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We prove some fixed point theorems for multivalued maps in cone metric spaces. We improve
and extend a number of known fixed point results including the corresponding recent fixed point
results of Feng and Liu (1996) and Chifu and Petrusel (1997). The remarks and example provide
improvement in the mentioned results.

1. Introduction

The well-known Banach contraction principle and its several generalizations in the setting
of metric spaces play a central role for solving many problems of nonlinear analysis.
For example, see [1–5]. Using the concept of the Hausdorff metric, Nadler [6] obtained
a multivalued version of the Banach contraction principle. Without using the concept of
the Hausdorff metric, recently, Feng and Liu [7] obtained a new fixed point theorem for
nonlinear contractions in metric spaces, extending Nadler’s result. Recently, Chifu and
Petrusel obtained a fixed point result [18, Theorem 2.1] which contains [7, Theorem 3.1].

In 1980, Rzepecki [8] introduced a generalized metric by replacing the set of real
numbers with normal cone of the Banach space. In 1987, Lin [9] introduced the notion of K-
metric spaces by replacing the set of real numbers with cone in the metric function. Zabrejko
[10] studied new revised version of the fixed point theory in K-metric and K-normed linear
spaces. Most recently, Huang and Zhang [11] announced the notion of cone metric spaces,
replacing the set of real numbers by an ordered Banach spaces. They proved some basic
properties of convergence of sequences and also obtained various fixed point theorems for
contractive single-valued maps in such spaces. For more fixed point results in cone metric
spaces, see [12–17].
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In this paper, first we prove a useful lemma in the setting of cone metric spaces.
Then, we prove some results on the existence of fixed points for multivalued maps in cone
metric spaces. Consequently, our results improve and extend a number of known fixed point
results including the corresponding recent main fixed point results of Chifu and Petrusel [18,
Theorems 2.1 and 2.5].

2. Preliminaries

Let E be a real Banach space and P a subset of E. P is called a cone if and only if

(i) P is closed, nonempty, and P /= {0};
(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply that ax + by ∈ P ;

(iii) x ∈ P and −x ∈ P imply that x = 0.

For a given cone P ⊂ E, we define partial ordering � on E with respect to P by the
following: for x, y ∈ E, we say that x � y if and only if y − x ∈ P. Also,we write x � y if
y − x ∈ intP, where intP denotes the interior of P.

The cone P is called normal if there is a constant K > 0 such that for all x, y ∈ E

0 � x � y implies ‖x‖ ≤ K
∥
∥y

∥
∥. (2.1)

The least positive number K satisfying the above inequality is called the normal constant of
P ; for details see ([3, 11]).

In the sequel, E is a real Banach space, P is a cone in E, and � is partial ordering with
respect to P .

Definition 2.1. Let X be a nonempty set. Suppose that the map d : X ×X → E satisfies

(i) 0 � d(x, y) for all x, y ∈ X, and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space ([11]).

Example 2.2 (see [11]). Let E = R
2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R

2, X = R, and d : X×X → E
defined by d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a constant. Then (X, d) is a cone metric
space.

Example 2.3 (see [16]). Let E = �1, P = {{xn}n≥1 ∈ E : xn ≥ 0, for all n}, (X, ρ) a metric space,
and d : X ×X → E defined by d(x, y) = {ρ(x, y)/2n}n≥1. Then (X, d) is a cone metric space.

Clearly, the above examples show that class of cone metric spaces contains the class of
metric spaces.

Now, we recall some basic definitions of sequences in cone metric spaces (see, [11, 17].
Let (X, d) be a cone metric space and {xn} a sequence in X. Then

(i) {xn} converges to x ∈ X whenever for every c ∈ E with 0 � c, there is a natural
number N such that d(xn, x) � c for all n ≥ N; we denote this by limn→∞ xn = x or
xn → x;
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(ii) {xn} is a Cauchy sequence whenever for every c ∈ E with 0 � c, there is a natural
number N such that d(xn, xm) � c for all n,m ≥ N;

(iii) (X, d) is said to be complete space if every Cauchy sequence in X is convergent in
X;

(iv) A set A ⊆ X is said to be closed if for any sequence {xn} ⊂ A converges to x, we
have x ∈ A;

(v) A map f : X → R is called lower semicontinuous if for any sequence {xn} ⊂ X such
that xn → x ∈ X,we have f(x) ≤ lim infn→∞f(xn).

Lemma 2.4 (see [11]). Let (X, d) be a cone metric space, and let P be a normal cone with normal
constant K. Let {xn} be any sequence in X. Then

(a) {xn} converges to x ∈ X if and only if d(xn, x) → 0, as n → ∞;

(b) {xn} is a Cauchy sequence if and only if d(xn, xm) → 0, as n,m → ∞.

Let (X, d) be a cone metric space. We denote 2X as a collection of nonempty subsets of X, and
Cl(X) as a collection of nonempty closed subsets of X. An element x ∈ X is called a fixed point of a
multivalued map T : X → 2X if x ∈ T(x). Denote Fix(T) = {x ∈ X : x ∈ T(x)}.

For T : X → Cl(X), and x ∈ X, one denotes

D(x, Tx) = {d(x, z) : z ∈ Tx}. (2.2)

For c ∈ E with 0 � c, one denotes

B̃(x, c) =
{

y ∈ X : d
(

x, y
) � c

}

. (2.3)

The set B̃(x, c) is closed [16, Lemma 2.3].

3. The Results

First, we prove our key lemma.

Lemma 3.1. Let (X, d) be a cone metric space and let P be a normal cone with normal constantK. If
there exist a sequence {xn} in X and a real number γ ∈ (0, 1) such that for every n ∈ N,

d(xn+1, xn) � γd(xn, xn−1), (3.1)

then {xn} is a Cauchy sequence.

Proof. Let x0 ∈ X be an arbitrary but fixed. Note that

d(xn+1, xn) � γnd(x1, x0). (3.2)
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Now, for all m > n,

d(xn, xm) � d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)

�
(

γn + γn+1 + · · · + γm−1
)

d(x1, x0)

� γn

1 − γ
d(x1, x0).

(3.3)

Since P is a normal cone with the normal constant K, we have

‖d(xn, xm)‖ ≤ K
γn

1 − γ
‖d(x1, x0)‖; (3.4)

taking limit as n,m → ∞, we get d(xn, xm) → 0. Thus {xn} is a Cauchy sequence.
Applying Lemma 3.1, we prove the following result.

Theorem 3.2. Let (X, d) be a complete cone metric space, P a normal cone with normal constant K,
and T : X → Cl(X). Suppose that the following hold for arbitrary but fixed x0 ∈ X, u0 ∈ D(x0, Tx0),
and c ∈ E with c � 0:

(i) there exist constants a, b ∈ (0, 1] with a < b such that for each x ∈ B̃(x0, c) and for any
u ∈ D(x, Tx) there exist y ∈ Tx and v ∈ D(y, Ty) satisfying

bd
(

x, y
) � u,

v � ad
(

x, y
)

;
(3.5)

(ii) u0 � (1 − a/b)bc;

(iii) the function f : X → R defined by f(x) = infy∈Tx ‖d(x, y)‖ is lower semicontinuous.

Then Fix(T) ∩ B̃(x0, c)/= ∅.

Proof. Since x0 ∈ B̃(x0, c) and u0 ∈ D(x0, Tx0), it follows from (i) and (ii) that there exist
x1 ∈ Tx0 and u1 ∈ D(x1, Tx1) satisfying

bd(x0, x1) � u0 �
(

1 − a

b

)

bc, (3.6)

u1 � ad(x0, x1). (3.7)

Note that

d(x0, x1) �
(

1 − a

b

)

c � c, (3.8)
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and thus x1 ∈ B̃(x0, c). From (3.6) and (3.7) it follows that

u1 � a

b
u0. (3.9)

Now, since x1 ∈ B̃(x0, c) and u1 ∈ D(x1, Tx1), there exist x2 ∈ Tx1 and u2 ∈ D(x2, Tx2) such
that

bd(x1, x2) � u1, (3.10)

u2 � ad(x1, x2). (3.11)

Using (3.9), (3.10) (3.11) we obtain

u2 �
(a

b

)2
u0. (3.12)

From (3.7), (3.8) and (3.10) it follows that

d(x1, x2) � a

b
d(x0, x1) � a

b

(

1 − a

b

)

c. (3.13)

Note that

d(x0, x2) � d(x0, x1) + d(x1, x2)

�
(

1 − a

b

)

c +
a

b

(

1 − a

b

)

c

�
(

1 −
(a

b

)2
)

c

� c,

(3.14)

and so x2 ∈ B̃(x0, c). Continuing this process, we obtain xn ∈ B̃(x0, c) and un ∈ D(xn, Txn)
such that xn+1 ∈ Txn and un+1 ∈ D(xn+1, Txn+1) satisfying

bd(xn, xn+1) � un � ad(xn−1, xn), (3.15)

and we get

d(xn, xn+1) � a

b
d(xn−1, xn) for n ∈ N. (3.16)

Thus by Lemma 3.1, {xn} is a Cauchy sequence in the closed set B̃(x0, c) ⊂ X. Due to the
completeness of B̃(x0, c), there exists x∗ ∈ B̃(x0, c) such that lim

n→∞
xn = x∗. Note that

un+1 � ad(xn, xn+1) � a

b
un � · · · �

(a

b

)n+1
u0, (3.17)
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and thus

0 � un+1 �
(a

b

)n+1
u0. (3.18)

From (3.18) and the fact the cone P is normal, we have

‖un+1‖ ≤ K
(a

b

)n+1
‖u0‖, (3.19)

and thus ‖un+1‖ → 0 as n → ∞; it follows that {un} is convergent to 0. Since un ∈ D(xn, Txn),
there exists a sequence {zn} such that zn ∈ Txn and un = d(xn, zn). Now by the convergence
of the sequence {un} and by assumption (iii) we obtain

inf
y∈Tx∗

∥
∥d

(

x∗, y
)∥
∥ ≤ lim inf

n→∞
inf

y∈Txn

∥
∥d

(

xn, y
)∥
∥ ≤ lim inf

n→∞
‖d(xn, zn)‖ = 0. (3.20)

Thus

inf
y∈Tx∗

∥
∥d

(

x∗, y
)∥
∥ = 0. (3.21)

From (3.21), it follows that there exists a sequence {yn} ⊂ Tx∗ such that limn→∞ ‖d(x∗, yn)‖ =
0, and thus d(x∗, yn) → 0 as n → ∞. Hence, yn → x∗. Since Tx∗ is closed, we get x∗ ∈ Tx∗.
Thus, Fix(T) ∩ B̃(x0, c)/= ∅.

Remark 3.3. Our Theorem 3.2 extends the main fixed point result of Chifu and Petrusel [18,
Theorem 2.1] to the setting of cone metric spaces, and thus the result of Feng and Liu [7,
Theorem 2.1] follows from our Theorem 3.2 as well. Theorem 3.2 also extends some results
from [2, 5, 6].

Another fixed point result is the following.

Theorem 3.4. Let (X, d) be a complete cone metric space, P a normal cone with normal constant K,
and T : X → Cl(X). Suppose that the following hold for arbitrary but fixed x0 ∈ X, u0 ∈ D(x0, Tx0),
and c ∈ E with c � 0 :

(i) there exist a, b, s ∈ (0, 1] with a + sb < b such that for each x ∈ B̃(x0, c) and for any
u ∈ D(x, Tx) there exist y ∈ Tx and v ∈ D(y, Ty) satisfying

bd
(

x, y
) � u,

v � ad
(

x, y
)

+ su;
(3.22)

(ii) u0 � [1 − (a/b + s)]bc;

(iii) the function f : X → R defined by f(x) = infy∈Tx‖d(x, y)‖ is lower semicontinuous.

Then Fix(T) ∩ B̃(x0, c)/= ∅.
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Proof. Since x0 ∈ B̃(x0, c) and u0 ∈ D(x0, Tx0), there exist x1 ∈ Tx0 and u1 ∈ D(x1, Tx1)
satisfying

bd(x0, x1) � u0, (3.23)
u1 � ad(x0, x1) + su0. (3.24)

From (3.23) and (3.24) we have

u1 �
(a

b
+ s

)

u0. (3.25)

Using (3.23) and (ii), we get

d(x0, x1) �
[

1 −
(a

b
+ s

)]

c � c, (3.26)

and so x1 ∈ B̃(x0, c). Therefore, there exist x2 ∈ Tx1 and u2 ∈ D(x2, Tx2) satisfying

bd(x1, x2) � u1 (3.27)

u2 � ad(x1, x2) + su1. (3.28)

Using (3.25), (3.27), and (3.28), we get

u2 �
(a

b
+ s

)

u1 �
(a

b
+ s

)2
u0. (3.29)

Now, using (3.23), (3.24), (3.27), and (ii), we have

d(x1, x2) � 1
b

(a

b
+ s

)

u0 �
(a

b
+ s

)(

1 −
(a

b
+ s

))

c. (3.30)

Note that

d(x0, x2) � d(x0, x1) + d(x1, x2)

�
(

1 −
(a

b
+ s

))

c +
(a

b
+ s

)(

1 −
(a

b
+ s

))

c

�
(

1 −
(a

b
+ s

)2
)

c

� c.

(3.31)

Thus, x2 ∈ B̃(x0, c). Continuing this process, we get xn ∈ B̃(x0, c) and un ∈ D(xn, Txn) such
that xn+1 ∈ Txn and un+1 ∈ D(xn+1, Txn+1) satisfying

bd(xn, xn+1) � un �
(a

b
+ s

)n
u0. (3.32)
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Thus, we get

d(xn, xn+1) � 1
b
un �

(a

b
+ s

)n
u0. (3.33)

Now, for m > n, we have

d(xn, xm) � d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)

� 1
b

(

tn + tn+1 + · · · + tm−1
)

u0

� 1
b

tn

1 − t
u0,

(3.34)

where t = a/b + s < 1. Since P is normal, we have

‖d(xn, xm)‖ ≤ K

(
tm

b(1 − t)

)

‖u0‖, (3.35)

and hence {xn} is a Cauchy sequence. Due to the completeness of B̃(x0, c), there exists x∗ ∈
B̃(x0, c), such that limn→∞ xn = x∗. Also, note that

‖un+1‖ ≤ K
(a

b
+ s

)n+1
‖u0‖, (3.36)

and thus,

lim
n→∞

‖un+1‖ = 0. (3.37)

The rest of the proof runs as the proof of Theorem 3.2, and hence we get Fix(T) ∩
B̃(x0, c)/= ∅.

Remark 3.5. Theorem 3.4 extends the fixed point result of Chifu and Petrusel [18, Theo-
rem 2.5] to cone metric spaces.

Most recently, Asadi et al. [13, Lemma 2.1] proved the closedness of the set Fix(T) in
complete cone metric spaces without the normality assumption. In the following remark, we
obtain the same conclusion without normality and completeness assumptions.

Remark 3.6. Let (X, d) be a cone metric space, and let T : X → Cl(X) be any multivalued
map. If the function f : X → R defined by f(x) = infy∈Tx‖d(x, y)‖ is lower semicontinuous,
then the set Fix(T) is closed.
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Indeed, let zn ∈ Fix(T) be such that zn → z∗ as n → ∞. Clearly, f(zn) =
infy∈Tzn‖d(zn, y)‖ = 0 because zn ∈ Tzn. Using the lower semicontinuity of the function f ,
we get

inf
y∈Tz∗

∥
∥d

(

z∗, y
)∥
∥ ≤ lim inf

n→∞
inf

y∈Tzn

∥
∥d

(

zn, y
)∥
∥ = 0. (3.38)

Thus

inf
y∈Tz∗

∥
∥d

(

z∗, y
)∥
∥ = 0. (3.39)

So, there exists a sequence {yn} ⊂ Tz∗ such that limn→∞ ‖d(z∗, yn)‖ = 0. Hence yn → z∗ ∈
T(z∗).

Example 3.7. LetX = [0, 1], E = R
2 a Banach space with themaximum norm, and P = {(x, y) ∈

E : x, y ≥ 0} a normal cone. Define d : X ×X → E by

d
(

x, y
)

=
(∣
∣x − y

∣
∣, β

∣
∣x − y

∣
∣
)

, β ∈ (0, 1). (3.40)

Then the pair (X, d) is a complete cone metric space. Now, define the map T : X → Cl(X) by

T(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪
⎩

{0, 1}, x = 0,
{
1
2
x

}

, x ∈ (0, 1),

{
1
2
, 1
}

, x = 1.

(3.41)

Note that the map

f(x) = inf
y∈Tx

∥
∥d

(

x, y
)∥
∥ =

⎧

⎪⎨

⎪⎩

1
2
x, x ∈ (0, 1),

0, x ∈ {0, 1}
(3.42)

is lower semicontinuous. Now, if we take c = (1/2, 1/2) ∈ E, x0 = 0 ∈ X, we get

B̃(x0, c) = {x ∈ X, d(x0, x) ≤ c} =
[

0,
1
2

]

. (3.43)

Now, for the case x ∈ (0, 1/2] and y = (1/2)x ∈ T(x),we obtain

D(x, Tx) =
{(

1
2
x, β

1
2
x

)}

,

D
(

y, Ty
)

=
{(

1
4
x, β

1
4
x

)}

.

(3.44)
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Now, taking a = 1/2 and b = 1, we get

bd
(

x, y
) ≤ u, for each u ∈ D(x, Tx),

v ≤ ad
(

x, y
)

, for v =
(
1
4
x, β

1
4
x

)

∈ D
(

y, Ty
)

.
(3.45)

Now, for the case x = 0, y = 0 ∈ T(x),we have

D(x, Tx) =
{

(0, 0),
(

1, β
)}

,

D
(

y, Ty
)

=
{

(0, 0),
(

1, β
)}

.
(3.46)

And also, for this case we get

bd
(

x, y
) ≤ u, for each u ∈ D(x, Tx),

v ≤ ad
(

x, y
)

, for v = 0 ∈ D
(

y, Ty
)

.
(3.47)

Further, for u0 = (0, 0) ∈ D(x0, Tx0), we have

u0 ≤
(

1 − a

b

)

bc. (3.48)

Therefore, all the assumptions of Theorem 3.2 are satisfied, and note that Fix(T) ∩ B̃(x0, c) =
{0}.
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