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We obtain some new existence theorems of the maximal and minimal fixed points for
discontinuous monotone operator on an order interval in an ordered normed space. Moreover,
the maximal and minimal fixed points can be achieved by monotone iterative method under some
conditions. As an example of the application of our results, we show the existence of extremal
solutions to a class of discontinuous initial value problems.

1. Introduction

LetX be a Banach space. A nonempty convex closed set P ⊂ X is said to be a cone if it satisfies
the following two conditions: (i) x ∈ P , λ ≥ 0 implies λx ∈ P ; (ii) x ∈ P , −x ∈ P implies x = θ,
where θ denotes the zero element. The cone P defines an ordering in E given by x ≤ y if and
only if y − x ∈ P . Let D = [u0, v0] be an ordering interval in X, and A : D → X an increasing
operator such that u0 ≤ Au0, Av0 ≤ v0. It is a common knowledge that fixed point theorems
on increasing operators are used widely in nonlinear differential equations and other fields
in mathematics ([1–7]).

But in most well-known documents, it is assumed generally that increasing operators
possess stronger continuity and compactness. Recently, there have been some papers
that considered the existence of fixed points of discontinuous operators. For example,
Krasnosel’skii and Lusnikov [8] and Chen [9] discussed the fixed point problems for
discontinuous monotonically compact operator. They called an operator A to be a
monotonically compact operator if x1 ≤ · · · ≤ xn ≤ · · · ≤ w (x1 ≥ · · · ≥ xn ≥ · · · ≥ w)
implies that Axn converges to some x∗ ∈ X in norm and that x∗ = sup{Axn} (x = inf{Axn}).
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A monotonically compact operator is referred to as an MMC-operator. A is said to be h-
monotone if x < y implies Ax < Ay − α(x, y)h, where h ∈ P , h/= θ, and α(x, y) > 0. They
proved the following theorem.

Theorem 1.1 (see [8]). Let A : E → E be an h-monotone MMC-operator with u < Au ≤ Av < v.
Then A has at least one fixed point x∗ ∈ [u, v] possessing the property of h-continuity.

Motivated by the results of [3, 8, 9], in this paper we study the existence of the minimal
and maximal fixed points of a discontinuous operator A, which is expressed as the form
CB. We do not assume any continuity on A. It is only required that C (or B) is an MMC-
operator and B(D) (or A(D)) possesses the quasiseparability, which are satisfied naturally
in some spaces. As an example for application, we applied our theorem to study first order
discontinuous nonlinear differential equation to conclude our paper.

We give the following definitions.

Definition 1.2 (see [3]). Let Y be an Hausdorff topological space with an ordering structure.
Y is called an ordered topological space if for any two sequences {xn} and {yn} in Y , xn ≤
yn (n = 1, 2, . . .) and xn → x, yn → y (n → ∞) imply x ≤ y.

Definition 1.3 (see [3]). Let Y be an ordered topological space, S is said to be a quasi-separable
set in Y if for any totally ordered set M in S, there exists a countable set {yn} ⊂ M such that
{yn} is dense inM (i.e., for any y ∈ M, there exists {ynj} ⊂ {yn} such that ynj → y (n → ∞)).

Obviously, the separability implies the quasi-separability.

Definition 1.4 (see [3]). LetX,Y be two ordered topological spaces. An operatorA : X → Y is
said to be amonotonically compact operator if x1 ≤ · · · ≤ xn ≤ · · · ≤ w (x1 ≥ · · · ≥ xn ≥ · · · ≥ w)
implies that Axn converges to some y∗ ∈ Y in norm and that y∗ = sup{Axn} (y∗ = inf{Axn}).

Remark 1.5. The definition of the MMC-operator is slightly different from that of [8, 9].

2. Main Results

Theorem 2.1. Let X be an ordered topological space, and D = [u0, v0] an order interval in X. Let
A : D → X be an operator. Assume that

(i) there exist ordered topological space Y , increasing operator C : D → Y , and increasing
operator B : [Cu0, Cv0] = {y ∈ Y | Cu0 ≤ y ≤ Cv0} → X such that A = BC;

(ii) A(D) is quasiseparable and C is an MMC-operator;
(iii) u0 ≤ Au0, Av0 ≤ v0.

Then A has at least one fixed point in D.

Proof. It follows from the monotonicity ofA and condition (iii) thatA : D → D. Set R = {x ∈
A(D) | x ≤ Ax}. Since Au0 ∈ R, R is nonempty. Suppose that M is a totally ordered set in R.
We now show that M has an upper bound in R.

Since M ⊂ A(D), by condition (ii) there exists a countable subset {xi} of M such that
{xi} is dense inM. Consider the sequence

z1 = x1, zi = max{zi−1, xi}, i = 1, 2, . . . . (2.1)
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Since M is a totally ordered set, zi makes sense and

z1 ≤ z2 ≤ · · · ≤ zi ≤ · · · . (2.2)

By condition (ii), M ⊂ D = [u0, v0] and Definition 1.4, there exists y∗ ∈ Y such that

Czi −→ y∗ = sup{Czi}, (i −→ ∞), (2.3)

Cu0 ≤ y∗ ≤ Cv0, (2.4)

and hence By∗ make sense.
Set

x∗ = By∗. (2.5)

Using (2.1) and (2.2), we have

xi ≤ Axi = BCxi ≤ BCzi ≤ By∗ = x∗. (2.6)

Since {xi} is dense in M, for any x ∈ M there exists a subsequence {xij} of {xi} such that
xij → x (j → ∞). By (2.6) and Definition 1.2, we get

x ≤ x∗, ∀x ∈ M. (2.7)

Hence x ≤ Ax ≤ Ax∗, therefore Ax∗ is an upper bound of M.
Now we show Ax∗ ∈ R. By virtue of (2.4) and condition (iii)

u0 ≤ Au0 = BCu0 ≤ By∗ = x∗ ≤ BCv0 ≤ v0. (2.8)

Thus x∗ ∈ [u0, v0] = D and hence Ax∗ ∈ D. By (2.7) and condition (ii), we get zi ≤ x∗ and
hence Czi ≤ Cx∗. By (2.3) and Definition 1.2, we get y∗ ≤ Cx∗ and

x∗ = By∗ ≤ BCx∗ = Ax∗. (2.9)

Hence Ax∗ ≤ A(Ax∗), and therefore Ax∗ ∈ R.
This shows that Ax∗ is an upper bound of M in R. It follows from Zorn’s lemma that

R has maximal element x. Thus x ≤ Ax. And soAx ≤ A(Ax), which implies thatAx ∈ R and
x ≤ Ax. As x is a maximal element of R, x = Ax; that is, x is a fixed point of A.

Theorem 2.2. Let X be an ordered topological space, and D = [u0, v0] an order interval in X. Let
A : D → X be an operator. Assume that

(i) there exist ordered topological space Y , increasing operator C : D → Y , and increasing
operator B : [Cu0, Cv0] = {y ∈ Y | Cu0 ≤ y ≤ Cv0} → X such that A = BC;
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(ii) [Cu0, Cv0] is quasiseparable and B is an MMC-operator;

(iii) u0 ≤ Au0, Av0 ≤ v0.

Then A has at least one fixed point in D.

Proof. Let y1 = Cu0, y2 = Cv0. By the conditions (i) and (iii), we have

y1 = Cu0 ≤ CAu0 = CBCu0 = CBy1, CBy2 = CBCv0 = CAv0 ≤ Cv0 = y2. (2.10)

Since CB is increasing, for any y ∈ [y1, y2], we get

y1 ≤ CBy1 ≤ CBy ≤ CBy2 ≤ y2, (2.11)

that is, CB : [y1, y2] → [y1, y2]; therefore the quasiseparability of [Cu0, Cv0] implies that
CB ([y1, y2]) is quasiseparable. Applying Theorem 2.1, the operator CB has at least one fixed
point y∗ in [y1, y2], that is,

y∗ = CBy∗, y∗ ∈ [
y1, y2

]
. (2.12)

Set x∗ = By∗. Since B is increasing, by (2.12), we have

u0 ≤ Au0 = BCu0 ≤ By∗ = x∗ ≤ Bcv0 = Av0 ≤ v0,

x∗ = By∗ = B
(
CBy∗) = BC

(
By∗) = Ax∗;

(2.13)

that is, x∗ is a fixed point of the operator A in [u0, v0].

Theorem 2.3. If the conditions in Theorem 2.1 are satisfied, then A has the minimal fixed point u∗

and the maximal fixed point v∗ inD; that is, u∗ and v∗ are fixed points ofA, and for any fixed point x
of A in D, one has u∗ ≤ x ≤ v∗.

Proof. Set

FixA =
{
x ∈ Dx is a fixed point of A

}
. (2.14)

By Theorem 2.1, FixA/= ∅. Set

S = {[u, v] | [u, v] is an order interval in X, u, v ∈ A(D), u ≤ Au, Av ≤ v, FixA ⊂ [u, v]}.
(2.15)

Since A is increasing, for any x ∈ FixA, we have

u0 ≤ Au0 ≤ Ax = x ≤ Av0 ≤ v0, (2.16)
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and hence

Au0 ≤ A2u0 ≤ Ax = x ≤ A2v0 ≤ Av0, (2.17)

therefore [Au0, Av0] ∈ S, and thus S/= ∅. An order of S is defined by the inclusion relation,
that is, for any I1 ∈ S, I2 ∈ S, and if I1 ⊂ I2, then we define I1 ≤ I2. We show that S has
a minimal element. Let {[uα, vα] | α ∈ T} be a totally subset of S and M′ = {uα | α ∈ T}.
Obviously, M′ is a totally ordered set in X. Since A(D) is quasiseparable, it follows from
M′ ⊂ A(D) that there exists a countable subset {yi} of M′ such that {yi} is dense in M′. Let

w1 = y1, wi = max
{
wi−1, yi

}
, i = 2, 3, . . . . (2.18)

Since M′ is a totally ordered set, wi makes sense and

w1 ≤ w2 ≤ · · · ≤ wi ≤ · · · . (2.19)

Then there exists w ∈ Y such that

Cwi −→ w = sup{Cwi}. (2.20)

Using the same method as in Theorem 2.1, we can prove that w makes sense, Au (where
u = Bw) is an upper bound ofM′, and

Au ≤ A(Au). (2.21)

Since FixA ⊂ [uα, vα] (for all α ∈ T), for any x ∈ FixA, we have uα ≤ x, for all α ∈ T . Since
wi ∈ M′,wi ≤ x. By (2.20),w ≤ Cx, and hence u = Bw ≤ BCx = Ax = x, for all x ∈ FixA, and
therefore

Au ≤ Ax = x, ∀x ∈ FixA. (2.22)

Consider N = {vα | α ∈ T}. Similarly, we can prove that there exists v ∈ D such that
Av is a lower bound of N and

A(Av) ≤ Av, Av ≥ x, ∀x ∈ FixA. (2.23)

By (2.22) and (2.23), Au ≤ Av. Set I = [Au,Av]. By virtue of (2.21), (2.22), and (2.23), I ∈ S.
It is easy to see that I is a lower bound of {[uα, vα] | α ∈ T} in S. It follows from Zorn’s lemma
that S has a minimal element.

Let [u∗, v∗] be a minimal element of S. Therefore, u∗ ≤ Au∗, Av∗ ≤ v∗, and FixA ⊂
[u∗, v∗]. Obviously, u∗ is a fixed point of A. In fact, on the contrary, u∗ /=Au∗ and u∗ ≤ Au∗.
Hence

Au∗ ≤ A(Au∗), Au∗ ≤ Ax = x, ∀x ∈ FixA. (2.24)



6 Fixed Point Theory and Applications

Since A is an increasing operator, this implies that FixA ⊂ [Au∗, v∗] and [u∗, v∗] includes
properly [Au∗, v∗]. This contradicts that [u∗, v∗] is the minimal element of S. Similarly, v∗ is
a fixed point of A. Since FixA ⊂ [u∗, v∗], u∗ is the minimal fixed point of A and v∗ is the
maximal fixed point of A.

Theorem 2.4. If the conditions in Theorem 2.2 are satisfied, then A has the minimal fixed point u∗

and the maximal fixed point v∗ inD; that is, u∗ and v∗ are fixed points ofA, and for any fixed point x
of A in D, one has u∗ ≤ x ≤ v∗.

Proof. It is similar to the proof of Theorem 2.4; so we omit it.

Theorem 2.5. Let X be an ordered topological space, and D = [u0, v0] an order interval in X. Let
A : D → X be an operator. Assume that

(i) there exist ordered topological space Y , increasing operator C : D → Y , and increasing
operator B : [Cu0, Cv0] = {y ∈ Y | Cu0 ≤ y ≤ Cv0} → X such that A = BC;

(ii) B is an continuous operator;

(iii) C is a demicontinuous MMC-operator;

(iv) u0 ≤ Au0, Av0 ≤ v0.

ThenA has both the minimal fixed point u∗ and the maximal fixed point v∗ in [u0, v0], and u∗ and v∗

can be obtained via monotone iterates:

u0 ≤ Au0 ≤ · · · ≤ Anu0 ≤ · · · ≤ Anv0 ≤ · · · ≤ Av0 ≤ v0 (2.25)

with limn→∞ Anu0 = u∗, and limn→∞ Anv0 = v∗.

Proof. We define the sequences

un = Anu0, vn = Anv0, n = 1, 2, . . . (2.26)

and conclude from the monotonicity of operator A and the condition (iv) that

u0 ≤ u1 ≤ · · · ≤ un ≤ · · ·vn ≤ · · · ≤ v1 ≤ v0. (2.27)

Let

yn = Cun, n = 1, 2, . . . . (2.28)

Since C is increasing, y0 ≤ y1 ≤ · · · ≤ yn ≤ · · · ≤ Cv0 by (2.27). By the condition (iii), we get

yn −→ y∗ = sup
{
yn

}
, n −→ ∞. (2.29)

By (2.29) and Definition 1.2, we have

y∗ ∈ [Cu0, Cv0], (2.30)
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and hence By∗ makes sense. Set u∗ = By∗, then u∗ ∈ [u0, v0]. Since B is continuous,

un = Aun = BCun = Byn −→ By∗ = u∗. (2.31)

By the condition (iii),Cun
w−−−→ Cu∗, that is, yn

w−−−→ Cu∗. Note that yn → y∗; we have y∗ = Cu∗;
hence u∗ = By∗ = BCu∗ = Au∗; that is, u∗ is a fixed point of A. Similarly, there exists v∗ ∈ D
such that vn → v∗ and v∗ is a fixed point of A. By the routine standard proof, it is easy to
prove that u∗ is the minimal fixed point of A and v∗ is the maximal fixed point of A inD.

3. Applications

As some simple applications of Theorem 2.5, we consider the existence of extremal solutions
for a class of discontinuous scalar differential equations.

In the following, R stands for the set of real numbers and J = [0, a] a compact real
interval. Let C[J, R] be the class of continuous functions on J . C[J, R] is a normed linear space
with the maximum norm and partially ordered by the cone K = {x ∈ C[J, R] : x(t) ≥ 0}. K is
a normal cone in C[J, R].

For any 1 ≤ p < +∞, set

Lp[J, R] =

{

x(t) : J → R | x(t) is measurable and
∫

J

|x(t)|pdt < ∞
}

. (3.1)

Then Lp[J, R] is a Banach space by the norm ‖x‖p = (
∫
J |x(t)|pdt)

1/p.
A function f : J ×R → R is said to be a Carathéodory function if f(x, y) is measurable

as a function of x for each fixed y and continuous as a function of y for a.a. (almost all) x ∈ J .
We list for convenience the following assumptions.

(H1) u0, v0 ∈ AC[J, R], u0 ≤ v0,

u′
0(t) ≤ f(t, u0(t)), v′

0(t) ≥ f(t, v0(t)) for a.a. t ∈ J. (3.2)

(H2) f : J × R → R is a Carathéodory function.

(H3) There exists p > 1 such that

f(t, u0(t)) ∈ LP [J, R], f(t, v0(t)) ∈ LP [J, R]. (3.3)

(H4) There exists M ≥ 0 such that f(t, x) +Mx is nondecreasing for a.a. t ∈ J .

Consider the differential equation

x′ = f(t, x), x(0) = x0, (3.4)
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where f : J × R → R. It is a common knowledge that the initial value problem (3.4) is
equivalent to the equation

x(t) = x0 +
∫ t

0
f(s, x(s))ds (3.5)

if f(t, x) is continuous. Therefore, when f(t, x) is not continuous, we define the solution of
the integral equation (3.5) as the solution of the equation (3.4).

Theorem 3.1. Under the hypotheses (H1)–(H4), the IVP (3.4) has the minimal solution u∗ and max-
imal solution v∗ in [u0, v0]. Moreover, there exist monotone iteration sequences {un(t)}, {vn(t)} ⊂
[u0, v0] such that

un(t) −→ u∗(t), vn(t) −→ v∗(t) as n −→ ∞ uniformly on t ∈ J, (3.6)

where {un(t)} and {vn(t)} satisfy

u′
n(t) = f(t, un−1(t)) −M(t)(un(t) − un−1(t)), un(0) = x0,

v′
n(t) = f(t, vn−1(t)) −M(t)(vn(t) − vn−1(t)), vn(0) = x0,

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ u∗ ≤ v∗ ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0.

(3.7)

Proof. For any h ∈ C[J, R], we consider the linear integral equation:

x(t) = h(t) − (Tx)(t), (3.8)

where (Tx)(t) Δ=
∫ t
0Mu(s)ds. Obviously, T : C[J, R] → C[J, R] is a linear completely

continuous operator. By direct computation, the operator equation x + Tx = θ has only zero
solution; then by Fredholm theorem, for any h ∈ C[J, R], the operator equation (3.8) has a
unique solution in C[J, R]. We definition the mapping N : C[J, R] → C[J, R] by

Nh = uh, (3.9)

where uh is the unique solution of (3.8) corresponding to h. Obviously N is a linear
continuous operator; now we show that N is increasing. Suppose that h1, h2 ∈ C[J, R],
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h1 ≤ h2. Set m(t) = (Nh2)(t) − (Nh1)(t). By the definition of the operator N we get

m(t) = (Nh2)(t) − (Nh1)(t)

= h2(t) −M

∫ t

0
(Nh2)(s)ds −

[

h1(t) −
∫ t

0
(Nh1)(s)ds

]

= h2(t) − h1(t) −M

∫ t

0
[(Nh2)(s)ds − (Nh1)(s)]ds

≥ −M
∫ t

0
m(s)ds.

(3.10)

This integral inequality implies m(t) ≥ 0 (for all t ∈ J); that is, N is an increasing operator.
Set

Qv = x0 +
∫ t

0
v(s)ds. (3.11)

Obviously, Q : Lp[J, R] → C[J, R] is an increasing continuous operator. Set

(Cx)(t) = f(t, x(t)) +Mx(t), x ∈ C[J, R]. (3.12)

By (H2), C maps element of C[J, R] into measurable functions. For any u ∈ [u0, v0], by (H3)
and (H4)we get

Cu0 ≤ Cu ≤ Cv0. (3.13)

This implies Cu ∈ Lp[J, R]. Hence C maps [u0, v0] into Lp[J, R] and C is an increasing
operator. Set

C[J, R] = X, Lp[J, R] = Y, B = NQ, A = BC, D = [u0, v0]. (3.14)

By above discussions we know that C : D → Y and B : Y → X are all increasing. Thus
conditions (i) and (ii) in Theorem 2.5 are satisfied.

Let hn, h
∗ ∈ D such that hn → h∗ in C[J, R]; by (H2) we have

lim
n→∞

f(t, hn(t)) +Mhn(t) = f(t, h∗(t)) +Mh∗(t), for a.a. t ∈ J. (3.15)

For any ϕ(t) ∈ Lq[J, R] (p−1 + q−1 = 1), by (2.29), we have

0 ≤ f(t, hn(t)) +Mhn(t) −
[
f(t, u0(t)) +Mu0(t)

]

≤ f(t, v0(t)) +Mv0(t) −
[
f(t, u0(t)) +Mu0(t)

]
,

(3.16)
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and hence

∣∣f(t, hn(t)) +Mhn(t)
∣∣ ≤ H(t), (3.17)

where H(t) = |f(t, v0(t)) +Mv0(t)| + 2|f(t, u0(t)) +Mu0(t)|. By (H3),H(t) ∈ Lp[J, R]; thus

ϕ(t)
∣∣f(t, hn(t)) +Mhn(t)

∣∣ ≤ ϕ(t)H(t), (3.18)

where ϕ(t)H(t) ∈ L1[J, R]. Applying the Lebesgue dominated convergence theorem, we have

lim
n→∞

∫

J

ϕ(t)
(
f(t, hn(t)) +Mhn(t)

)
dt =

∫

J

ϕ(t)
(
f(t, h∗(t)) +Mh∗(t)

)
dt. (3.19)

This implies that Chn
w−−−→ Ch∗ in Lp[J, R]; that is, C is a demicontinuous operator. Since the

cone in Lp[J, R] is regular, it is easy to see that C is an MMC-operator. Thus condition (iii) in
Theorem 2.5 is satisfied.

We now show that condition (iv) in Theorem 2.5 is fulfilled. By (H1) and (3.5), and
noting the definition of operator N, we get

(Au0)(t) − u0(t) = (NQC)u0(t) − u0(t)

= N

(

x0 +
∫ t

0

[
f(s, u0(s)) +Mu0(s)

]
ds

)

− u0(t)

= x0 +
∫ t

0

[
f(s, u0(s)) +Mu0(s)

]
ds −M

∫ t

0
(Au0)(s)ds − u0(t)

≥ −M
∫ t

0
[(Au0)(s) − u0(s)]ds.

(3.20)

This implies that (Au0)(t) − u0(t) ≥ 0, for all t ∈ J , that is, u0 ≤ Au0. Similarly we can show
that Av0 ≤ v0.

Since all conditions in Theorem 2.5 are satisfied, by Theorem 2.5, A has the maximal
fixed point and the minimal fixed point inD. Observing that fixed point ofA is equivalent to
solutions of (3.5), and (3.5) is equivalent to (3.4), the conclusions of Theorem 3.1 hold.

Remark 3.2. In the proof of Theorem 3.1, we obtain the uniformly convergence of the
monotone sequences without the compactness condition.
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