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In cone uniform and uniform spaces, we introduce the three kinds of dissipative set-valued
dynamic systems with generalized pseudodistances and not necessarily lower semicontinuous
entropies, we study the convergence of dynamic processes and generalized sequences of iterations
of these dissipative dynamic systems, and we establish conditions guaranteeing the existence of
periodic points and endpoints of these dissipative dynamic systems and the convergence to these
periodic points and endpoints of dynamic processes and generalized sequences of iterations of
these dissipative dynamic systems. The paper includes examples.

1. Introduction

A set-valued dynamic system is defined as a pair (X, T), where X is a certain space and T is a
set-valued map T : X — 2%; in particular, a set-valued dynamic system includes the usual
dynamic system where T is a single-valued map. Here 2% denotes the family of all nonempty
subsets of a space X.

Let (X, T) be a dynamic system. By Fix(T), Per(T), and End(T) we denote the sets of
all fixed points, periodic points, and endpoints of T, respectively, that is, Fix(T) = {w € X : w €
T(w)}, Per(T) = {w € X : w € Tl (w) for some q € N} and End(T) = {w € X : {w} = T(w)}.
For each x € X, a sequence (w,, : m € {0} UN) such that

Vme{O}UN{merl € T(wm)}/ wo = X, (11)
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is called a dynamic process or a trajectory starting at wy = x of the system (X,T) (for details
see Aubin and Siegel [1], Aubin and Ekeland [2], and Aubin and Frankowska [3]). For each
x € X, a sequence (w,, : m € {0} UN) such that

Voo wma € T (x)}, w0 = x, (1.2)

T =ToTo---oT (m-times), m € N, is called a generalized sequence of iterations starting at
wy = x of the system (X, T) (for details see Yuan [4, page 557], Tarafdar and Vyborny [5] and
Tarafdar and Yuan [6]). Each dynamic process starting from wy is a generalized sequence of
iterations starting from wy, but the converse may not be true; the set T (wy) is, in general,
bigger than T (wy,-1). If (X,T) is single valued, then, for each x € X, a sequence (w,, : m €
{0} UN) such that

Vme{oluN{wm+1 =Tl (x) }, wy = X, (1.3)

is called a Picard iteration starting at wy = x of the system (X, T). If (X, T) is single valued, then
(1.1)—(1.3) are identical.

The notion of Banach’s contraction belongs to the most fundamental mathematical
ideas. Caristi [7], Ekeland [8], Aubin and Siegel [1], Yuan [4], and Kirk [9] extended this
notion to several directions (dissipative single-valued maps with lower semicontinuous
entropies, variational inequlities for lower semicontinuous maps, dissipative set-valued
dynamic systems with not necessarily lower semicontinuous entropies, generalized contrac-
tions and asymptotic contractions, resp.). It is not our purpose to give a complete list of
related papers here.

Let X be a metric space with metric d and let (X, T) be a single-valued dynamic system.
Racall that if

ieton Vayex {d(T(x), T(y)) < 2d(x,y)}, (1.4)

then (X,T) is called a Banach’s contraction (Banach [10]). (X,T) is called contractive if
Vx,yeX{O < d(x/ y) = d(T(x)rT(y)) < d(x/ y)} If E|e>0vx,y€X{0 < d(x/ }/) <e= d(T(x)rT(y)) <
d(x,y)}, then (X,T) is called e-contractive (Edelstein [11]). Contractive and e-contractive
maps are some modifications of Banach’s contractions.

If (X, T) is single valued and

Vrex{d(x, T(x)) < w(x) - w(T(x))} (1.5)

for some w : X — [0,+00), then T is called Caristi’s map (Caristi [7]). Caristi’s maps
(1.5) generalize Banach’s contractions (1.4) (for details see Kirk and Saliga [12, page 2766]).
Banach’s contraction principle and Caristi’s fixed point theorem are essentially different:
in complete metric space, Banach’s contraction is continuous, each Picard iteration of this
contraction is convergent to a fixed point and this fixed point is unique (Banach [10]) while
Caristi’s map is not necessarily continuous and if w in (1.5) is lower semicontinuous, then
each Picard iteration of this map is convergent to a fixed point and this fixed point is not
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necessarily unique (Caristi [7]). Recall that Ekeland’s [8] variational principle concerning
lower semicontinuous maps and Caristi’s fixed point theorem are equivalent.

Amap w : X — [0,+0c0) is called a weak entropy or entropy of a set-valued dynamic
system (X, T) if

VxeXayeT(x) {d(x/ ]/) < w(x) - (A)(y)} (16)
or
VxexVyere {d(x, y) < w(x) -w(y)}, (1.7)

respectively, and (X, T) is called weak dissipative or dissipative if it has a weak entropy or an
entropy, respectively; here w is not necessarily lower semicontinuous. These two kinds of
dissipative maps were introduced and studied by Aubin and Siegel [1]. If (X, T) is single
valued, then (1.5)—(1.7) are identical.

Various periodic, fixed point, convergence, and invariant set theorems for contractive
and e-contractive single-valued and set-valued dynamic systems have been obtained by
Edelstein [11], Ding and Nadler [13], and Nadler [14]. Investigations concerning the
existence of fixed points and endpoints and convergence of dynamic processes or generalized
sequences of iterations to fixed points or endpoints of single-valued and set-valued
generalized contractions (Yuan [4], Tarafdar and Yuan [6, 15], Tarafdar and Chowdhury
[16], Tarafdar and Vyborny [5]) and dissipative dynamic systems when entropy w is not
necessarily lower semicontinuous (Aubin and Siegel [1]) have been conducted by a number
of authors in different contexts; for example, see Kirk and Saliga [12], Willems [17], Zangwill
[18], Justman [19], Maschler and Peleg [20] and Petrusel, Sintdimarian [21].

In this paper, inspired by these results, we introduce in cone uniform and uniform
spaces the three kinds of dissipative set-valued dynamic systems with generalized
pseudodistances and with not necessarily lower semicontinuous entropies and we present
the methods which are useful for establishing general conditions guaranteeing the existence
of periodic points and endpoints of these set-valued dynamic systems and conditions that
for each starting point the dynamic processes or generalized sequences of iterations converge
and the limit is a periodic point or endpoint (see Sections 3-6). The presented definitions and
results are more general and different from those given in the literature and are new even
for single-valued and set-valued dynamic systems in metric spaces. For details, see Section 7
where examples, remarks, and some comparisons are included. This paper is a continuation
of [22,23].

2. Dissipative Set-Valued Dynamic Systems with
Generalized Pseudodistances in Cone Uniform Spaces

We define a real normed space to be a pair (L, || - ||), with the understanding that a vector space
L over R carries the topology generated by the metric (a,b) — |la—-bl|, a,b € L.

A nonempty closed convex set H C L is called a cone in L if it satisfies: (H1)
Vsew) {sH C H}; (H2) HN (-H) = {0}; (H3) H # {0}.
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It is clear that each cone H C L defines, by virtue of “a<ybif and only if b—a € H,”
an order of L under which L is an ordered normed space with cone H. We will write a<pyb to
indicate that a<gbbut a#b.

The following terminologies will be much used.

Definition 2.1 (see [22]). Let X be a nonempty set and let L be an ordered normed space with cone
H.

(i) The family P = {p, : XxX — L,a € &#} is said to be a D-family of cone pseudometrics
on X(p-family, for short) if the following three conditions hold:

(P1) YaeudVxyex{02upa(x, y) Ax =y = pa(x,y) = 0};
(/,72) vaedvx,yeX {Pu (x, ]/) = Pa (]// x) };
(P3) Vaedvx,y,zex {Pa (x, 2)XHPa(X, Y) + Pa (]// z)}.

(ii) If P is P-family, then the pair (X, D) is called a cone uniform space.
(iii) A P-family P is said to be separating if

(p4) vx,yeX{x#y = 3a64{0<HPu(x/y)}}‘

(iv) If a p-family P is separating, then the pair (X, ) is called a Hausdorff cone uniform
space.

A cone H is said to be solid if int(H) #@; int(H) denotes the interior of H. We will
write a<yb to indicate that b — a € int(H).

Definition 2.2. Let L be an ordered normed space with solid cone H and let (X, D) be a cone
uniform space with cone H.

(i) We say that a sequence (w,, : m € N) in X is a [D-convergent in X, if there exists
w € X such that VueJVceL,O«HCElngeNvmeN;nggm{pa(wml w)<<HC}-

(ii) We say that a sequence (w,, : m € N) in X is a D-Cauchy sequence in X, if
VaeJVcEL,O«HCEInQENvm,neN;ng<m<n {pa (wm/ wn)<<HC } .

(iii) If every p-Cauchy sequence in X is p-convergent in X, then (X, ) is called a p-
sequentially complete cone uniform space.

(iv) The set-valued dynamic system (X,T) is called a cone closed set-valued dynamic
system in X if whenever (w,, : m € N) is a sequence in X [-converging to w € X
and (v,, : m € N) is a sequence [J-converging to v € X such that v,, € T(w,,) for all
m €N, then v € T(w).

(v) Let (X, D) be a P-sequentially complete cone uniform space. For an arbitrary subset
E of X, the cone closure of E, denoted by cl(E), is defined as the set cI(E) = {w € X :
EI(wm:mEN)CEVMEJVCEL,O«HcElngel\lvmel\l;ngSm{pvc(zuml w)<<HC} } The subset E of X is said
to be a cone closed subset in X if cl(E) = E.

The cone H is normal if a real number M > 0 exists such that for each a,b € H,
0<pga<gb implies |lal] < M||b||. The number M satisfying the above is called the normal
constant of H.

The following holds.



Fixed Point Theory and Applications 5

Theorem 2.3 (see [22]). Let L be an ordered normed space with normal solid cone H and let (X, )
be a cone uniform space with cone H.

(a) Let (wy, : m € N) be a sequence in X and let w € X. Then the sequence (w,, : m € N) is
P-convergent to w if and only if

Vuedv5>03noeNvmeN;nggm { ”pu (wm/ ’(,U) ” <E€ } . (21)

(b) Let (wy, : m € N) be a sequence in X. Then the sequence (w,, : m € N) is a [D-Cauchy
sequence if and only if

Vaeedv»OEInoeNvm,neN;no<m<n{ ”pa (W, Wn) ” <E& } . (22)

(c) Each p-convergent sequence is a [)-Cauchy sequence.

Definition 2.4. Let L be an ordered normed space with normal solid cone H and let (X, D) be
a cone uniform space with cone H.

(i) The family 2 = {Jo, : X x X — L, a € &} is said to be a J-family of cone
pseudodistances on X (2-family on X, for short) if the following three conditions hold:

(21) vaerx,yeX {0<HJa(x, y) b
(92) quJVx,y,zeX { ]a (x, Z)fH]a (x/ y) + ]a(y/ Z) };
(23) for any sequence (w,, : m € N) in X such that

Vet Ves0Tnpen Vi nen; ng<men L Ja (Wi, wh) || < €}, (2.3)
if there exists a sequence (v, : m € N) in X satisfying
Y aetV e>0Tn0en Y meN; ng<m {1 Ja (Wi, vm) || < €}, (2.4)
then

vaeJV5>OE|noeNvm€N; nggm{ "pu (wmr vm) ” <ég } . (25)

(ii) Let the family 2 = {J, : X x X — L,a € </} be a 2-family on X. We say that a
sequence (w,, : m € N) in X is a 2-Cauchy sequence in X if (2.3) holds.

For other families of cone pseudodistances in cone uniform spaces and various
applications, see [22, 23]. The following is a consequence of Definition 2.4(i).

Proposition 2.5. Let (X, ) be a Hausdor{f cone uniform space with cone H. Let the family 2 = { ], :
XxX — Laed#}bea D-family. If Yacu{Ja(x,y) =0A Jo(y,x) =0}, then x = y.
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Proof. Let x,y € X be such that Viey{Ja(x,y) = 0 A Ju(y,x) = 0}. By (22),
Vaew {Ja(%,%) <11Ja(x,y) + July,x)). By (J1), this gives Yacu|Ja(x,x) = 0). Thus, we get
VaeJVDOEInoeNVm,nGN;nogmgn{”]a(wmrwn)” < 5} and Va€4v5>03noeNVm€N;no<m{”]a(wmrvm)” <
€} where w,, = x, v, = y, m € N, and, by (23), YacuVes0TnenVimen; ny<m { |Pa (Wm, vm) || < €},
that is, VaesVeso {Ipa(x, )|l < €}. Hence, Vaeu {pa(x, y) = 0} which, according to (04), implies
that x = y. O

Now we introduce the following three kinds of dissipative set-valued dynamic
systems with generalized pseudodistances in cone uniform spaces (conditions (ii)—(iv)
below).

Definition 2.6. Let (X, D) be a Hausdorff cone uniform space and let (X, T) be a set-valued dynamic
system. Let 2 = {Jo, : X x X — L,a € A} bea D-family on X and let Q = {w, : X — L,a € A}
be a family of maps such that

VaeuVxex {0<pwa(x)}. (2.6)

(i) We say that a sequence (wy, : m € {0} UN) in X is (2,Q)-admissible if

vaedva{O}UN{Ia(wmr wm+1)5Hwa (wm) - wa(me) } (27)

(ii) If the following conditions are satisfied:

(C1) §#Xo C X; and
(C2) x € Xy if and only if there exists a (2, Q)-admissible dynamic process (w;, :
m € {0} UN) starting at wy = x of the system (X, T),

then we say that T is weak (2, Q; Xo)-dissipative on X

(iii) We say that T is (2, Q)-dissipative on X if, for each x € X, each dynamic process
(wy, : m € {0} UN) starting at wy = x of the system (X, T) is (2, Q)-admissible.

(iv) We say that T is strictly (2, Q)-dissipative on X if, for each x € X, each generalized
sequence of iterations (w,, : m € {0} UN) starting at wy = x of the system (X, T) is
(2, Q)-admissible.

If one of the conditions (ii)—(iv) holds, then we say that (X, T) is a dissipative set-valued
dynamic system with respect to (2, Q) (dissipative set-valued dynamic system, for short).

Remark 2.7. 1t is worth noticing that if a sequence (w,, : m € {0}UN) in X is (2, Q)-admissible,
then, for each k € N, a sequence (wy,+x : m € {0} UN) is (2, Q)-admissible. Consequently, if
T is weak (2, Q; Xo)-dissipative on X, x € Xy, and (w,, : m € {0} UN) is a dynamic process
starting at wy = x of the system (X, T) which is (2, Q)-admissible, then VY, ,en{w;, € Xo}; in
general, T(Xy) # Xo (see Example 7.3).

Now we can give the following conclusion.



Fixed Point Theory and Applications 7

Proposition 2.8. Let (X, ) be a Hausdor{f cone uniform space and let (X, T) be a set-valued dynamic
system.

(a) If T is weak (2,€2; Xo)-dissipative on X, then (Xo,Ko.) is a set-valued dynamic system
where, for each x € Xo,
Kor(x) = JHwo, wi,wz,...} + (wy : m € (0} UN) € £5(T, x)}, (2.8)
KT, %) = { (0 : m € {0} UN),

wWo=Xx: VmE{O}UN{u)mH € T(wm)AvaEJ{]u (wmr wm+l)5Hwa(wm) - wu(wm+1) } } }
(2.9)

(b) If T is (2,Q)-dissipative on X, then (X, W y.r) is a set-valued dynamic system where, for

each x € X,
Wor(x) = U{{wg,wl,wz,...} t(wm :m e {0} UN) € 10,(T,x)}, (2.10)
0,(T,x) = {(Wn : m € {0} UN), w00 = X : Veoyon {wmer € T@m)} ). (2.11)

(c) If T is strictly (2,Q)-dissipative on X, then (X,Sy,r) is a set-valued dynamic system where,
foreach x € X,

Sor(x) = U{{wo,wl,wz,...} t(wy :me {0} UN) € Sy(T,x)}, (2.12)

S,(T,x) = {(wm :me (0} UN),wp = x: vme{ow{wm+1 € Tlm+1] (wg)}}. (2.13)

Proof. The fact that
KQ;T . XO — ZXO, WQ;T X — 2X, SQ;T X — 2X (214)

follows from (1.1), (1.2), Definition 2.6, Remark 2.7, and (2.8)—(2.13). O

Remark 2.9. By Proposition 2.8 and Definition 2.6, we get:

(i) If T is (2,Q)-dissipative on X, then T is weak (2, Q; Xo)-dissipative on X for Xy = X
and Yxex, {Kpr(x) = Wyr(x)}.

(ii) If T is strictly (2,Q)-dissipative on X, then T is (2,£2)-dissipative on X and
Veex{Wor(x) CSyr(x)}.

Definition 2.10. Let L be an ordered normed space with solid cone H. The cone H
is called regular if for every incresing (decresing) sequence which is bounded from
above (below), that is, if for each sequence (¢, : m € N) in L such that
1=y fgCmg - b (b=y - - Lgcm<y - - gc<ycy) for some b € L, there exists
¢ € L such that lim,, _, o ||c;y — ¢|| = 0.

Remark 2.11. Every regular cone is normal; see [24].
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3. Periodic Point and Convergence Theorem for Weak
(2,Q; Xy)-Dissipative, (2,Q2)-Dissipative, and
Strictly (2,Q)-Dissipative Set-Valued Dynamic
Systems in Cone Uniform Spaces

Our main result of this section is the following.

Theorem 3.1. Let L be an ordered Banach space with a reqular solid cone H and let (X, D) be a
Hausdorff sequentially complete cone uniform space with cone H. Let 2 = {J, : XxX — L, a € A4}
be a D-family on X and let Q = {w, : X — La € A} be a family of maps such that
VacuVxex {05nwq (x)}. Let (X, T) be a set-valued dynamic system. The following hold.

(a) If T is weak (2,92; Xo)-dissipative on X, then, for each x € X, and for each dynamic process
(W, - m € {0} UN) € Xy(T, x), there exists w € cl(Xo) such that (wy,, : m € {0} UN)
is D-convergent to w. If, in addition, the map T'9) is cone closed in X for some q € N, then
w e Tl (w).

(b) If T is (2,Q)-dissipative on X, then, for each x € X and for each dynamic process (w, :
m € {0} UN) € W(T,x), there exists w € X such that (w, : m € {0} UN) is D-
convergent to w. If, in addition, the map T4 is cone closed in X for some q € N, then
w e Tl (w).

(c) If T is strictly (2,Q)-dissipative on X, then, for each x € X and for each generalized
sequence of iterations (w,, : m € {0} UN) € Sy(T,x), there exists w € X such that
(wm : m € {0} UN) is P-convergent to w. If, in addition, the map T'9 is cone closed in
X for some q € N, then, for each x € X, there exists a generalized sequence of iterations
(W : m € {0}UN) € Sy(T, x) and w € X such that (w,, : m € {0} UN) is [D-convergent
to w and w € T (w).

Proof. The proof will be broken into three steps.

Step 1. Let (i) x € Xp and (wy, : m € {0} UN) € Xy(T,x); or (ii) x € X and (w,, : m €
{0} UN) € 10,(T, x) U Sy(T, x). We show that (w,, : m € {0} UN) is 2-Cauchy and /-Cauchy,
that is,

vaeJV£>03noeNvm,neN; ny<m<n { ”]a(wmr wn) “ < 5}/ (31)

vaEva>03ngeNvm,n€N; ng<m<n{ ”ptx(wml wn) ” < 5}/ (32)

respectively; see Definitions 2.4(ii) and 2.2(ii) and Theorem 2.3(b).

Indeed, since <y is transitive, by (2.9), (2.11), (2.13), Definition 2.6(ii)—(iv) and (21),
we get that Ve sViejojun { Wa (Wni1) SHWL (W) }. According to (2.6), for each a € 4, the
sequence (wq(wy,) : m € {0} UN) is contained in H, bounded from below and, by the above,
nonincreasing. Since H is a closed and regular cone, it follows that

VacuBen{ Jim lwos(won) - sl =0 }. (33)
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Let now ag € # and gy > 0 be arbitrary and fixed. By (3.3),
£
EInoeNvm; nggm{ ”wuo (wm) — Uq, ” < — }/ (34)

where M is a normal constant of H (see Remark 2.11). Furthermore, for nyp < m < n, using
(21),(22),and (2.7), 0211 Jay (Wi, W) 211 2=y, Jao (Wi, W1 SHWy (Win) ~way (W) and next, by
(3.4) and the fact that H is normal (see Remark 2.11), || Ju, (W, wn) || < M ||t a, (W)=, (wn) ||
= M||wa, (W) = Uy =Wy (Wn) F iy || < M| Wy (i) =ty ||+ M ||y (W) — U || < €0/2+60/2 = €.
Therefore, (3.1) holds.

Also we can show that (3.2) holds. Indeed, by (3.1), VYacusVes0TnmenVmzn,
Vie(oyun {1 Ja (Wm, Wiem) || < €}. Hence, if ip € Nand j, € {0} UN where iy > jo and

Um = Wigtm, Um = Wjprm for m €N, (3.5)
then we obtain
VacuVes0FnenYmzn { | Ja(@Wm, tum) || < & A || Jo(Wm, vm) || < €} (3.6)
We obtain according to (3.1), (3.6), and (23) that
Vet Ves0TmenYmzno L || Pa(@Wm, ttm) || < € A ||pa(wm, vm)|| < €} (3.7)

By (3.5), from (3.7) it follows that

£

£
M A ”Pa (wm/ wjo+m) ” < —} (3.8)

Vet Ves0TnpenVimzn, { ”Pa (W, Wigim) ” < M

Next, if ng < m < n, thenn = iy+ny and m = jo+ny for some ip € Nand jp € {0}UN such
that iy > jo. Thus, by (/)1)—(/.?3), VaeJ{OﬁHPa(wmr wy) = Pa (wi0+nor w]'oJrno)fHPtl(wno/wiﬁno) +
Pa(Wny, Wigsny) }. Using (3.8), this gives Vacu{l|pa(wm, wn)ll < Mlpa(wn,, Wiginy) |l +
M||pa(Wny, Wiginy)|l < €/2+€/2 = €}. The proof of (3.2) is complete.

Step 2. Assertions (a) and (b) hold.

Indeed, let (i) x € X¢ and (w,, : m € {0} UN) € X(T,x); or (ii) x € X and (w,, : m €
{0} UN) € W, (T, x).

Since Vpeopun{wm € Kor(x)} or Vaeoun{wm € Wor(x)}, X is a Hausdorff
and sequentially complete cone space and (2.14) holds, therefore, by virtue of Step 1,
Proposition 2.8 and Theorem 2.3(b) and (c), we claim that (w,, : m € {0} UN) is a p-Cauchy
sequence and there exists a unique w € cl(Kyr(x)) or w € cl(Wy,r(x)), respectively, where
Kar(x) € Xo, Wor(x) C X, and cl(X) = X, such that the sequence (w,, : m € {0} UN) is
P-convergent to w, that is, Vaey {limy, - o ||pa (wim, w)|| = 0}.

Now we see that if Tl9l is cone closed for some g € N, then the point w satisfies
w € Tl (w). Indeed, by (2.9) or (2.11), we conclude that

vmeN{ Wy € T(Wp1) € T (W) € -+ € T (201) € T (20) } (3.9)
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which gives

Wingsk € T (Winrygek) fork=1,2,...,9, meN. (3.10)

Since T is cone closed in X and lim,,_, xw,, = w, therefore, by (3.10) and Definition 2.2(iv),
we get w € Tl (w).

Step 3. Assertion (c) holds.

Indeed, if x € X and (w,, : m € {0} UN) € S,y(T,x), then, by virtue of Step 1,
Proposition 2.8 and Theorem 2.3(b) and (c), we claim that V,,.ej0jun {wn € T (x) € Syr(x) C
X}, (wy, : m € {0} UN) is a P-Cauchy sequence, and there exists a unique w € cl(Sy.r(x))
such that the sequence (w,, : m € {0} UN) pD-converges to w.

If Tl4! is cone closed in X for some g € N, then, for each x € X, by Remark 2.9(b)
and Step 2 (part (b)), there exists a generalized sequence of iterations (wy, : m € {0} UN) €
So(T, x) N (T, x) C Sy(T, x) satisfying (3.9) and (3.10) and there exists w € cl(W r(x)) C
cl(Syr(x)) € X such that (w,, : m € {0} UN) is p-convergent to w and w € T (w). O

4. Dissipative Set-Valued Dynamic Systems with
Generalized Pseudodistances in Uniform Spaces

Let (X, ®) be a Hausdorff uniform space with uniformity defined by a saturated family @ =
{dy : a € A} of pseudometrics d,, a € &, uniformly continuous on X2

Definition 4.1. Let (X, D) be a Hausdorff uniform space. The family % = {U, : XxX — [0, o),
a € oA} is said to be a U-family of generalized pseudodistances on X (U-family, for short) if the
following two conditions hold:

(UL) YaeuVyzex{Ual(x, 2) < Ua(x, y) + Ua(y, 2)};
(U2) for any sequence (wy, : m € N) in X such that

VaEJ{ lim sup Uy (wm, wy) = 0}, (4.1)

M= y>m

if there exists a sequence (v, : m € N) in X satisfying
Vaea{ Jim Us(m,00) =0, @2)
m— o
then

\7’%,4{ lim dy(wpm, vm) = 0}. (4.3)

Definition 4.2. Let (X, D) be a Hausdorff uniform space and let (X, T') be a set-valued dynamic
system. Let the family « = {U, : X x X — [0,0), & € #}be a U-family and letT" = {y, : X —
[0, +00), @ € A4} be a family of maps.
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(i) We say that a sequence (w,, : m € {0} UN) in X is (U,I')-admissible if

VueJVmE[O}UN{uu(wm/ Wine1) < Yu(wm) ~Ya (Wim+1) } (4.4)

(ii) If the following conditions are satisfied:

(CHP#Xo CX;
(C2) x € Xy if and only if there exists a (%, I')-admissible dynamic process (w,, :
m € {0} UN) starting at wy = x of the system (X, T),

then we say that T is weak (U, I'; Xo)-dissipative on X.

(iii) We say that T is (U, T')-dissipative on X if, for each x € X, each dynamic process
y p Y p
(wy, : m € {0} UN) starting at wy = x of the system (X, T) is (%, I')-admissible.

(iv) We say that T is strictly (U,I')-dissipative on X if, for each x € X, each generalized
sequence of iterations (w,, : m € {0} UN) starting at wy = x of the system (X, T) is
(U, T')-admissible.

If one of the conditions (ii)—(iv) holds, then we say that (X, T) is a dissipative set-valued
dynamic system with respect to (U, T') (dissipative set-valued dynamic system, for short).

Proposition 4.3. Let (X, D) be a Hausdorff uniform space and let (X, T) be a set-valued dynamic
system.

(a) If T is weak (U, T; Xo)-dissipative on X, then (Xo,Ky.1) is a set-valued dynamic system
where, for each x € Xo, Kyr(x) = Uf{wo, w1, wy,...} + (wm : m € {0} UN) €
Ku(T,x)} and Ky(T,x) = {(wy : m € {0} UN), wyg = x : Vpejoun{wWma €
T(wm) AVacu{Ua(Wim, Wpi1) < Ya(wm) - Yu(wm+1)}}}'

(b) If T is (U, I')-dissipative on X, then (X, Wy.r) is a set-valued dynamic system where, for
each x € X, Wy.r(x) = U{{wo, w1, wy,...} : (wy, : m € {0} UN) € Wy(T,x)}, and
Wu(T,x) = {(wy, : m € {0} UN), wy = x : Vieoyun{ Wms1 € T (wpm)}}.

(c) If T is strictly (U, T')-dissipative on X, then (X,Sy;r) is a set-valued dynamic system where,
foreach x € X, Sy;r(x) = U{{wo, w1, wo,...} : (wy, : m € {0} UN) € Sy(T,x)} and
Su(T, x) = { (W : m € {0} UN), wp = x : Ve ojon {Wms1 € T (wy) }}.

5. Periodic Point and Convergence Theorem for Weak
(U, T; X,)-Dissipative, (%, I')-Dissipative, and Strictly
(U, T)-Dissipative Set-Valued Dynamic Systems in Uniform Spaces

Let (A, >4) denote a directed set whose elements will be indicated by the letters A, 77, . Let
T : X — 2¥ where X and Y are topological spaces.

The following are equivalent: (a) the map T is closed, that is, the graph of T is closed
in X x X; (b) whenever (w) : A € A) is a net converging to w and (vy, : A € A) is a net
converging to v such that vy € T(w,) forall A € A, then v € T(w). Recall that the graph of T is
{(x,y):xeX yeT(x)}.

The map T is called upper semicontinuous at w € X if for each open set G containing
T (w) there exists a neighbourhood N (w) of w such that T(v) C G for each v € N(w) and
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upper semicontinuous in X if it is upper semicontinuous at each point w of X and T (w) is
compact for each w € X; see Berge [25, page 111].

Remark 5.1. Tt is known that

(i) if the map T is closed, then, for each x € X, the set T(x) is closed [25, page 111] but,
generally, the converse is not possible [26, Example 7.19, page 75].

(ii) every upper semicontinuous map is closed [25, Theorem 6, page 112] and, if X is a
compact space, then the map is closed if and only if it is upper semicontinuous [25,
Corollary, page 112].

Definition 5.2. Let (X, ®) be a Hausdorff uniform space.

(i) We say that a sequence (w,, : m € N) in X is a Cauchy sequence in X if
Vueell{limméoo sup,.. .. da (wml wn) = 0}

(ii) We say that a sequence (w,, : m € N) in X converges in X, if there exists w € X
such that Ve {lim,, _, o, dy(w,,, w) = 0}.

(iii) If every Cauchy sequence in X is convergent in X, then (X, D) is called a sequentially
complete uniform space.

(iv) Let the family U = {U, : X x X — [0,00), a € #} be a U-family on X.
We say that a sequence (w,, : m € N) in X is a U-Cauchy sequence in X if
Vaea{limy, o sup,,.,, Ua(ws,, wy) = 0}.

Consequence of Theorem 3.1 is the following.

Theorem 5.3. Let (X, D) be a Hausdorff sequentially complete uniform space and let (X, T) be a set-
valued dynamic system. Let the family U = {U, : X x X — [0,00), a € H#} be a U-family and let
I'={ys:X — 0,+00], & € A} be a family of proper maps. The following hold.

(a) If T is weak (UI'; Xo)-dissipative on X, then, for each x € X and for each dynamic process
(wy, : m € {0} UN) € Ky (T, x), there exists w € cl(Xy) such that (w,, : m € {0} UN)
is convergent to w. If, in addition, the map T4 is closed (or T'9) is upper semicontinuous )
in X for some q € N, then w € T4 (w).

(b) If T is (U,I)-dissipative on X, then, for each x € X and for each dynamic process (wy, :
m € {0} UN) € Wy (T, x), there exists w € X such that (w, : m € {0} UN) is convergent
to w. If, in addition, the map T4 is closed (or T4} is upper semicontinuous ) in X for some
g €N, then w € T4 (w).

(c) If T is strictly (UT)-dissipative on X, then, for each x € X and for each generalized
sequence of iterations (wy, : m € {0} UN) € Sy(T,x), there exists w € X such that
(wn : m € {0} UN) is convergent to w. If, in addition, the map T'9) is closed (or T
is upper semicontinuous ) in X for some q € N, then, for each x € X, there exists a
generalized sequence of iterations (wy, : m € {0} UN) € Sy (T, x) and w € X such that
(wpm : m € {0} UN) is convergent to w and w € Tl (w).
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6. Endpoint and Convergence Theorem for
(U,I')-Dissipative and Strictly (%, I')-Dissipative Set-Valued
Dynamic Systems in Uniform Spaces

We recall the following.

Definition 6.1. Let (X, T) be a topological space and let (X, T') be a set-valued dynamic system.
The map T is called lower semicontinuous at w € X (written: Isc at w € X) if and only if for any
v € T(w) and for any net (w, : A € A) of elements w, € X, A € A, T-converging to w, there
exists anet (vy : A € A) of elements v, € T(w,), A € A, T-converging to v. The map T is called
Isc on X if it is Isc at every point of w € X.

The main result of this section is what follows.

Theorem 6.2. Let (X, D) be a Hausdorff sequentially complete uniform space and let (X, T') be a set-
valued dynamic system. Let the family U = {U, : X x X — [0,00), a € #} be a U-family and let
I'={y.:X — 0,00),a € A} be a family of maps.

Assume that T is (U,I')-dissipative on X. Then the following hold.

(a1) The map Wy, is (U,I')-dissipative on X and, for each x € X, there exist (wy, : m €
{0} UN) € Wy (Wy,r, x) and w € X such that (w,, : m € {0} UN) converges to w and
N0 LWar (wm)) = {w}.

(ap) If, for each x € X, Wyt (x) is a closed set, then End(T) # @ and, for each x € X, there exist
(wm : m € {0} UN) € W0y (Wy.r,x) and w € End(T) such that (w,, : m € {0} UN)
converges to w and (50 Wur (wm) = {w}.

(as) If T is Isc on X, then End(T) # 0 and, for each x € X, there exist (wy, : m € {0} UN) €
Wu(Wy,r, x) and w € End(T) such that (w,, : m € {0} UN) converges to w and

N0 LW (wm)) = {w}.
Assume that T is strictly (U,I')-dissipative on X. Then the following hold.

(b1) The map Sy is strictly (U,I')-dissipative on X and, for each x € X, there exist (w,, : m €
{0} UN) € Su(Su;r, x) and w € X such that (w,, : m € {0} UN) converges to w and
Nimzo A(Suz (wm)) = {w}.

(ba) If, for each x € X, Sy;r(x) is a closed set, then End(T) # @ and, for each x € X, there exist
(wy : m € {0} UN) € Sy(Su;r,x) and w € End(T) such that (w,, : m € {0} UN)
converges to w and (0 Su;r(wm) = {w}.

(b3) If T is Isc on X, then End(T) #0 and, for each x € X, there exist (w,, : m € {0} U
N) € Su(Swr,x) and w € End(T) such that (w,, : m € {0} UN) converges to w and
ﬂm>o c(Sur(wm)) = {w}.

Proof. (a1) The proof of (a;) will be broken into six steps.
Step 1. We show that VaeVxex Vyew,r (v {Ua (X, ¥) < Ya(x) = Ya(y)}.

Indeed, let x € X and y € Wy, r(x) be arbitrary and fixed. By definition of Wy, r(x),
there exist a dynamic process (w,, : m € {0} UN) € Wy (T, x) starting at wy = x of
the system (X,T) and my € {0} UN such that y = w,,; recall that then (1.1) and (4.4)
hold (i.e., VmE[O]UN{uij € T(wy)} and Vuedvme{O]UN{uu(wml Wis1) < er(wm) - Ya(wm+1)}
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hold). By virtue of (U1), this gives Vaey {Ua(x,y) < ZZ‘S U (Wi, Win1) < 220:51 [Ya (win) -
Ya(wm+l)] = Ya(x) - Ya(y) }

Step 2. We show that Wyr is (U,I')-dissipative on X.

If x € X and (w, : m € {0} UN) is a dynamic process starting at wy
= x of the system (X,Wy.r), that is, Vuecjojun{wma € Wyr(ws,)}, then, by Stepl,
VaeJVmE{OJUN{ua(wmr wm+1) < Ya(wm) - Yu(wm+1)}/ that iS, (wm sm € {0} U N) is (M/r)'
admissible. This gives that Wyt is (%,I')-dissipative on X.

Step 3. We show that Vyex { Wy (T, x) C Wy (Woy.r, x)}.
Indeed, by Proposition 4.3(b), for x € X, Wy(T,x) = {(w, : m € {0} UN) :

Vielojun{Wma € T(wp)}, wo = x}. Next, by Step 2, Wy,r is (U,I)-dissipative on X.
Consequently,

Vaex {Wu (W, x) = {(cm : m € {0} UN) : Viejojun{cma € Wyr(cm)}, co=x}},  (6.1)

where

Ve (oyun{ Wagr (em) = J{{s0,51,52,...} : (sj: j € (0} UN) € Wy (T, cm) }
6.2)
= U{{SQ,S1,52,...} 180 = Cm, S € T<Sj—1)/j € N}}

Let now (w, : m € {0} UN) € 70y(T,x). Then Vycioyun{wm1 € T(wm)}.
Hence YcjojunVism{wka € T(wk)}. Thus Viejojun{ (Wm, W1, Wmsa, - ..) € Wu(T, wm)}.
Hence, by (6.2), YVieioyun{ { Wi, W1, W2, - ..} € Wor () }. In particular, V,eiojun{wWme €
Wor(wym)}. By (6.1), (w, : m € {0} UN) € Wy (Wyr, x).

Step 4. If x € X and (w, : m € {0} UN) € W0y (Wy.r, x), then
Vuedvme{o]uN{Ya(me) < Yu(wm) } (6.3)

Indeed, by (6.1), Viec(ojun{wm € Wyr(wn,)}, wy = x. Hence, by virtue of the
Step 2 and Definition 4.2(iii), the sequence (w,, : m € {0} UN) is (%,I')-admissible, that is,
VaeatVme(oyun (Ua (W, Win1) < Ya(Wm) = Ya(Wms1) }. By definitions of U and T, this gives (6.3).

Step 5. Let
VuedvxeX{Aa(WM;T(x)) = Sup{ua(xl t) ite WM;T(X) }} (64)

and let

Vacu Vxex{Qawor (X) = Inf{ya(t) : t € Wyr(x)}}. (6.5)
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Then
Vaca Vxex{Ba(War (%)) < Ya(x) = Qawyr (%) ). (6.6)

Indeed, if a € o and x € X, then, by Step 1, we get Ay (Wy,r(x)) = sup{Ua(x,t) : t €
W%;T(x)} < sup{Ya(x) - Ya(t) te W?/[;T(x)} < Ya(x) _pa;Wu;T(x)'

Step 6. Let 64(E) = sup{da(y1,42) : V1,2 € E}, E € 2X a € 4. Then, for each x € X, there
exist a dynamic process (w,, : m € {0} UN) € Wy (Wy,r, x) and a unique w € X such that

V,,CG,,;{ lim sup Uy (wp,, w,) = O}, (6.7)

M=o pysm
V,,,G,,;{ lim sup dy (W, wy) = 0}, (6.8)

m — oo n>m
V,,(EJ{ lim d,(w,, w) = 0}, (6.9)
Vaca Jim 6, (Wagr () = lim 6,(cl(Wagr (o)) =01, (6.10)
ﬂ cl(War(wm)) = {w}. (6.11)

m=0

Indeed, first, let us observe that since T is (U,I')-dissipative on X and Viex{x €
Wor(x)} (e., Veex { Wy (x) £0}), thus there exists

VaeellvxeX{Qa;Wu;r (x) = inf{Ya (t) ‘te WM;T(X) } } (612)

Now let x € X and ag € <4 be arbitrary and fixed. Defining wy = x, since T is (%,I')-dissipative
on X and wy € Wy.r(wy), by (6.2), we have that

Wagr (wo) = J{{s0,51,52,...} : 50 = w, sj € T(sj1), j € N} #0. (6.13)

Therefore, by (6.12) and (6.13), there exists wy € Wy, (wy) such that yy, (w1) < Qay;wy, (wo)+1.
Similarly, there exists w, € Wy r(w1) such that yu, (w2) < Quyiw, (w1) + 21, By induction, we
may construct a dynamic process (wy, : m € {0} UN) € €Wy (Wy.r, x) satisfying (see (6.1),
(6.2), and (6.3) and Step 1)

VmeN { W € WM;T (wm—l) }r (6-14)

VmE{OIUN{Yao (Wim+1) < Qup;Wygr (W) +27™ }, (6.15)
where Ve { Quwygr (Wm) = inf{yy, (t) : t € Wyr(wn)}}. Next, by (6.2),

VmGN {WM,T(wm) - WM;T (wm—l)} (616)
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which gives
Vineojun { Qao; Wi (Wm) < Qaoiwygr (Wim1) } (6.17)

By (6.6), (6.15), and (6.17), Auy (War (win+1)) < Yaro (Wims1) = Qag;Wor (Wms1) < Qag;Wor (wm) +
27— Qao;Wor (wm)] < 27" which implies

lim Ag, (WM;T(wm+1)) =0. (6.18)

Moreover, by (6.14) and (6.16), for arbitrary and fixed m € N, we have that
Vism {{wWm, wn} C Wogr (wm)}- (6.19)
Next, by (6.19), we have
Vism { U, (Wi, wn) < sup{Uay(wm,t) : t € Wy (wm)} = Ay (Wagr (W) }. (6.20)

Therefore, (6.20) and (6.18) imply (6.7).

Using (6.7) and analogous argument as in Step 1 of the proof of Theorem 3.1, we
obtain (6.8). Indeed, from (6.7), VacyVes0TnenVimsm {Sup{Us(wp, wy) : 1 > m} < g} and,
in particular, VaeyVes03n enVimsm Vien | Ua (W, Wickm) < €}. If g, jo € N, ip > jo, are arbitrary
and fixed and u,, = Wjyym and vy = Wjpem, m € N, this gives Vaey {limy, oo U (Wi, tty) =
limy,, - oo Un (W, v) = 0}. By (6.7) and (U2), Ve {limyy, — oo doa (Wi, ) = limy, — oo da (Wi, Om)
=0}. Hence

2
vaeJVs>03nzeNvm>nz {da(wmr wi0+m) < E }/
21
i (621)

VaeJV£>O 3ngeNvm>n3 {du (wm/ wjg+m) < E }

Therefore, if ay € o/ and &y > 0 are arbitrary and fixed, ny = max{ny, n3} + 1 and k,
I € N be arbitrary and fixed and such that k > [ > ng, then k = iy + np and I = jy + 1y for some
io, jo € N such that iy > jo and we get dy (wk, 1) = day(Wiginy, Wiginy) < Aay (Wi, Wiginy) +
Aoy (W, Wigny) < €0/2 +£€0/2 = &.

Consequently, Vaec s Ves03nen Vi jen, ksisn { da (Wi, wi) < €}. The proof of (6.8) is complete.

By (6.8), there exists a unique w € X such that (6.9) holds.

Now we prove (6.10). With the aim of this, let x,,, ¥, € Wyt (w,), m € N, be arbitrary
and fixed. Then, by (6.18) and definition of A, (Wy,r(w;,)), we have Vaey {limy, — o Ux (W,
Xm) = limy, oo Up (Wi, ym) = 0}. Hence, by (6.7) and (U2), Vacy {limy,— o da(Wim, Xm) =
limy, -, o da (W, Ym) = 0} which gives Vaey {limy, - o da(Xm, Ym) = 0}, that is, formula (6.10)
holds.

Finally, let us observe that X is sequentially complete and Hausdorff, inclusions (6.16)
imply that the sequence of sets {Wy.r(wy,)} has the property of finite intersections and that
the properties (6.9), (6.10), and (6.14) hold. Consequently, (6.11) holds.
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(az) From Proposition 4.3(b), Step 2 of the proof of (a;), we conclude that

Vaeex {T(Wur(x)) € War(x)} (6.22)

and if the sequence (w,, : m € {0} UN) is such as in Step 6 of the proof of (a;), then, since,
for each x € X, the set Wy.r(x) is closed, using (6.11) and (6.22), we conclude that T (w)
= T 0 LWagr (@))) = T o Watr (@) € Nowso TWagr (@) € Nyuso Waeir () =
Nimzo L(War(wm)) = {w}, that is, that w is an endpoint of T.

(az) Let x € X be arbitrary and fixed and let the sequence (w,, : m € {0} UN) €
Wu(Wy.r, x) be such as in Step 6 of the proof of (a;). Then

Vinen{ T (l(Worr (201))) C cl(Woyr (W) }- (6.23)

Indeed, let my € N be arbitrary and fixed. We prove that, if u € cl(Wy,r(ws,)) and if y € T (u)
is arbitrary and fixed, then y € cl(Wy,r (2,)). With the aim of this, we consider two cases.

Case 1. Assume that u € Wyt (twm,). Then, by (6.22), we have that y € T(u) C Wy,r(wsy,) C
A(War (wm,)).-

Case 2. Assume that u € (Wt (wWi,)) \ War (ws,) and let (1) : A € A) be a net of elements
uy € Wyr(wm,), A € A, which is convergent to u. Since T is Isc at u and y € T(u), by
Definition 6.1 and the fact that u € cl(Wy,;r(wp,)) C X (cf. Proposition 4.3(b)), then there
exists a net (yy : A € A) of elements y, € T(uy), A € A, which is convergent to y. However,
since uy € Wyr(wm,), L € A, thus, by (6.22), we have T(uy) C Wyr(wm,), A € A, and,
consequently, vy € T(uy) C Wyt (wm,), A € A. Since (y) : A € A) is convergent to y, this gives
that y € cl(Woyr (wm, ))-

Now, using (a;) and (6.23), we get T(w) = T(N,>0l(Wur(wm))) C Nmso
T(cl(Wayr(wm))) € N0 LW (wm)) = {w}, that is, w is an endpoint of T.

(b1) The proof of (b;) will be broken into sixt steps.
Step 7. The map Syt is strictly (%,I')-dissipative on X.

Indeed, since

vxex{sm<x>= U T["ﬂ(x)}, (6.24)

me{0}UN

therefore
VmeNVxex{ (Sur)™ (x) = Sy (x) } (6.25)

On the other hand, by assumption that T is strictly (%,I')-dissipative on X, we have that if
x € X is arbitrary and fixed and a generalized sequence of iterations (w,, : m € {0} UN)
is such that wy = x and Vyejojun{wma € T (x)}, then VaeyVmefojon { Ua(Wm, Wine1) <
Ya (W) = Ya(Wim+1) }. However, then, by Proposition 4.3(c), (w,, : m € {0} UN) € Sy (T, x) and
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Vine(ojun {Wm € Sy;r(x)}. Using (6.25), this gives V,cjojun{wm € (Sy; T) ] (x)}; remember that
the sequence (wy, : m € {0} UN) satisfies VacyVine(ojun {Ua (Wim, Wims1) < Ya(Wim) = Ya(Wima1) )
By virtue of Proposition 4.3(c), and Definition 4.2(iv), this implies that Sy;r is strictly (%,I)-
dissipative on X.

Step 8. We show that Vyex {Su(T, x) C Su(Su;r, x)}.

Indeed, if (w,, : m € {0} UN) € Sy(T, x) then Yueqojun {wms1 € T (x)} which,
by (6.24), implies that V,.e(0jun{®Wm+1€ke(o UNT l(x) = Sur(x)}, wo = x. Next, by Step 7,
Definition 4.2(iv), Proposition 4.3(c) and (6 25), Yex{Su(Su;r,x) = {(wy, : m € {0} UN) :
Vimeoyur{wm € (Sur)!"™ (%)} = {(wm : m € {0} UN) : Voneoyun {wm € Sy (x)}}} where wy = x
and (Su;T)[O] = Ix. Consequently, (wy, : m € {0} UN) € Sy (Sy,r, x).

Step 9. Let x € X.If (wy, : m € {0}UN) € Sy(Susr, x), then YacsVme(0jon { Ya (Wms1) < Ya(wWm) ).

By (6.25) and Proposition 4.3(c), Vue(ojun{wWm1 € S["Hl](x) = Sur(x)}, wo = x, and
then, by Step 7 and Definition 4.2(iv), Ve Vime(oyjun { Ua (wm,wm+1) Ya (W) = Ya(Wia1) }-

SfEP 10. We have VuedvxeryeSu;T(x) { (x y) Ya(x) Ya(]/) }

Indeed, if x € X and y € Syr(x), then there exist my € {0} UN, y € T"*!(x) and
(wm : m € {0} UN) € Sy(T, x) such that y = w1 and wy = x. However, V,,cojun{wm+1 €
Tlm+1] (x)} and Ve Vine O}UN{U (Wi, Wins1) < Ya(wWm) - Ya(wmﬂ)} Hence, Vaeu {Ua(x, ]/) <
Z oUa (W, Wms1) < Zm o[Ya(wm) Ya(@Wmi1)] = Ya(x) = ya(y) }.

Step 11. We have VacyVrex { Aa(Sur (%)) < Ya(X) = Qussyr (X)) Where VoeyVaex{Aa(Sur(x)) =
sup{Ua(x,t) : t € Syr(x)} and Ve Vaex {Qusyr (X) = inf{ya(t) : £ € Syr(x)}}.

This is a consequence of the Step 10, (U1), and (%2).

Step 12. For each x € X, there exist a generalized sequence of iterations (w,, : m € {0} UN) €
Su(Swu;r, x) and a unique w € X such that

VQGJ{ lim sup Ug(wn, wm) = O},

M=o ysm

VREJ{ lim sup dy(wy, W) = },

P n>m

Hwex{ lim w,, = w}, (6.26)
m— oo

Vaca{ Jim, 8u(Sr (o) = lim 6, (cl(Sur (o)) =0,

N clSur(wm)) = {w).

m=0

This can be obtained by an analogous argument as in Step 6, using Steps 7-11.
(b2) We show that wis an endpoint of T.
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Indeed, Yyex {T (Su.r(x)) C Sy;r(x)} and assuming that (w,, : m € {0} UN) and w is
such as in Step 12, then we conclude that the following holds T (w) = T((,,»0 cl(Sw;r (wim))) =
T(Nimzo Sur(@m)) € Ninzo T Swr(Wm)) € Nipzo Sur (W) = Ninzo ASur(wm)) = {w}, that
is, w is an endpoint of T.

(bs) We show that wis an endpoint of T.

Indeed, let (w,, : m € {0} UN) € Sy(Syr,x), x € X, and w be such as in Step 12.
Analogously as in the proof of (a3), we get Vyuen{T (cl(Sy;r(wn))) C cd(Sur(wm))}. Thus
T(w) = T(Nmzo LSur(@m))) € Nimzo T (€l(Swr(wm))) C Nimzo l(Sur(wm)) = {w}, thatis, w
is an endpoint of T. O

7. Examples, Remarks, and Comparisons of
Our Results with the Well-Known Ones

In this section we present some examples illustrating the concepts introduced so far.
In Examples 7.1 and 7.2 we construct J-families and %-families, respectively.

Example 7.1. Let L be an ordered normed space with cone H C L, let the family p = {p, :
XxX — L, a € #} beap-family, and let (X, ) be a Hausdorff cone uniform space with
cone H.

(A) The family p is a J-family.

(B) Let both X and H contain at least two different points and let H be normal with a
normal constant M. Let S; = {v, w}, v#w, be a subset of X and, for each a € &, let
Ca, €4 € H be such that c,>ge, >0 and

Vuedvx,yesl {Ptx (.X', y) + ea<HCac}- (71)

Let 2 ={Js: XxX — L:a € #}beafamily where, for each a € 4, ], is defined by the
formula

0, ifx=y=w,
Ja(x,y) = { pa(x,y) +ea, if {x,y} NSt = {x,y} ATuciay) {uw), (7.2)
Ca if {x,y}nSi#{xy},

x,y € X. We show that the family 2 is a 2-family on X.

Of course, condition (21) holds.

Now, we show that condition (22) holds. Indeed, let x, y, z € X be arbitrary and fixed.
We consider three cases: (i) if J.(x,z) = 0, then it is clear that J.(x, z)<gJa(x,v) + Ja(y, 2);
(ii) if Ja(x, 2) = pa(x,z) + €4, then {x,z} N S1 = {x,2} A Jueixz) {1 #w} which implies that
Ja(x,y) #0o0r Ju(y, z) #0and, by (7.1), we get Ja(x, 2) 21 Ju(x, y) +]a(y, 2); (iii) if Ju(x, 2) = cq,
then {x,z} N X \ S1#0 and, consequently, J.(x,y) = ¢, or Jo(y,z) = ¢, which implies that
Ja(x,2)<HJa(x,v) + Jo«(y, z). Therefore, (J2) holds.
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Now, let us observe that Ve ¥y yex {pa(X, ¥) + €x —€a = pa(x,y) € H} which gives that
VacuVxyex{€aXupa(x,y) + e, }. Hence

VKEJVx/yEX{”ea” < M||pa(x,v) +eal| }- (7.3)

Next assume that the sequences {w,,} and {v,,} in X satisfy (2.3) and (2.4). Then, in
particular, from (2.4) we conclude that

Vae,sz0<g<||ea||/M5|m0=m0(a,s)eNVm>mo{||]a(wmrvm)|| <e< %} (7.4)
Hence, by (7.3),
VaedVmzmo {1 Ja(@m, 0| < ||Pa(0m, Om) + eal|}- (7.5)
Since Vaeu{lleall/M < ||call}, condition (7.4) gives
Vet Vimzmo {1 Ja(@Wm, Om) || <llcall}- (7.6)

By definition of a family 2, from (7.5) and (7.6), denoting m’ = min{mg(a,e) : a € #},
we conclude that V> {w, = v, = w}, which implies VaeyVimzm {||Pa(Wn, vm)|| = 0}.
In consequence, we obtain VacyVoceq|le,||/MImenYmzm {|Pa(Wm, vm)ll = 0 < €}. Thus, the
sequences {wy,} and {v,,} satisfy (2.5). Therefore, the condition (23) holds.

Example 7.2. Let (X, ®) be a Hausdorff uniform space with uniformity defined by a saturated
family @ = {d, : @ € A} of pseudometrics dy : X x X — [0, 0), a € &, uniformly continuous
on X2.

(A) The family D is a U-family.

(B) Let X contain at least two different points. Let S, C X, containing at least two
different points, be arbitrary and fixed and let {c,} e, satisty Vaes{6a(S2) < cal.
Let U = (U, : X xX — [0,00),a € #} be a family where, for each a € &4, U, is

defined by the formula
d.(x,v), ifSonix,yl=1xvy},
Ue(xy) = (x,y) 20 {x,y}={xy} oy eX o7
Ca, if Ssnix,y}#{xy},

We show that the family % is a «-family on X.

Indeed, we see that condition (%1) does not hold only if there exist some a € &/ and
x,y,z € X such that U,(x,z) = ¢q, Ua(x,y) = da(x,y), Ua(y,z) = da(y, z), and da(x,y) +
da.(y,z) < c,. However, then we conclude that there exists v € {x,z} such that v¢ S, and
x,Y,z € Sy, which is impossible. Therefore, Vac Vs zex {Ua (X, 2) < Ua(x,y) +Ua(y, )}, that
is, condition (A1) holds.
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To prove that (%2) holds we assume that the sequences {w,,} and {v,,} in X satisfy
(4.1) and (4.2). Then, in particular, (4.2) yields

YaeatVo<e<c, Imo=mo (a,e)eNVmzmo {Ua (Wi, Um) < €}. (7.8)
By (7.8) and definition of U, denoting m’ = min{my(a, ) : a € &#}, we conclude that
Vinzm A S2 0 {Wm, U} = {Wm, O} ). (7.9)
From (7.9), the definition of « and (7.8), we get
Vet Voce<c, ImenVmsm { Aa (Wi, V) =0 < €}. (7.10)

The result is that the sequences {w,,} and {v,,} satisfy (4.3). Therefore, condition (%2) holds.
The following example illustrates Theorem 3.1(a) in cone metric space.

Example 7.3. Let (L,|| - ||), L = R?, be a real normed space, let H be a regular solid cone of
the form H = {(x,y) € L : x,y > 0} and let (X,0D) be a cone metric space (see [27]) with
a cone H where X = [0,1] C R, P = {p},and p : X x X — L is a cone metric of the form
p(x,y) = (Ix-y|,2lx—y|), x,y € X. Let T : X — 2X be defined by

[%,1], ifx=0,

T(x) =14 {1}, 1fxe<0,%> <— ], (7.11)
{0,1}, 1fx—%

We note that for g = 1, the map T4 is closed in X.

LetS; ={1/2,1} andlet J : X x X — L be of the form

(0,0), ifx=y=1,
](x/y)= (.‘X‘ ]/) <4 ;) if {x,y}ﬁSl={x,y}/\EIue[x,y,{u;él}, (712)
(2,2), if {x’y}nsl#{x’y}

for x,y € X. By Example 7.1(B), the family 2 = {J} is a 2-family. Now we define Q = {w]},

w:X — L,as follows:
1
<1,g>, for x € [0,1)\ {E}'

w¥)=14022), forx= %
(0,0), for x = 1.

(7.13)

Of course, Vyex {0<gw(x)} and w is not Isc on X.
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(a) The map T is weak (2,€;Xy)-dissipative on X where Q = {w} and X, = {1/2,1}.

Indeed, if x = 1, then, by definition T, a sequence (w,, : m € {0} UN) satisfying (1.1)
is of the form w,, = 1 where m € {0} UN and satisfies Ve(0jun{J (Wm, Wm+1) = (0,0)<gew(1) —
w(1) = w(wy,) — w(wn) = (0,0)}, that is, (2.7) holds.

If x = 1/2, then there exists a sequence (w,, : m € {0} UN) satisfying (1.1) of the form
wy = 1/2, wy, = 1 where m € N and satisfies J(wg, w1) = J(1/2,1) = (3/4,3/2)<y4(2,2) -
(0,0) = w(wy) — w(w1) and Yien{ J (W, Wm+1) = (0,0)2pw(l) - w(l) = w(wn) — w(Wp) =
(0,0)}, that is, (2.7) holds.

Consequently, {1/2,1} C X.

We see that Xy = {1/2,1}. Otherwise, Xy \ {1/2,1} #0 and the following two cases
hold:

Case 1. If x = 0, then, by definition of T, for each sequence (zw,, : m € {0} UN) satisfying (1.1)
we have that wy = 0, wy € [1/2,1] and then, by definition of ],

( 1
(0,0) if w; € <§,1>

](wo, wl) = ](O, wl) = (2,2)>Hw(0) - CU(ZU1) =1 (1, g) ifw; =1 (714)

1 1
-(1,2) ifw ==
<2> =g

which means that (2.7) does not hold.

Case 2. If x¢{0,1/2,1}, then, by definition of T, each sequence (w,, : m € {0} UN) satisfying
(1.1) is of the form wy = x and, for each m € N, w,, = 1. Next, by definition of J, since x ¢ S1,
we obtain

J o, w1) = J(3,1) = 2, Deo(an) - o) = (1,3), (7.15)

which means that (2.7) does not hold.
Consequently, Xy = {1/2,1}.

(b) All assumptions of Theorem 3.1(a) hold, and 1 € Xj is the periodic point of T, that
is, 1 € Fix(T).

Remark 7.4. Let L, H, (X,P), T and 2-family be such as in Example 7.3.

(i) We see that for this 2-family the map T is not (2, Q)-dissipative on X for any
(consequently, by Remark 2.9(ii), for any Q, T is not strictly (2, Q)-dissipative
on X). Indeed, suppose that there exists Q = {w} such that w : X — Lisa
map satisfying Vyex{0<gw(x)} and such that T is (2, Q)-dissipative on X. Then,
in particular, for a dynamic process wy =1/2,w; =0, wy =1/2, w3 =0, and w,, =1
for m > 4, by (2.7), we must have (0,0)<g(2,2) = J(wo, w1) = J(1/2,0)<pw(1/2) -
w(0) so w(0)<gw(1/2) and (0,0)<y(2,2) = J(wq,wy) = J(0,1/2)<gw(0) — w(1/2)
so w(1/2)<yw(0), which are contradictions.
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(ii) We see that X = {1/2,1} and T(Xp) = {0, 1} # Xo.

In Examples 7.5 and 7.7 we illustrate Theorem 5.3(a) for dissipative set-valued and
single-valued dynamic systems, respectively.

Example7.5. Let (X, d) be a metric space, where X = [0,1/2]U{3/4,1} and d : XxX — [0, 00)
is a metric of the form d(x,y) = [x —y|, x,y € X. Let T : X — 2% be of the form

T(x) =4

Let S, = [0,1/2]. By Example 7.2(B), the family # = {U : X x X — [0, 00)}, where

Uey) = {d(xfy)/ if S0 {x,y} = {x,y},

2,

is a U-family on X. We observe that

({1}, for x =0,
1
[O, —x], for x € <0, E]'

(7.16)

{0} for x = 3

7 - 4/

3

\ {Z&}' for x = 1.

x,y€X, (7.17)

if S;n{x,y}#{x vy},

r{%}, for x =0,
[O,;Lx] u{l}, forxe (O, %],
TR (x) = 4
3
{1}, for x = g
L{0}, forx =1,
({0}, for x =0,
[O,lx] U {E,l}, for x € <O,1],
B (x) = 4 8 4 2
Z}, for x = Z,
{1}, forx =1,
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{1}, for x =0,

[0 x]u{— 1} forxe(O 1]

[4] /16 4/ 7 12 7
T (x) = 4 3
{0}, forx:Z,
{Z}, forx =1,

(7.18)

so, the map TPl is closed in X. However, the map Tl is not closed in X.
LetT = {y},y: X — [0,00), be of the form y(x) = x, x € X.

(a) T is weak (%, I’; Xy)-dissipative on X, where Xy = (0,1/2]. Indeed, let x € (0,1/2]
be arbitrary and fixed, then there exists a dynamic process (w,, : m € {0} UN) given
by the formula wy = x, w,, = (1/2™)x, m € N, such that U (wy, w1) = d(x, (1/2)x) =
x/2 < x=x/2 =y(wo) - y(w1); Vimen AU (Win, Wims1) = AW, Wii1) < (1/2™)x
(1/2™Nx = y(wm) — ¥ (Wms1) }. This implies that the dynamic process (wy, : m €
{0} UN) satisfies (1.1) and (4.4). Consequently, (0,1/2] C Xo. The fact that X \
(0,1/2] = @ follows from considerations in the remark below.

(b) The 0 € cl Xy is the periodic point of T (g = 3).

Remark 7.6. Let X, ®, T, and U-family be such as in Example 7.5. We see that for this U-family
the map T is not (U, I')-dissipative on X for any I' (consequently, by Remark 2.9(ii), for any
I', Tisnotstrictly (%, I')-dissipative on X). Indeed, suppose that there exists I = {y} such that
y: X — [0,00] and that T is ( %, I')-dissipative on X. Then, we have a unique dynamic process
(wm : m € {0} UN) starting at wy = 3/4 which is defined by w; = 0 € T(wy), w, =1 € T(wy),
W3me1 =0 € T(Wsm), Wamez = 1 € T(w3y41), and wsy, = 3/4 € T(wspy,-1) for m € N and for this
process we have 0 < U (wp, w1) =2 < y(wp) —y(w1), 0 <U(wq, wr) =2 < y(wr) — y(wy), and
0 <U(wz,ws3) =2 < y(wz) - y(ws) = y(w2) - y(wo). Hence y(wo) < y(wz) < y(w1) <y(wo),
which is impossible.

Example 7.7. Let (X, d) be a metric space, where X = [0,1] and d : X x X — [0, c0) is a metric
of the formd(x,y) =[x —y|, x,y € X. Let T : X — X be of the form

1
1/ f 01_ 7
orxel 8]
5 13
—2x+Z, forx€<§,§>,
35
-, = 7.19
3 (7.19)
Z)
/8 a
,1].

T(x) =< %, for x €

-2x+ -, forxe

wlur R

(e XN

0, for x € l
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By Example 7.2(A), the family % = {U : X x X — [0,00)}, where U(x,y) = d(x,y), x,y € X,
is U-family on X.

LetI'={y},y: X — [0,00), be of the form

( [ 5 11
, forxe O'E>U<E'1]'

3 forxe'5 3>U<5 11]
7 Elg §/E 7
y(x) = S ) xeX. (7.20)

[3 1 15
2, forxe _§’§>U<§’§]’

0, forx=

—_

E/

(a) We show that T is weak (%,I; X)-dissipative on X, where X, = [5/16,11/16].
Indeed, let x € Xy be arbitrary and fixed. We consider the following four cases.

Case 1. If x = 1/2, then a dynamic process (w,, : m € {0} UN) of (X,T) starting at x is of
the form w,, = 1/2, m € {0} UN. Consequently, V.c(ojun (U (W, Wimi1) = (W, Wine1) = 0 <
0-0=y(wm) — y(wm+1)}, thatis, (4.4) holds.

Case 2. If x € [5/16,3/8), then a dynamic process (wy, : m € {0} UN) of (X, T) starting at x is
of the form wy = x, wy = -2x+5/4 € (1/2,5/8], and w,,, = 1/2, m > 2. Therefore, U (wy, w1) =
d(wo,w1) <1=3-2=y(w) - y(wr), U(w,wr) = d(wy,wr) <2-0=y(wr) - y(ws), and
Vinso (U (W, Wins1) = A(Wm, Wins1) =0 < 0—0 = y(wm) — y(wms1)}, that is, (4.4) holds.

Case 3. If x € [3/8,1/2) U (1/2,5/8], then a dynamic process (w,, : m € {0} UN) of (X,T)
starting at x is of the form wy = x and w,, = 1/2 for m € N. Moreover, (4.4) holds since
U (wo, w1) = d(wo, w1) <2-0=y(wo) - y(w1) and Vuen {U (W, Wini1) = (W, Wins1) =0 <
0-0= Y(wm) - Y(wm+1) }.

Case 4. If x € (5/8,11/16], then a dynamic process (w,, : m € {0} UN) of (X, T) starting at
x is of the form wy = x, wy = 2x+7/4 € [3/8,1/2), and w,, = 1/2, m > 2. We also get
that U (wo, w1) = d(wo,w1) <1 =3-2=7y(wo) - y(wr1), U(wy, wy) = d(wy,wy) <2-0=
Y(wl) - Y(Z(Jz), and Vm}Z{u(wmr wm+1) = d(wml wm+1) =0<0-0= Y(wm) - Y(wm+1) }

(b) Now, we show thatif x € [0,5/16)U(11/16, 1], then x ¢ X. Indeed, let x € [0,5/16)
and let (wy, : m € {0} UN) be a dynamic process of (X, T) starting at x. Then wy = x,
wi € (5/8,1], and

2=1-3=y(wy) —w(wy), ifw € (g, %],
U (wo, w1) = d(wy, wn) > (7.21)

0=1-1=y(wy) —w(wy), ifw; e (%,1].
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Now, let x € (11/16,1] and let (w,, : m € {0} UN) be a dynamic process of (X, T) starting at
x. Then wy = x, wy € [0,3/8), and

0=1-1=y(wy) —w(wr), ifw; € [0'15_6 ,
U (wo, w1) = d(wo, w1) > (7.22)
. 5 3
2=1-3=y(wy) —w(wy), ifw; € [E'g .

Consequently, T is weak (U,I'; X)-dissipative on X, where X, = [5/16,11/16].
(c) The map T is closed on X, 1/2 € Fix(T), and 1/2 € X,.

Remark 7.8. Let X, ®, T and U-family be such as in Example 7.7. We see that for this #-family
the map T is not (%, I')-dissipative on X for any I’; see (b).

The following example shows that in Theorem 5.3 for the existence of periodic points
the assumption that the map T4 is closed in X for some g € N is essential.

Example 7.9. Let (X, d) be a metric space, where X = [0,1] and d : X x X — [0, o0) is a metric
of the form d(x,y) = |x —y|, x,y € X. Let T : X — 2% be of the form

(7.23)

let = {d}and letT = {y},y: X — [0,00), be of the form

4, if xel,
y(x) = (7.24)
x, if x € (0,1].

We observe the following.

(a) T is (U,I')-dissipative and strictly (%,I')-dissipative on X.

(b) For each x € X, Wy(T,x) = Sy(T,x), and {{0} = {w : lim,,d(w.,, w) = 0 A (wy, :
m € {0} UN) € Sy(T,x)}.

(c) For each g € N, the map T4 is not closed in X.
(d) The map T does not have periodic points in X.

The following example illustrates Theorem 6.2(ay).

Example 7.10. Let (X, d) be a metric space, where X = [0,1] and d : XxX — [0, o0) is a metric
of the form d(x,y) = |x - y|, x,y € X.
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Let S, =[0,1/2] and letU : X x X — [0, o0) be of the form

d 7 7 .f S 7 = 7 7
U(x,y) = (oy), i S20 iz y) = {xy) x,yeX (7.25)
2, if Son{x,y}#{x vy},

By Example 7.2(B), the family = {U} is a U-family. Define I' = {y}, y : X — [0, 0], as
follows:

7

( 1
if 0, =
X, 1x6[,2

S

6, ifxe

4, ifxe(

8, ifx=1,

7

=~ W

L xeX. (7.26)

1),

y(x) = 4

=W N -

Let T : X — 2% be of the form

-~

c
=
K
[

L

S
— o+
—_

-
=
=
m

+ —

—_

H—/h\,—d
=
=
Il

T(x) =4

>INy I

,Z> (7.27)

SeU
—_
N

~
—
=i
=
Il

—t— T —A— A~
——
S =N
=
m
N BRI /N /N X |+

——
—-
g
=
m

N = N =
RS
~~

N

.

=

=

Il

=

VR

We observe that

(a) T is (U, I')-dissipative on X. Indeed, let x € X be arbitrary and fixed. We consider
seven cases

Case 1. If x = 0, then each dynamic process starting at wy = 0 is of the form V,,en{w, = 0 €
T(wp-1)} and Yine(ojun {U (Wi, Wins1) = 0 < ¥ (W) = ¥ (Wna1) }-

Case 2. If x € (0,1/2) \ {1/n : n > 3}, then there exists [y > 2 such that x € (1/(lp +1),1/1p)
and each dynamic process starting at wy = x is of the form V,,>1{w,, = 1/(lp + m)}. Therefore
U(wo,w1) = d(x,1/(lo + 1)) = x =1/(lp +1) < y(x) - y(wy+1) = y(wo) - y(w1)} and
VmeN{u(wmrme) = 1/(ZO + m) - 1/(10 +m+ 1) < Y(wm) - Y(merl)}
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Case 3. If x € {1/n : n > 2}, then there exists [y > 2 such that x = 1/ly and each
dynamic process starting at wy = x is of the form V,,>1{w,, = 1/(lyp + m)}. Therefore
Vine(0)un AU (W, Wims1) =1/ (lo + m) = 1/(lo + m+ 1) < y(wm) =y (W) }-

Case 4. If x € (1/2,3/4), then each dynamic process starting at wy = x is of the form w; =7/8
and V,>2{w,, = 1/m}. Therefore U (wy, w1) =2 < 6 —4 = y(wp) — y(w1), U(wy, wr) =2 <
4-1/2= Y(WO) - Y(wl) and vm>2{u(wmrwm+1) =1/m-1/(m+1) < Y(wm) - Y(wm+1)}

Case 5. If x = 3/4, then each dynamic process starting at wy = x is of the form w; € [7/8,1)
and Vp,>2{wy, = 1/m}. Therefore U (wy, w1) =2 < 6 —4 = y(wp) — y(w1), U(wy, wz) =2 <
4-1/2 =y(wo) - y(w1), and Voo {U (Wi, W) = 1/m=1/(m+1) < y(Wn) — y(Wms1) ).

Case 6. If x € (3/4,1), then each dynamic process starting at wy = x is of the form V,,>1{w,, =
1/(m +1)}. Therefore, U(wo, w1) =2 < 4-1/2 = y(wp) — y(w1) and Voo {U(Wp-1, Win) =
1/m=1/(m+1) < y(wn1) - Y(w0n))}.

Case 7. If x = 1, then each dynamic process starting at wy = x is of the form w; € (1/2,3/4),
wy =7/8, w3 =1/2, and Vy>a{wm, = 1/(m - 1)}. Therefore U (wp, w1) =2 < 8 -6 = y(wp) —
y(w1), U(w1,wy) =2 < 6 -4 =y(wp) — y(wr) and by analogous argumentation as in Case 4
we obtain that (1.1) and (4.4) hold in this case.

Consequently, T is (%, I')-dissipative on X.

(b) Wyr is of the form

7{0}/ ifx=0,
l m}n}, 1fx:1/\n>2,
m n
l:m>n U {x}, 1fx€< ! ,l>/\n>2,
m n+ln
1 7 . 13

WM;T(x)=< E 1’122 U x,g P if xe E,Z P (728)

1 3 7 3
— > e Z ==
p n/Z}U{4}U[8,1>, if x 7
1 3
— 22 V] , if _/1 ’
L } {x} i x€<4 >
1 13 7 .

L H n/Z}U<2,Z>U{§,1}, if x =1.

(c) Wyr is (U, I')-dissipative on X.

(d) For each x € X, there exist (wy, : m € {0} UN) € Wy (Wy.r,x) and w = 0 € X such
that (wy, : m € {0} UN) converges to w and (1,5, Wyt (wn) = {w} = {0}. We see
that w = 0 is an endpoint of T in X.

The assertions (a;) of the Theorem 6.2 hold.
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Remark 7.11. 1t is worth noticing that in Example 7.10, there exists x € X such that Wy (x)
is not closed. Indeed, Wy.7(1/2) = {1/m : m > 2} is not closed. Moreover, T is not Isc on X.
Consequently, the assumptions of Theorems 6.2(a») and 6.2(a3) do not hold.

The following example illustrates Theorems 6.2(az) and 6.2(a3).

Example 7.12. Let (X, d) be a metric space, where X = [0,1/2], d(x,y) = |x - y|, x,y € X, and
U= {d}.LetT : X — 2% be of the form T(x) = [0,(1/2)x], x € X,and letT = {y : X —
[0, 00)} be defined as follows y(x) = x, x € X.

(a) The map T is (U,T)-dissipative. Indeed, if x € X is arbitrary and fixed, then each
dynamic process (wy, : m € {0}UN) starting at wy = x is of the form w,,, € T (w,-1) =
[0, (1/2)wy-1] for m € N. Therefore, we have V,,ciojun{0 < U (W, Win1) = Wy —
W1 = Y (Wm) — Y (Wp41) }. Thus conditions (1.1) and (4.4) hold.

(b) We observe that

{0}, if x €0,

Wor(x) = 1
[0, Ex], if x € (0,1],

(7.29)

and Wy.r is (U,I')-dissipative on X.
(c) For each x € X, the set Wy.r(x) is closed.
(d) The assertions of Theorem 6.2(a;) hold.
(e) The map Wy.r is closed.
(f) We have that w = 0 € End(T) and (1,50 cl(Way,r (wim)) = {w}.
(g) The map T is Isc on X.
(h) The assertions (a3) hold.

(i) The map T is not strictly (%,I')-dissipative. Indeed, if x = 1/2 € X, then we have
that T (x) = [0,(1/2™)x] for m € N and a generalized sequence of iterations
(wy, : m € {0} UN) starting at wy = x, of the form w; =0, w, =1/8 and w,, = 0 for
m > 3, not satisfies (4.4) since U(wq, wy) =1/8 > -1/8 = w1 —wy = y(w1) — y(w2).

The following example illustrates Theorem 6.2(ay).

Example 7.13. Let (X,d), X = [0,1],and let U = {d}. Let T : X — 2% be of the form

(1}, if x =0,
_ 1 .
T(x) = [o, Ex], if x € (0,1), (7.30)
(11, ifx=1,
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and letI’ = {y : X — [0, 00)} where y is of the form

1, ifx=0,
y(x)=qx, ifxe(0,1), xeX (7.31)
0, ifx=1.

(a) The map T is (U,I')-dissipative on X. Indeed, let x € X be arbitrary and fixed. We
consider three cases.

Case 1. If x = 0, then a dynamic process starting at wy = 0 is of the form Ven{w, =1 €
T(wm-1)} and U(wo,w1) =1 < 1-0 = y(0) —y(1) and Vien {U(wm, Wms1) = 0 < y(wm) -
¥ (Wm1) b

Case 2. If x € (0,1), then each dynamic process (w,, : m € {0} UN) starting at wy = x is
of the form w,, € T(wy,-1) = [0,(1/2)w,-_1] for m € N. Therefore, we have V,,c(ojun{0 <
U (W, Wint1) = Wi = Wims1 = ¥ (W) = ¥ (Wins1) -

Case 3. If x = 1, then a dynamic process starting at wy = 1 is of the form Ven{w,, =1 €
T(wpn-1)} and Yine(ojun {U (Wi, Wins1) = 0 < ¥ (W) = Y (Wa1) }-

Thus conditions (1.1) and (4.4) hold.
(b) We observe that

{0,1}, if x=0,
War (x) = [Q%x]u{ﬂ, if x € (0,1), (7.32)
{1}, if x=1,

and Wyt is (U, I')-dissipative on X.
(c) For each x € X, the set Wy.r(x) is closed.
(d) The assertions of Theorem 6.2(a;) hold.
(e) The map Wy,r is not closed.
(f) We have that w =1 € End(T) and (1,50 l(Way,r (wim)) = {w}.
(g) The map T is not Isc on X.
(h) The assumptions of Theorem 6.2(a3) do not hold.

Now, we present comparisons between our results and the well-known ones. The
results of Kirk and Saliga [12] and Aubin and Siegel [1], concerning the existence of
fixed points and endpoints of dissipative single-valued and set-valued dynamic systems,
respectively, we may read as follows.

Theorem 7.14 (Kirk and Saliga [12, Theorem 1.1]). Let (X, d) be a complete metric space and let
(X, T) be a single-valued closed dynamic system satisfying

Vxex{d(x, T(x)) < ¢(x) = (T (x))}, (7.33)
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where ¢ : X — R is a map bounded from below. Then, for each x € X, {T"(x)} converges to a fixed
point of T.

Here, we may assume, without loss of generality, that ¢ : X — [0, c0); in another case,
we replace ¢ by g = ¢ — infrex(x).

Theorem 7.15 (Aubin and Siegel [1, Theorem 2.4]). Let (X, d) be a complete metric space and let
(X, T) be a set-valued closed dynamic system satisfying

Viex3yero {d(x,v) < o(x) - 9(y)}, (7.34)

where ¢ : X — [0,00). Then, for each x € X, there exists a dynamic process (w,, : m € {0} UN)
starting at wy = x of the system (X, T) which converges to a fixed point of T.

Theorem 7.16 (Aubin-Siegel [1, Theorem 4.10]). Let (X, d) be a complete metric space and let
(X, T) be a set-valued dynamic system satisfying

VxexVyerw{d(x,y) < o(x) -9 (y)}, (7.35)

where ¢ : X — [0, 00). Assume that (a) T is Isc; or (b) Wt is closed. Then End(T) # 0.
Remark 7.17. It is worth noticing that

(i) by Example 7.2(A), Theorem 5.3(b) when g = 1 includes Theorems 7.14 and 7.15,

(ii) by Example 7.2(A) and Remark 5.1(i), Theorems 6.2(a;) and 6.2(a3) include
Theorem 7.16.

(iii) the map T defined in Example 7.7 satisfies the assumptions of Theorem 5.3(a) but
does not satisfy the assumptions of Theorems 7.14, 7.15, and 7.16(a). Indeed, first
let us observe that T is closed (and Isc as continuous). Next, suppose that the map
T satisfies the assumptions of Theorems 7.14, 7.15, and 7.16(a). Then there exists a
map ¢ : X — [0,00) such that the condition Vyex{d(x,T(x)) < ¢(x) — ¢(T(x))}
holds. Then, in particular, for x = 0, we have that 0 < d(x,T(x)) = d(0,1) = 1 <
¢(0) — (1), which means that ¢(1) < ¢(0). On the other hand, for x = 1, we get
0 <d(x,T(x)) =d(1,0) =1 < ¢(1) — ¢(0), which means that ¢(0) < ¢(1). This is
absurd.

(iv) The map T defined in Example 7.13 satisfies the assumptions of Theorem 6.2(a;)
but does not satisfy the assumptions of Theorems 7.16(a) and 7.16(b). This follows
from (e) and (g).
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