X if F is stable under intersection.
Also, we say that F has Property (R) if any decreasing sequence {Cn} of closed bounded
nonempty subsets of X with Cn ∈ F has a nonvoid intersection. Recall that a subset of X
is said to be admissible (cf. [13]) if it can be expressed as an intersection of closed balls. We
denote by A(X) the family of all admissible subsets of X. It is obvious that A(X) defines
a convexity structure on X. Throughout this paper any other convexity structure F on X is
always assumed to contain A(X). Let M be a bounded subset of X whereas B[x, r] stands
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for the closed ball centered at x with radius r. Following Lim and Xu [3], we will adopt the
following conventions and notations:

r(x,M) = sup
{
d
(
x, y

)
: y ∈ M

}
for x ∈ X,

δ(M) = sup{r(x,M) : x ∈ M},
R(M) = inf{r(x,M) : x ∈ M}.

(2.13)

For a bounded subset A of X, we define the admissible hull of A as the intersection of
all those admissible subsets of X which contain A and is denoted by ad(A), that is,

ad(A) =
⋂

{B : A ⊆ B ⊆ X with B admissible}. (2.14)

Proposition 2.10 (see [3]). For a point x ∈ X and a bounded subset A of X, one has

r(x, ad(A)) = r(x,A). (2.15)

Definition 2.11 (see [1]). A metric space (X, d) is said to have normal (resp., uniform normal)
structure if there exists a convexity structure F on X such that R(A) < δ(A) (resp., R(A) ≤
cδ(A) for some constant c ∈ (0, 1)) for all A ∈ F which is bounded and consists of more than
one point. In this case F is said to be normal (resp., uniformly normal) in X.

We define the normal structure coefficient Ñ(X) of X (with respect to a given
convexity structure F) as the number

sup
{
R(A)
δ(A)

}
, (2.16)

where the supremum is taken over all bounded A ∈ F with δ(A) > 0. It is said that X has
uniform normal structure if and only if Ñ(X) < 1.

Khamsi [1] proved the following result which will be very handy in the proof of our
main theorem.

Proposition 2.12 (see [1]). Let X be a complete bounded metric space and let F be a convexity
structure of X with uniform normal structure. Then F has the property (R).

Definition 2.13 (see [3]). A metric space (X, d) is said to have property (P) if given any two
bounded sequences {xn} and {zn} in X, one can find some z ∈ ⋂∞

n=1 ad{zj : j ≥ n} such that
lim supn→∞ d(z, xn) ≤ lim supj→∞lim supn→∞ d(zj , xn).

The following lemma due to Lim and Xu [3] will be utilized in proving our results.

Lemma 2.14 (see [3]). Let (X, d) be a complete bounded metric space equipped with uniform normal
structure and the property (P). Then for any sequence {xn} ∈ X and constant c > Ñ(X), the normal
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structure coefficient with respect to a given convexity structure F, there exists some z ∈ X satisfying
the following properties:

(i) lim supn→∞ d(z, xn) ≤ c · δ({xn});
(ii) d(z, y) ≤ limn→∞ sup d(xn, y) for all y ∈ X.

Definition 2.15 (see [5]). Let (X, d) be a metric space and I = {T(t) : t ∈ G} a semigroup of
self mappings on X. Let one write the set

w(∞) = {{tn} : {tn} ⊂ G, tn −→ ∞}. (2.17)

Definition 2.16 (see [5]). Let (X, d) be a complete boundedmetric space and I = {T(t) : t ∈ G}
a semigroup of self mappings defined on X. Then I is said to have the property (∗) if for each
x ∈ X and each {tn} ∈ w(∞), the following conditions are satisfied:

(a) the sequence {T(tn)x} is bounded;
(b) for any sequence {zn} in ad{T(tn)x : n ≥ 1} there exists some z ∈ ⋂∞

n=1 ad{zj : j ≥
n} such that

lim sup
n→∞

d(z, T(tn)x) ≤ lim sup
j→∞

lim sup
n→∞

d
(
zj , T(tn)x

)
. (2.18)

Yao and Zeng [5] proved the following result which will be used in the proof of our
results.

Lemma 2.17. Let (X, d) be a complete bounded metric space with uniform normal structure and I =
{T(t) : t ∈ G} a semigroup of self mappings defined on X equipped with property (∗). Then for each
x ∈ X, each {tn} ∈ w(∞), and any constant Ñ(X) < c (where Ñ(X) stands for the normal structure
coefficient with respect to the given convexity structure F), there exists some z ∈ ⋂∞

n=1 ad{zj : j ≥ n}
satisfying the following properties:

(I) lim supn→∞d(z, T(tn)x)≤c·A({T(tn)x}), whereA({T(tn)x})= lim supn→∞ {d(T(ti)x,
T(tj)x) : i, j ≥ n};

(II) d(z, y) ≤ lim supn→∞ d(T(tn)x, y) for all y ∈ X.

3. Common Fixed Point Theorems

Our first result is a fixed point theorem for uniformly G1-Lipschitzian semigroups of self
mappings defined on bounded metric spaces with uniform normal structure.

Theorem 3.1. Let (X, d) be a complete bounded metric space equipped with uniform normal
structure. If I = {T(t) : t ∈ G} is an asymptotically regular and uniformly G1-Lipschitzian

semigroup of self mappings on X which satisfies the property (∗) with β < 1/
√
Ñ(X), then there

exists some z ∈ X such that T(t)z = z for all t ∈ G.
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Proof. Choose a constant c such that Ñ(X) < c < 1 and β < 1/
√
c. We can pick a sequence

{tn} ∈ w(∞) such that {tn+1 − tn} ∈ w(∞). Observe that

{
d
(
T
(
tj
)
x, T(ti)x

)
: i, j ≥ n

}
=
{
d
(
T
(
tj
)
x, T(ti)x

)
: j > i ≥ n

} ∪ {0} (3.1)

for each n ∈ N and x ∈ X.
Now fix an x0 ∈ X. Then by Lemma 2.17, we can inductively construct a sequence

{xl}∞l=1 ⊂ X such that xl+1 ∈
⋂∞

n=1 ad{T(ti)xl : i ≥ n}; for each integer l ≥ 0,

(III) lim supn→∞ d(T(tn)xl, xl+1) ≤ c · A({T(tn)xl}), where A({T(tn)xl}) =
lim supn→∞{d(T(ti)xl, T(tj)xl) : i, j ≥ n};

(IV) d(xl+1, y) ≤ lim supn→∞ d(T(tn)xl, y) for all y ∈ X.

Let

Dl = lim sup
n→∞

d(xl+1, T(tn)xl) ∀ l ≥ 0, h = c · β < 1. (3.2)

Now for each i > j ≥ 1, using (III) and the asymptotic regularity of T on X, we have

d
(
T(ti)xl, T

(
tj
)
xl

)
= d

(
T
(
tj
)
xl, T

(
tj
)
T
(
ti − tj

)
xl

)

≤ a
(
tj
)
d
(
xl, T

(
ti − tj

)
xl

)
+ b

(
tj
)

× [
d
(
xl, T

(
tj
)
xl

)
+ d

(
T
(
ti − tj

)
xl, T

(
tj
)
T
(
ti − tj

)
xl

)]

+ c
(
tj
)[
d(xl, T(ti)xl) + d

(
T
(
ti − tj

)
xl, T

(
tj
)
xl

)]
,

(3.3)

whereas

d
(
xl, T

(
tj
)
xl

) ≤ lim sup
n→∞

d
(
T(tn)xl−1, T

(
tj
)
xl

)

≤ lim sup
n→∞

d
(
T(tn)xl−1, T

(
tn + tj

)
xl−1

)
+ lim sup

n→∞
d
(
T
(
tn + tj

)
xl−1, T

(
tj
)
xl

)

≤ lim sup
n→∞

d
(
T
(
tj
)
(T(tn)xl−1), T

(
tj
)
xl

)

≤ a
(
tj
)
lim sup
n→∞

d(T(tn)xl−1, xl)

+ b
(
tj
)
[
lim sup
n→∞

d
(
T(tn)xl−1, T

(
tn + tj

)
xl−1

)
+ lim sup

n→∞
d
(
xl, T

(
tj
)
xl

)
]

+ c
(
tj
)
[
lim sup
n→∞

d
(
T(tn)xl−1, T

(
tj
)
xl

)
+ lim sup

n→∞
d
(
xl, T

(
tn + tj

)
xl−1

)
]

≤ a
(
tj
)
Dl−1 +

[
b
(
tj
)
+ c

(
tj
)]
d
(
xl, T

(
tj
)
xl

)
+ 2c

(
tj
)
Dl−1,

(3.4)

or

d
(
xl, T

(
tj
)
xl

)[
1 − (

b
(
tj
)
+ c

(
tj
))] ≤ [

a
(
tj
)
+ 2c

(
tj
)]
Dl−1, (3.5)



8 Fixed Point Theory and Applications

so that

d
(
xl, T

(
tj
)
xl

) ≤ a
(
tj
)
+ 2c

(
tj
)

1 − (
b
(
tj
)
+ c

(
tj
))Dl−1. (3.6)

Similarly, one can also show that

d
(
xl, T

(
ti − tj

)
xl

) ≤ a
(
ti − tj

)
+ 2c

(
ti − tj

)

1 − (
b
(
ti − tj

)
+ c

(
ti − tj

))Dl−1,

d(xl, T(ti)xl) ≤ a(ti) + 2c(ti)
1 − (b(ti) + c(ti))

Dl−1.

(3.7)

Now making use of (3.6) and (3.7) in (3.3), we have

d
(
T(ti)xl, T

(
tj
)
xl

)

= d
(
T
(
tj
)
xl, T

(
tj
)
T
(
ti − tj

)
xl

) ≤ a
(
tj
) a

(
ti − tj

)
+ 2c

(
ti − tj

)

1 − (
b
(
ti − tj

)
+ c

(
ti − tj

))Dl−1 +
[
b
(
tj
)
+ c

(
tj
)]

×
[

a
(
tj
)
+ 2c

(
tj
)

1 − (
b
(
tj
)
+ c

(
tj
))Dl−1 +

a
(
ti − tj

)
+ 2c

(
ti − tj

)

1 − (
b
(
ti − tj

)
+ c

(
ti − tj

))Dl−1 +
a(ti) + 2c(ti)

1 − (b(ti) + c(ti))
Dl−1

]

≤
{
[
a
(
tj
)
+ b

(
tj
)
+ c

(
tj
)] a

(
ti − tj

)
+ 2c

(
ti − tj

)

1 − (
b
(
ti − tj

)
+ c

(
ti − tj

))

+
[
b
(
tj
)
+ c

(
tj
)]
[

a
(
tj
)
+ 2c

(
tj
)

1 − (
b
(
tj
)
+ c

(
tj
)) +

a(ti) + 2c(ti)
1 − (b(ti) + c(ti))

]}

Dl−1,

(3.8)

which implies that for each n ≥ 1,

sup
{
d
(
T(ti)xl, T

(
tj
)
xl

)
: i, j ≥ n

}

≤
{
[
sup a

(
tj
)
+ sup b

(
tj
)
+ sup c

(
tj
)]

sup
a
(
ti − tj

)
+ 2c

(
ti − tj

)

1 − (
b
(
ti − tj

)
+ c

(
ti − tj

))

+
[
sup b

(
tj
)
+ sup c

(
tj
)]

[

sup
a
(
tj
)
+ 2c

(
tj
)

1 − (
b
(
tj
)
+ c

(
tj
)) + sup

a(ti) + 2c(ti)
1 − (b(ti) + c(ti))

]}

Dl−1

≤
{
[
sup a

(
tj
)
+ sup b

(
tj
)
+ sup c

(
tj
)] sup a

(
ti − tj

)
+ 2 sup c

(
ti − tj

)

1 − (
sup b

(
ti − tj

)
+ sup c

(
ti − tj

))

+
[
sup b

(
tj
)
+ sup c

(
tj
)]
[

sup a
(
tj
)
+ 2 sup c

(
tj
)

1 − (
sup b

(
tj
)
+ sup c

(
tj
)) +

sup a(ti) + 2 sup c(ti)
1 − (

sup b(ti) + sup c(ti)
)

]}

Dl−1.

(3.9)
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By taking the limit of both the sides of (3.9) as n → ∞ with each (i > j ≥ n), we have

lim sup
n→∞

{
d
(
T(ti)xl, T

(
tj
)
xl

)
: i > j ≥ n

}

≤
{
[a1 + b1 + c1]

a3 + 2c3
1 − (b3 + c3)

+ [b1 + c1]
[

a1 + 2c1
1 − (b1 + c1)

+
a2 + 2c2

1 − (b2 + c2)

]}
Dl−1 ≤ βDl−1,

(3.10)

where lim supn→∞a(tj) = a1, lim supn→∞a(ti) = a2, lim supn→∞a(ti − tj) = a3,
lim supn→∞b(tj) = b1, lim supn→∞b(ti) = b2, lim supn→∞b(ti − tj) = b3, lim supn→∞c(tj) =
c1, lim supn→∞c(ti) = c2, lim supn→∞c(ti − tj) = c3, and

β =
{
[a1 + b1 + c1]

a3 + 2c3
1 − (b3 + c3)

+ [b1 + c1]
[

a1 + 2c1
1 − (b1 + c1)

+
a2 + 2c2

1 − (b2 + c2)

]}
. (3.11)

Hence by using (III) and (3.8), we have

Dl = lim sup
n→∞

d(xl+1, T(tn)xl)

≤ c lim sup
n→∞

{
d
(
T(ti)xl, T

(
tj
)
xl

)

≤ βcDl−1 ≤
(
cβ

)2
Dl−2 ≤ · · · ≤ hlD0.

(3.12)

Thus liml→∞Dl = 0 and henceforth

d(xl+1, xl) ≤ lim sup
l→∞

d(T(tn)xl, xl)

≤ a(tn) + 2c(tn)
1 − [b(tn) + c(tn)]

Dl−1.
(3.13)

By taking the limit of both the sides of (3.13) as l → ∞, we have

lim
l→∞

d(xl+1, xl) = 0, (3.14)

which shows that {xl} is a Cauchy sequence and is convergent as X is complete. Let z =
liml→∞ xl. Then we have

d(z, T(tn)z) = lim
l→∞

lim sup
n→∞

d(xl, T(tn)xl)

≤ lim
l→∞

Dl−1 ≤ lim
l→∞

hl−1D0 = 0,
(3.15)
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that is, limn→∞d(z, T(tn)z) = 0. Hence for each s ∈ G, we deduce that

d(z, T(s)z) = lim
l→∞

d(xl, T(s)xl)

≤ lim
l→∞

lim sup
n→∞

d(xl, T(tn + s)xl−1)

≤ lim
l→∞

lim sup
n→∞

d(xl, T(tn)xl−1) + lim
l→∞

lim sup
n→∞

d(T(tn)xl−1, T(tn + s)xl−1)

≤ lim
l→∞

Dl−1 ≤ lim
l→∞

hl−1D0 = 0,

(3.16)

yielding thereby d(z, T(s)z) = 0, that is, T(s)z = z for each s ∈ G. This concludes the proof.

Our second result is a fixed point theorem for uniformly G3-Lipschitzian semigroups
of self mappings defined on boundedmetric spaces equippedwith uniform normal structure.

Theorem 3.2. Let (X, d) be a complete bounded metric space equipped with uniform normal
structure. If I = {T(t) : t ∈ G} is an asymptotically regular and uniformly G3-Lipschitzian

semigroup of self mappings defined on X with k̃ < 1/
√
Ñ(X) which also satisfies the property (∗),

then there exists some z ∈ X such that T(t)z = z for all t ∈ G.

Proof. Choose a constant c such that Ñ(X) < c < 1 and k̃ < 1/
√
c. We can select a sequence

{tn} ∈ w(∞) such that {tn+1 − tn} ∈ w(∞) and limn→∞k(tn) = k̃, where k̃ > 0. Observe that

{
d
(
T
(
tj
)
x, T(ti)x

)
: i, j ≥ n

}
=
{
d
(
T
(
tj
)
x, T(ti)x

)
: j > i ≥ n

} ∪ {0} (3.17)

for each n ∈ N and x ∈ X.
Now fix an x0 ∈ X. Then by Lemma 2.17, we can inductively construct a sequence

{xl}∞l=1 ⊂ X such that xl+1 ∈
⋂∞

n=1 ad{T(ti)xl : i ≥ n}; for each integer l ≥ 0,

(III) lim supn→∞ d( T ( tn )xl, xl+1) ≤ c · A ( {T ( tn )xl} ), where A ( { T ( tn )xl} ) =
lim supn→∞{d(T(ti)xl, T(tj)xl) : i, j ≥ n};

(IV) d(xl+1, y) ≤ lim supn→∞d(T(tn)xl, y) for all y ∈ X.

Let

Dl = lim sup
n→∞

d(xl+1, T(tn)xl) ∀ l ≥ 0, h = c · k̃ < 1. (3.18)
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Observe that for each i > j ≥ 1, using (IV) and the asymptotic regularity of I on X, we have

d
(
xl, T

(
ti − tj

)
xl

) ≤ lim sup
n→∞

d
(
xl, T

(
tn + ti − tj

)
xl−1

)

≤ lim sup
n→∞

d(xl, T(tn)xl−1) + lim sup
n→∞

d
(
T(tn)xl−1, T

(
tn + ti − tj

)
xl−1

)

≤ Dl−1,

d
(
xl, T

(
tj
)
xl

) ≤ lim sup
n→∞

d
(
xl, T

(
tn + tj

)
xl−1

)

≤ lim sup
n→∞

d(xl, T(tn)xl−1) + lim sup
n→∞

d
(
T(tn)xl−1, T

(
tn + tj

)
xl−1

)

≤ Dl−1,

d
(
T
(
ti − tj

)
xl, T(ti)xl

) ≤ lim sup
n→∞

d
(
T
(
tn + ti − tj

)
xl−1, T(ti)xl

)

≤ lim sup
n→∞

d
(
T
(
tn + ti − tj

)
xl−1, T(tn)xl−1

)
+ lim sup

n→∞
d(T(tn)xl−1, xl)

+ d(xl, T(ti)xl) ≤ 2Dl−1,
(3.19)

d
(
T(ti)xl, T

(
tj
)
xl

)
= d

(
T
(
tj
)
xl, T

(
tj
)
T
(
ti − tj

)
xl

)

≤ k
(
tj
)
max

{
d
(
xl, T

(
ti − tj

)
xl

)
,
1
2
d
(
xl, T

(
tj
)
xl

)
,

1
2
d
(
T
(
ti − tj

)
xl, T(ti)xl

)
,
1
2
d(xl, T(ti)xl),

1
2
d
(
T
(
ti − tj

)
xl, T

(
tj
)
xl

)
}
.

(3.20)

Now making use of (3.19) in (3.20), we get

d
(
T(ti)xl, T

(
tj
)
xl

) ≤ k
(
tj
)
max

{
Dl−1,

1
2
Dl−1, Dl−1,

1
2
Dl−1, Dl−1

}
= k

(
tj
)
Dl−1, (3.21)

which implies that for each n ≥ 1,

sup
{
d
(
T(ti)xl, T

(
tj
)
xl

)
: i, j ≥ n

} ≤ sup
{
k
(
tj
)
Dl−1 : i > j ≥ n

}

≤ Dl−1 · sup
{
k
(
tj
)
: j ≥ n

}
.

(3.22)
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Hence by using (III) and (3.22), we have

Dl = lim sup
n→∞

d(xl+1, T(tn)xl) ≤ cA({T(tn)xl}) ≤ c lim sup
n→∞

{
d
(
T(ti)xl, T

(
tj
)
xl

)
: i, j ≥ n

}

≤ c ·Dl−1 · lim sup
n→∞

k(tn)

≤ c · lim
n→∞

k(tn) ·Dl−1 = c · k̃ ·Dl−1 = hDl−1 ≤ h2Dl−2 ≤ · · · ≤ hlD0.

(3.23)

Hence by the asymptotic regularity of I on X, we have for each integer n ≥ 1,

d(xl+1, xl) ≤ lim sup
n→∞

d(T(tn)xl, xl)

≤ lim sup
n→∞

lim sup
m→∞

d(xl, T(tm + tn)xl−1)

≤ lim sup
m→∞

d(xl, T(tm)xl−1) + lim sup
n→∞

lim sup
m→∞

d(T(tm)xl−1, T(tm + tn)xl−1)

≤ Dl−1.

(3.24)

It follows from (3.23) that

d(xl+1, xl) ≤ Dl−1 ≤ hl−1D0. (3.25)

Thus, we have
∑∞

l=0 d(xl+1, xl) ≤ D0
∑∞

l=0 h
l−1 < ∞. Consequently {xl} is Cauchy and hence

convergent as X is complete. Let z = liml→∞xl. Then we have

lim sup
n→∞

d(z, T(tn)z) = lim
l→∞

lim sup
n→∞

d(xl, T(tn)xl)

≤ lim
l→∞

Dl−1 ≤ lim
l→∞

hl−1D0 = 0,
(3.26)

that is, limn→∞d(z, T(tn)z) = 0. Hence for each s ∈ G, we deduce that

d(z, T(s)z) = lim
l→∞

d(xl, T(s)xl) ≤ lim
l→∞

lim sup
n→∞

d(xl, T(tn + s)xl−l)

≤ lim
l→∞

lim sup
n→∞

d(xl, T(tn)xl−l) + lim
l→∞

lim sup
n→∞

d(T(tn)xl−1, T(tn + s)xl−l)

≤ lim
l→∞

Dl−1 ≤ lim
l→∞

hl−1D0 = 0.

(3.27)

Then we have d(z, T(s)z) = 0, that is, T(s)z = z for each s ∈ G.
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Since the class of uniformly k-Lipschitzian semigroups of self mappings is contained
in the class of uniformly G2-Lipschitzian semigroups of self mappings, therefore Theorem 3.1
yields the following.

Corollary 3.3 (see [5]). Let (X, d) be a complete bounded metric space with uniform normal
structure. If I = {T(t) : t ∈ G} is an asymptotically regular and uniformly k-Lipschitzian semigroup
of self mappings defined on X equipped with the property (∗) which also satisfies

(
lim inf
t→∞

k(t)
)
·
(
lim sup

t→∞
k(t)

)
< Ñ(X)−1/2, (3.28)

then there exists some z ∈ X such that T(t)z = z for all t ∈ G.

Again, as the class of uniformly G3-Lipschitzian semigroups is larger than the class
of uniformly G2-Lipschitzian semigroups, therefore using Theorem 3.2, one immediately
derives the following result due to Soliman [9].

Corollary 3.4 (see [9]). Let (X, d) be a complete bounded metric space with uniform normal
structure. If I = {T(t) : t ∈ G} is an asymptotically regular and uniformly G2-Lipschitzian semigroup

of self mappings defined on X with k̃ < 1/
√
Ñ(X) which also satisfies the property (∗). Then there

exists some z ∈ X such that T(t)z = z for all t ∈ G.

If one replaces the respective one parameter semigroups of generalized Lipschitzian
mappings in Theorems 3.1 and 3.2 with respective semigroups of iterates of generalized
Lipschitzian mappings, then one can immediately derive the following two corollaries.

Corollary 3.5. Let (X, d) be a complete bounded metric space equipped with uniform normal
structure and the property (P). If T : X → X is a self-mapping whose set of iterates is an
asymptotically regular semigroup of G1-Lipschitzian mappings satisfying the condition (2.2), then
there exists some z ∈ X such that Tz = z.

Corollary 3.6. Let (X, d) be a complete bounded metric space equipped with uniform normal
structure and the property (P). If T : X → X is a self-mapping whose set of iterates is an
asymptotically regular semigroup of G3-Lipschitzian mappings satisfying the condition (2.4), then
there exists some z ∈ X such that Tz = z.

Remark 3.7. It will be interesting to establish Theorems 3.1 and 3.2 for left reversible
semigroup of self mappings defined on a complete bounded metric space equipped with
uniform normal structure following the lines of Holmes and Lau [14], Lau and Takahashi
[15], and Lau [16].
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