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Several fixed point and common fixed point theorems are obtained in the setting of metric-type
spaces introduced by M. A. Khamsi in 2010.

1. Introduction

Symmetric spaces were introduced in 1931 by Wilson [1], as metric-like spaces lacking the
triangle inequality. Several fixed point results in such spaces were obtained, for example, in
[2–4]. A new impulse to the theory of such spaces was given by Huang and Zhang [5] when
they reintroduced cone metric spaces replacing the set of real numbers by a cone in a Banach
space, as the codomain of a metric (such spaces were known earlier under the name of K-
metric spaces, see [6]). Namely, it was observed in [7] that if d(x, y) is a cone metric on the
setX (in the sense of [5]), thenD(x, y) = ‖d(x, y)‖ is symmetric with some special properties,
particularly in the case when the underlying cone is normal. The space (X,D)was then called
the symmetric space associated with cone metric space (X, d).

The last observation also led Khamsi [8] to introduce a new type of spaces which he
called metric-type spaces, satisfying basic properties of the associated space (X,D), D = ‖d‖.
Some fixed point results were obtained in metric-type spaces in the papers [7–10].

In this paper we prove several other fixed point and common fixed point results in
metric-type spaces. In particular, metric-type versions of very well-known results of Hardy-
Rogers, Ćirić, Das-Naik, Fisher, and others are obtained.
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2. Preliminaries

Let X be a nonempty set. Suppose that a mapping D : X × X → [0,+∞) satisfies the
following:

(s1) D(x, y) = 0 if and only if x = y;

(s2) D(x, y) = D(y, x), for all x, y ∈ X.

Then D is called a symmetric on X, and (X,D) is called a symmetric space [1].
Let E be a real Banach space. A nonempty subset P /= {0} of E is called a cone if P is

closed, if a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax+by ∈ P , and if P ∩ (−P) = {0}. Given a cone
P ⊂ E, we define the partial ordering 	with respect to P by x 	 y if and only if y − x ∈ P .

Let X be a nonempty set. Suppose that a mapping d : X × X → E satisfies the
following:

(co 1) 0 	 d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(co 2) d(x, y) = d(y, x) for all x, y ∈ X;

(co 3) d(x, y) 	 d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space [5].
If (X, d) is a cone metric space, the function D(x, y) = ‖d(x, y‖ is easily seen to be a

symmetric on X [7, 8]. Following [7], the space (X,D)will then be called associated symmetric
spacewith the cone metric space (X, d). If the underlying cone P of (X, d) is normal (i.e., if, for
some k ≥ 1, 0 	 x 	 y always implies ‖x‖ ≤ k‖y‖), the symmetric D satisfies some additional
properties. This led M.A. Khamsi to introduce a new type of spaces which he called metric
type spaces. We will use the following version of his definition.

Definition 2.1 (see [8]). Let X be a nonempty set, let K ≥ 1 be a real number, and let the
function D : X ×X → R satisfy the following properties:

(a) D(x, y) = 0 if and only if x = y;

(b) D(x, y) = D(y, x) for all x, y ∈ X;

(c) D(x, z) ≤ K(D(x, y) +D(y, z)) for all x, y, z ∈ X.

Then (X,D,K) is called a metric-type space.

Obviously, for K = 1, metric-type space is simply a metric space.
A metric type space may satisfy some of the following additional properties:

(d) D(x, z) ≤ K(D(x, y1) + D(y1, y2) + · · · + D(yn, z)) for arbitrary points x, y1,
y2, . . . , yn, z ∈ X;

(e) function D is continuous in two variables; that is,

xn −→ x, yn −→ y (in (X,D,K)) imply D
(
xn, yn

) −→ D
(
x, y

)
. (2.1)

(The last condition is in the theory of symmetric spaces usually called “property (HE)”.)
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Condition (d) was used instead of (c) in the original definition of a metric-type space
by Khamsi [8]. Both conditions (d) and (e) are satisfied by the symmetricD(x, y) = ‖d(x, y)‖
which is associated with a cone metric d (with a normal cone) (see [7–9]).

Note that the weaker version of property (e):

(e′) xn → x and yn → x (in (X,D,K)) imply that D(xn, yn) → 0

is satisfied in an arbitrary metric type space. It can also be proved easily that the limit of a
sequence in a metric type space is unique. Indeed, if xn → x and xn → y (in (X,D,K)) and
D(x, y) = ε > 0, then

0 ≤ D
(
x, y

) ≤ K
(
D(x, xn) +D

(
xn, y

))
< K

( ε

2K
+

ε

2K

)
= ε (2.2)

for sufficiently large n, which is impossible.
The notions such as convergent sequence, Cauchy sequence, and complete space are defined

in an obvious way.
We prove in this paper several versions of fixed point and common fixed point results

in metric type spaces. We start with versions of classical Banach, Kannan and Zamfirescu
results then proceed with Hardy-Rogers-type theorems, and with quasicontractions of Ćirić
and Das-Naik, and results for four mappings of Fisher and finally conclude with a result for
strict contractions.

Recall also that a mapping f : X → X is said to have property P [11] if Fix (fn) =
Fix (f) for each n ∈ N, where Fix (f) stands for the set of fixed points of f .

A point w ∈ X is called a point of coincidence of a pair of self-maps f, g : X → X and
u ∈ X is its coincidence point if fu = gu = w. Mappings f and g are weakly compatible if fgu =
gfu for each of their coincidence points u [12, 13]. The notion of occasionally weak compatibility
is also used in some papers, but it was shown in [14] that it is actually superfluous.

3. Results

We begin with a simple, but useful lemma.

Lemma 3.1. Let {yn} be a sequence in a metric type space (X,D,K) such that

D
(
yn, yn+1

) ≤ λD
(
yn−1, yn

)
(3.1)

for some λ, 0 < λ < 1/K, and each n = 1, 2, . . . . Then {yn} is a Cauchy sequence in (X,D,K).

Proof. Let m,n ∈ N and m < n. Applying the triangle-type inequality (c) to triples
{ym, ym+1, yn}, {ym+1, ym+2, yn}, . . . , {yn−2, yn−1, yn}we obtain
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D
(
ym, yn

) ≤ K
(
D
(
ym, ym+1

)
+D

(
ym+1, yn

))

≤ KD
(
ym, ym+1

)
+K2(D

(
ym+1, ym+2

)
+D

(
ym+2, yn

))

≤ · · · ≤ KD
(
ym, ym+1

)
+K2D

(
ym+1, ym+2

)
+ · · ·

+Kn−m−1(D
(
yn−2, yn−1

)
+D

(
yn−1, yn

))

≤ KD
(
ym, ym+1

)
+K2D

(
ym+1, ym+2

)
+ · · ·

+Kn−m−1D
(
yn−2, yn−1

)
+Kn−mD

(
yn−1, yn

)
.

(3.2)

Now (3.1) and Kλ < 1 imply that

D
(
ym, yn

) ≤
(
Kλm +K2λm+1 + · · · +Kn−mλn−1

)
D
(
y0, y1

)

= Kλm
(
1 + (Kλ) + · · · + (Kλ)n−m−1

)
D
(
y0, y1

)

≤ Kλm

1 −Kλ
D
(
y0, y1

) −→ 0 when m −→ ∞.

(3.3)

It follows that {yn} is a Cauchy sequence.

Remark 3.2. If, instead of triangle-type inequality (c), we use stronger condition (d), then a
weaker condition 0 < λ < 1 can be used in the previous lemma to obtain the same conclusion.
The proof is similar.

Next is the simplest: Banach-type version of a fixed point result for contractive
mappings in a metric type space.

Theorem 3.3. Let (X,D,K) be a complete metric type space, and let f : X → X be a map such that
for some λ, 0 < λ < 1/K,

D
(
fx, fy

) ≤ λD
(
x, y

)
(3.4)

holds for all x, y ∈ X. Then f has a unique fixed point z, and for every x0 ∈ X, the sequence {fnx0}
converges to z.

Proof. Take an arbitrary x0 ∈ X and denote yn = fnx0. Then

D
(
yn, yn+1

)
= D

(
fyn−1, fyn

) ≤ λD
(
yn−1, yn

)
(3.5)

for each n = 1, 2 . . . . Lemma 3.1 implies that {yn} is a Cauchy sequence, and since (X,D,K)
is complete, there exists z ∈ X such that yn → zwhen n → ∞. Then

D
(
fz, z

) ≤ K
(
D
(
fz, fyn

)
+D

(
yn+1, z

)) ≤ K
(
λD

(
z, yn

)
+D

(
yn+1, z

)) −→ 0, (3.6)

when n → ∞. Hence, D(fz, z) = 0 and z is a fixed point of f .
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If z1 is another fixed point of f , then D(z, z1) = D(fz, fz1) ≤ λD(z, z1) which is
possible only if z = z1.

Remark 3.4. In a standard way we prove that the following estimate holds for the sequence
{fnx0}:

D
(
fmx0, z

) ≤ K2λm

1 −Kλ
D
(
x0, fx0

)
(3.7)

for each m ∈ N. Indeed, for m < n,

D
(
fmx0, z

) ≤ K
(
D
(
fmx0, f

nx0
)
+D

(
fnx0, z

)) ≤ K2λm

1 −Kλ
D
(
x0, fx0

)
+KD

(
fnx0, z

)
,

(3.8)

and passing to the limit when n → ∞, we obtain estimate (3.7).
Note that continuity of function D (property (e))was not used.

The first part of the following result was obtained, under the additional assumption of
boundedness of the orbit, in [8, Theorem 3.3].

Theorem 3.5. Let (X,D,K) be a complete metric type space. Let f : X → X be a map such that
for every n ∈ N there is λn ∈ (0, 1) such that D(fnx, fny) ≤ λnD(x, y) for all x, y ∈ X and let
limn→∞λn = 0. Then f has a unique fixed point z. Moreover, f has the property P.

Proof. Take λ such that 0 < λ < 1/K. Since λn → 0, n → ∞, there exists n0 ∈ N such that
λn < λ for each n ≥ n0. Then D(fnx, fny) ≤ λD(x, y) for all x, y ∈ X whenever n ≥ n0.
In other words, for any m ≥ n0, g = fm satisfies D(gx, gy) ≤ λD(x, y) for all x, y ∈ X.
Theorem 3.3 implies that g has a unique fixed point, say z. Then fmz = z, implying that
fm+1z = fm(fz) = fz and fz is a fixed point of g = fm. Since the fixed point of g is unique, it
follows that fz = z and z is also a fixed point of f .

From the given condition we get thatD(fx, f2x) = D(fx, ffx) ≤ λ1D(x, fx) for some
λ1 < 1 and each x ∈ X. This property, together with Fix(f)/= ∅, implies, in the same way as in
[11, Theorem 1.1], that f has the property P.

Remark 3.6. If, in addition to the assumptions of previous theorem, we suppose that the series∑∞
n=1 λn converges and that D satisfies property (d), we can prove that, for each x ∈ X, the

respective Picard sequence {fnx} converges to the fixed point z.
Indeed, let m,n ∈ N and n > m. Then

D
(
fmx, fnx

) ≤ K
(
D
(
fmx, fm+1x

)
+ · · · +D

(
fn−1xfnx

))

= K
(
D
(
fmx, fmfx

)
+ · · · +D

(
fn−1x, fn−1fx

))

≤ K(λm + · · · + λn−1)D
(
x, fx

) −→ 0,

(3.9)

when m → ∞ (due to the convergence of the given series). So, {fnx} is a Cauchy sequence
and it is convergent. Form chosen in the proof of Theorem 3.5 such that fm = g, it is gn = fmn
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and gnx → z when n → ∞, but {fmnx} is a subsequence of {fnx} which is convergent;
hence, the latter converges to z.

The next is a common fixed point theorem of Hardy-Rogers type (see, e.g., [15]) in
metric type spaces.

Theorem 3.7. Let (X,D,K) be a metric type space, and let f, g : X → X be two mappings such that
fX ⊂ gX and one of these subsets of X is complete. Suppose that there exist nonnegative coefficients
ai, i = 1, . . . , 5 such that

2Ka1 + (K + 1)(a2 + a3) +
(
K2 +K

)
(a4 + a5) < 2 (3.10)

and that for all x, y ∈ X

D
(
fx, fy

) ≤ a1D
(
gx, gy

)
+ a2D

(
gx, fx

)
+ a3D

(
gy, fy

)
+ a4D

(
gx, fy

)
+ a5D

(
gy, fx

)

(3.11)

holds. Then f and g have a unique point of coincidence. If, moreover, the pair (f, g) is weakly
compatible, then f and g have a unique common fixed point.

Note that condition (3.10) is satisfied, for example, when
∑5

i=1 ai < 1/K2. Note also
that when K = 1 it reduces to the standard Hardy-Rogers condition in metric spaces.

Proof. Suppose, for example, that gX is complete. Take an arbitrary x0 ∈ X and, using that
fX ⊂ gX, construct a Jungck sequence {yn} defined by yn = fxn = gxn+1, n = 0, 1, 2, . . . . Let
us prove that this is a Cauchy sequence. Indeed, using (3.11), we get that

D
(
yn, yn+1

)
= D

(
fxn, fxn+1

) ≤ a1D
(
gxn, gxn+1

)
+ a2D

(
gxn, fxn

)

+ a3D
(
gxn+1, fxn+1

)
+ a4D

(
gxn, fxn+1

)
+ a5D

(
gxn+1, fxn

)

= a1D
(
yn−1, yn

)
+ a2D

(
yn−1, yn

)
+ a3D

(
yn, yn+1

)

+ a4D
(
yn−1, yn+1

)
+ a5 · 0

≤ (a1 + a2)D
(
yn−1, yn

)
+ a3D

(
yn, yn+1

)

+ a4K
(
D
(
yn−1, yn

)
+D

(
yn, yn+1

))

= (a1 + a2 +Ka4)D
(
yn−1, yn

)
+ (a3 +Ka4)D

(
yn, yn+1

)
.

(3.12)

Similarly, we conclude that

D
(
yn+1,yn

)
= D

(
fxn+1, fxn

) ≤ (a1 + a3 +Ka5)D
(
yn−1, yn

)
+ (a2 +Ka5)D

(
yn, yn+1

)
. (3.13)

Adding the last two inequalities, we get that

2D
(
yn, yn+1

) ≤ (2a1 + a2 + a3 +Ka4 +Ka5)D
(
yn−1, yn

)
+ (a2 + a3 +Ka4 +Ka5)D

(
yn, yn+1

)
,

(3.14)
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that is,

D
(
yn, yn+1

) ≤ 2a1 + a2 + a3 +Ka4 +Ka5

2 − a2 − a3 −Ka4 −Ka5
D
(
yn−1, yn

)
= λD

(
yn−1, yn

)
. (3.15)

The assumption (3.10) implies that

2Ka1 +Ka2 +Ka3 +K2(a4 + a5) < 2 − a2 − a3 −Ka4 −Ka5,

λ =
2a1 + a2 + a3 +Ka4 +Ka5

2 − a2 − a3 −Ka4 −Ka5
<

1
K
.

(3.16)

Lemma 3.1 implies that {yn} is a Cauchy sequence in gX and so there is z ∈ X such that
fxn = gxn+1 → gzwhen n → ∞. We will prove that fz = gz.

Using (3.11)we conclude that

D
(
fxn, fz

) ≤ a1D
(
gxn, gz

)
+ a2D

(
gxn, fxn

)
+ a3D

(
gz, fz

)

+ a4D
(
gxn, fz

)
+ a5D

(
gz, fxn

)

≤ a1D
(
gxn, gz

)
+ a2D

(
gxn, fxn

)
+ a3K

(
D
(
gz, fxn

)
+D

(
fxn, fz

))

+ a4K
(
D
(
gxn, fxn

)
+D

(
fxn, fz

))
+ a5D

(
gz, fxn

)

= a1D
(
gxn, gz

)
+ (a2 +Ka4)D

(
gxn, fxn

)

+ (Ka3 + a5)D
(
gz, fxn

)
+K(a3 + a4)D

(
fxn, fz

)
.

(3.17)

Similarly,

D
(
fz, fxn

) ≤ a1D
(
gxn, gz

)
+ (Ka2 + a4)D

(
gz, fxn

)

+K(a2 + a5)D
(
fxn, fz

)
+ (a3 +Ka5)D

(
fxn, gxn

)
.

(3.18)

Adding up, one concludes that

(2 −K(a2 + a3 + a4 + a5))D
(
fxn, fz

)

≤ 2a1D
(
gxn, gz

)
+ (a2 + a3 +K(a4 + a5))D

(
fxn, gxn

)

+ (K(a2 + a3) + a4 + a5)D
(
fxn, gz

)
.

(3.19)

The right-hand side of the last inequality tends to 0 when n → ∞. SinceK(a2 +a3 +a4 +a5) <
2Ka1+(K+1)(a2+a3)+(K2+K)(a4+a5) < 2 (because of (3.10)), it is 2−K(a2+a3+a4+a5) > 0,
and so also the left-hand side tends to 0, and fxn → fz. Since the limit of a sequence is
unique, it follows that fz = gz = w and f and g have a point of coincidence w.
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Suppose that w1 = fz1 = gz1 is another point of coincidence for f and g. Then (3.11)
implies that

D(w,w1) = D
(
fz, fz1

)

≤ a1D
(
gz, gz1

)
+ a2D

(
gz, fz

)
+ a3D

(
gz1, fz1

)

+ a4D
(
gz, fz1

)
+ a5D

(
gz1, fz

)

= a1D(w,w1) + a2 · 0 + a3 · 0 + a4D(w,w1) + a5D(w1, w)

= (a1 + a4 + a5)D(w,w1).

(3.20)

Since a1 + a4 + a5 < 1 (because of (3.10)), the last relation is possible only if w = w1. So, the
point of coincidence is unique.

If (f, g) is weakly compatible, then [13, Proposition 1.12] implies that f and g have a
unique common fixed point.

Taking special values for constants ai, we obtain as special cases Theorem 3.3 as well
as metric type versions of some other well-known theorems (Kannan, Zamfirescu, see, e.g.,
[15]):

Corollary 3.8. Let (X,D,K) be a metric type space, and let f, g : X → X be two mappings such that
fX ⊂ gX and one of these subsets of X is complete. Suppose that one of the following three conditions
holds:

(1◦) D(fx, fy) ≤ a1D(gx, gy) for some a1 < 1/K and all x, y ∈ X;

(2◦) D(fx, fy) ≤ a2(D(gx, fx) +D(gy, fy)) for some a2 < 1/(K + 1) and all x, y ∈ X;

(3◦) D(fx, fy) ≤ a4(D(gx, fy) +D(gy, fx)) for some a4 < 1/(K2 +K) and all x, y ∈ X.

Then f and g have a unique point of coincidence. If, moreover, the pair (f, g) is weakly
compatible, then f and g have a unique common fixed point.

Putting g = iX in Theorem 3.7, we get metric type version of Hardy-Rogers theorem
(which is obviously a special case for K = 1).

Corollary 3.9. Let (X,D,K) be a complete metric type space, and let f : X → X satisfy

D
(
fx, fy

) ≤ a1D
(
x, y

)
+ a2D

(
x, fx

)
+ a3D

(
y, fy

)
+ a4D

(
x, fy

)
+ a5D

(
y, fx

)
(3.21)

for some ai, i = 1, . . . , 5 satisfying (3.10) and for all x, y ∈ X. Then f has a unique fixed point.
Moreover, f has property P.
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Proof. We have only to prove the last assertion. For arbitrary x ∈ X, we have that

D
(
fx, f2x

)
= D

(
fx, ffx

)

≤ a1D
(
x, fx

)
+ a2D

(
x, fx

)
+ a3D

(
fx, f2x

)
+ a4D

(
x, f2x

)
+ a5D

(
fx, fx

)

≤ (a1 + a2 +Ka4)D
(
x, fx

)
+ (a3 +Ka4)D

(
fx, f2x

)
,

(3.22)

and similarly

D
(
f2x, fx

)
= D

(
ffx, fx

) ≤ (a1 + a3 +Ka5)D
(
x, fx

)
+ (a2 +Ka5)D

(
fx, f2x

)
. (3.23)

Adding the last two inequalities, we obtain

D
(
fx, f2x

)
≤ 2a1 + a2 + a3 +K(a4 + a5)

2 − a2 − a3 −K(a4 + a5)
D
(
x, fx

)
= λD

(
x, fx

)
. (3.24)

Similarly as in the proof of Theorem 3.7, we get that λ < 1/K < 1. Now [11, Theorem 1.1]
implies that f has property P.

Remark 3.10. If the metric-type function D satisfies both properties (d) and (e), then it is
easy to see that condition (3.10) in Theorem 3.7 and the last corollary can be weakened to
a1 + a2 + a3 +K(a4 + a5) < 1. In particular, this is the case whenD(x, y) = ‖d(x, y)‖ for a cone
metric d on X (over a normal cone, see [7]).

The next is a possible metric-type variant of a common fixed point result for Ćirić and
Das-Naik quasicontractions [16, 17].

Theorem 3.11. Let (X,D,K) be a metric type space, and let f, g : X → X be two mappings such
that fX ⊂ gX and one of these subsets of X is complete. Suppose that there exists λ, 0 < λ < 1/K
such that for all x, y ∈ X

D
(
fx, fy

) ≤ λmaxM
(
f, g;x, y

)
, (3.25)

where

M
(
f, g;x, y

)
=

{

D
(
gx, gy

)
, D

(
gx, fx

)
, D

(
gy, fy

)
,
D
(
gx, fy

)

2K
,
D
(
gy, fx

)

2K

}

. (3.26)

Then f and g have a unique point of coincidence. If, moreover, the pair (f, g) is weakly compatible,
then f and g have a unique common fixed point.
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Proof. Let x0 ∈ X be arbitrary and, using condition fX ⊂ gX, construct a Jungck sequence
{yn} satisfying yn = fxn = gxn+1, n = 0, 1, 2, . . . . Suppose that D(yn, yn+1) > 0 for each n
(otherwise the conclusion follows easily). Using (3.25) we conclude that

D
(
yn+1, yn

)

= D
(
fxn+1, fxn

)

≤ λmax

{

D
(
gxn+1, gxn

)
, D

(
gxn+1, fxn+1

)
, D

(
gxn, fxn

)
,
D
(
gxn+1, fxn

)

2K
,
D
(
gxn, fxn+1

)

2K

}

= λmax

{

D
(
yn, yn−1

)
, D

(
yn, yn+1

)
, D

(
yn−1, yn

)
, 0,

D
(
yn−1, yn+1

)

2K

}

≤ λmax
{
D
(
yn, yn−1

)
,
1
2
(
D
(
yn−1, yn

)
+D

(
yn, yn+1

))
}
.

(3.27)

If D(yn, yn−1) < D(yn+1, yn), then D(yn, yn−1) < (1/2)(D(yn−1, yn) + D(yn, yn+1)) <
D(yn, yn+1), and it would follow from (3.27) that D(yn+1, yn) ≤ λD(yn+1, yn) which is
impossible since λ < 1. (For the same reason the term D(yn, yn+1) was omitted in the last
row of the previous series of inequalities.) Hence, D(yn, yn−1) > D(yn+1, yn) and (3.27)
becomes D(yn+1, yn) ≤ λD(yn, yn−1). Using Lemma 3.1, we conclude that {yn} is a Cauchy
sequence in gX. Supposing that, for example, the last subset of X is complete, we conclude
that yn = fxn = gxn+1 → gz when n → ∞ for some z ∈ X.

To prove that fz = gz, put x = xn and y = z in (3.25) to get

D
(
fxn, fz

) ≤ λmax

{

D
(
gxn, gz

)
, D

(
gxn, fxn

)
, D

(
gz, fz

)
,
D
(
gxn, fz

)

2K
,
D
(
gz, fxn

)

2K

}

.

(3.28)

Note that fxn → gz and gxn → gz when n → ∞, implying that D(gxn, fxn) ≤
K(D(gxn, gz) + D(gz, fxn)) → 0 when n → ∞. It follows that the only possibilities are
the following:

(1◦) D(fxn, fz) ≤ λD(gz, fz) ≤ λK(D(gz, fxn) + D(fxn, fz)); in this case (1 −
λK)D(fxn, fz) ≤ λKD(gz, fxn) → 0, and since 1 − λK > 0, it follows that
fxn → fz.

(2◦) D(fxn, fz) ≤ λ(1/2K)D(gxn, fz) ≤ (λ/2)(D(gxn, fxn) +D(fxn, fz)); in this case,
(1 − (λ/2))D(fxn, fz) ≤ (λ/2)D(gxn, fxn) → 0, so again fxn → fz, n → ∞.

Since the limit of a sequence is unique, it follows that fz = gz.
The rest of conclusion follows as in the proof of Theorem 3.7.
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Putting g = iX , we obtain the first part of the following corollary.

Corollary 3.12. Let (X,D,K) be a complete metric type space, and let f : X → X be such that for
some λ, 0 < λ < 1/K, and for all x, y ∈ X,

D
(
fx, fy

) ≤ λmax

{

D
(
x, y

)
, D

(
x, fx

)
, D

(
y, fy

)
,
D
(
x, fy

)

2K
,
D
(
y, fx

)

2K

}

(3.29)

holds. Then f has a unique fixed point, say z. Moreover, the function f is continuous at point z and it
has the property P.

Proof. Let xn → z when n → ∞. Then

D
(
fxn, fz

) ≤ λmax

{

D(xn, z), D
(
xn, fxn

)
, D

(
z, fz

)
,
D
(
xn, fz

)

2K
,
D
(
fxn, z

)

2K

}

= λmax

{

D(xn, z), D
(
xn, fxn

)
,
D
(
fxn, z

)

2K

}

.

(3.30)

Since D(xn, z) → 0 and D(xn, fxn) ≤ K(D(xn, z) + D(fz, fxn)), the only possibility is that
D(fx,fz) ≤ λK(D(xn, z)+D(fz, fxn)), implying that (1−λK)D(fxn, fz) ≤ λKD(xn, z) → 0,
n → ∞. Since 0 < λK < 1, it follows that fxn → fz = z, n → ∞, and f is continuous at the
point z.

We will prove that f satisfies

D
(
fx, f2x

)
≤ hD

(
x, fx

)
(3.31)

for some h, 0 < h < 1 and each x ∈ X.
Applying (3.29) to the points x and fx (for any x ∈ X), we conclude that

D
(
fx, f2x

)
≤ λmax

{

D
(
x, fx

)
, D

(
x, fx

)
, D

(
fx, f2x

)
,
D
(
x, f2x

)

2K
,
D
(
fx, fx

)

2K

}

= λmax

{

D
(
x, fx

)
, D

(
fx, f2x

)
,
D
(
x, f2x

)

2K

}

.

(3.32)

The following cases are possible:

(1◦) D(fx, f2x) ≤ λD(x, fx), and (3.31) holds with h = λ;

(2◦) D(fx, f2x) ≤ λD(fx, f2x), which is only possible if D(fx, f2x) = 0 and then (3.31)
obviously holds.

(3◦) D(fx, f2x) ≤ (λ/2K)D(x, f2x) ≤ (λ/2K)K(D(x, fx) +D(fx, f2x)), implying that
(1 − (λ/2))D(fx, f2x) ≤ (λ/2)D(x, fx) andD(fx, f2x) ≤ hD(x, fx), where 0 < h =
λ/(2 − λ) < 1 since 0 < λ < 1.
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So, relation (3.31) holds for some h, 0 < h < 1 and each x ∈ X. Using the mentioned
analogue of [11, Theorem 1.1], one obtains that f satisfies property P.

We will now prove a generalization and an extension of Fisher’s theorem on four
mappings from [18] to metric type spaces. Note that, unlike in [18], we will not use the
case when f and S, as well as g and T , commute, neither when S and T are continuous. Also,
function D need not be continuous (i.e., we do not use property (e)).

Theorem 3.13. Let (X,D,K) be a metric type space, and let f, g, S, T : X → X be four mappings
such that fX ⊂ TX and gX ⊂ SX, and suppose that at least one of these four subsets ofX is complete.
Let

D
(
fx, gy

) ≤ λD
(
Sx, Ty

)
(3.33)

holds for some λ, 0 < λ < 1/K and all x, y ∈ X. Then pairs (f, S) and (g, T) have a unique common
point of coincidence. If, moreover, pairs (f, S) and (g, T) are weakly compatible, then f , g, S, and T
have a unique common fixed point.

Proof. Let x0 ∈ X be arbitrary and construct sequences {xn} and {yn} such that

fx2n−2 = Tx2n−1 = y2n−1, gx2n−1 = Sx2n = y2n (3.34)

for n = 1, 2, . . . .We will prove that condition (3.1) holds for n = 1, 2, . . . . Indeed,

D
(
y2n+1, y2n+2

)
= D

(
fx2n, gx2n+1

) ≤ λD(Sx2n, Tx2n+1) = λD
(
y2n, y2n+1

)
,

D
(
y2n+3, y2n+2

)
= D

(
fx2n+2, gx2n+1

) ≤ λD(Sx2n+2, Tx2n+1) = λD
(
y2n+2, y2n+1

)
.

(3.35)

Using Lemma 3.1, we conclude that {yn} is a Cauchy sequence. Suppose, for example, that
SX is a complete subset of X. Then yn → u = Sv, n → ∞, for some v ∈ X. Of course,
subsequences {y2n−1} and {y2n} also converge to u. Let us prove that fv = u. Using (3.33),
we get that

D
(
fv, u

) ≤ K
(
D
(
fv, gx2n−1

)
+D

(
gx2n−1, u

))

≤ K
(
λD(Sv, Tx2n−1) +D

(
gx2n−1, u

)) −→ K(λ · 0 + 0) = 0.
(3.36)

hence fv = u = Sv. Since u ∈ fX ⊂ TX, we get that there exists w ∈ X such that Tw = u. Let
us prove that also gw = u. Using (3.33), again we conclude that

D
(
gw, u

) ≤ K
(
D
(
gw, fx2n

)
+D

(
fx2n, u

))

≤ K
(
λD(Sx2n, Tw) +D

(
fx2n, u

)) −→ K(λ · 0 + 0) = 0,
(3.37)

implying that gw = u = Tw. We have proved that u is a common point of coincidence for
pairs (f, S) and (g, T).
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If now these pairs are weakly compatible, then for example, fu = fSv = Sfv = Su =
z1 and gu = gTw = Tgw = Tu = z2for example, . Moreover, D(z1, z2) = D(fu,gu) ≤
λD(Su, Tu) = λD(z1, z2) and 0 < λ < 1 implies that z1 = z2. So, we have that fu = gu =
Su = Tu. It remains to prove that, for example, u = gu. Indeed, D(u, gu) = D(fv, gu) ≤
λD(Sv, Tu) = λD(u, gu), implying that u = gu. The proof that this common fixed point of
f, g, S, and T is unique is straightforward.

We conclude with a metric type version of a fixed point theorem for strict contractions.
The proof is similar to the respective proof, for example, for cone metric spaces in [5]. An
example follows showing that additional condition of (sequential) compactness cannot be
omitted.

Theorem 3.14. Let a metric type space (X,D,K) be sequentially compact, and letD be a continuous
function (satisfying property (e)). If f : X → X is a mapping such that

D
(
fx, fy

)
< D

(
x, y

)
, for x, y ∈ X, x /=y, (3.38)

then f has a unique fixed point.

Proof. According to [9, Theorem 3.1], sequential compactness and compactness are
equivalent in metric type spaces, and also continuity is a sequential property. The given
condition (3.38) of strict continuity implies that a fixed point of f is unique (if it exists) and
that both mappings f and f2 are continuous. Let x0 ∈ X be an arbitrary point, and let {xn} be
the respective Picard sequence (i.e., xn = fnx0). If xn = xn+1 for some n, then xn is a (unique)
fixed point. If xn /=xn+1 for each n = 0, 1, 2, . . ., then

Dn := D(xn+1, xn) = D
(
fn+1x0, f

nx0

)
< D

(
fnx0, f

n−1x0

)
= Dn−1. (3.39)

Hence, there exists D∗, such that 0 ≤ D∗ ≤ Dn for each n and Dn → D∗, n → ∞. Using
sequential compactness of X, choose a subsequence {xni} of {xn} that converges to some
x∗ ∈ X when i → ∞. The continuity of f and f2 implies that

fxni −→ fx∗, f2xni → f2x∗ when i −→ ∞, (3.40)

and the continuity of the symmetric D implies that

D
(
fxni , xni

) −→ D
(
fx∗, x∗), D

(
f2xni , fxni

)
−→ D

(
f2x∗, fx∗

)
when i −→ ∞. (3.41)

It follows that D(fxni , xni) = Dni → D∗ = D(fx∗, x∗). It remains to prove that fx∗ = x∗. If
fx∗ /=x∗, then D∗ > 0 and (3.41) implies that

D∗ = lim
i→∞

Dni+1 = lim
i→∞

D
(
f2xni , fxni

)
= D

(
f2x∗, fx∗

)
< D

(
fx∗, x∗) = D∗. (3.42)

This is a contradiction.
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Example 3.15. Let E = R
2, P = {(x, y) ∈ E : x, y ≥ 0}, X = [1,+∞), and d : X × X → E be

defined by d(x, y) = (|x − y|, |x − y|). Then (X, d) is a cone metric space over a normal cone
with the normal constantK = 1 (see, e.g., [5]). The associated symmetric is in this case simply
the metric D(x, y) = ‖d(x, y)‖ = |x − y|√2.

Let f : X → X be defined by fx = x + 1/x. Then

D
(
fx, fy

)
=
∣
∣x − y

∣
∣
(
1 − 1

xy

)√
2 <

∣
∣x − y

∣
∣
√
2 = D

(
x, y

)
(3.43)

for all x, y ∈ X. Hence, f satisfies condition (3.38) but it has no fixed points. Obviously,
(X,D,K) is not (sequentially) compact.
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[7] S. Radenović and Z. Kadelburg, “Quasi-contractions on symmetric and cone symmetric spaces,”
Banach Journal of Mathematical Analysis, vol. 5, no. 1, pp. 38–50, 2011.

[8] M. A. Khamsi, “Remarks on cone metric spaces and fixed point theorems of contractive mappings,”
Fixed Point Theory and Applications, vol. 2010, Article ID 315398, 7 pages, 2010.

[9] M. A. Khamsi and N. Hussain, “KKM mappings in metric type spaces,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 73, no. 9, pp. 3123–3129, 2010.

[10] E. Karapınar, “Some nonunique fixed point theorems of Ćirić type on cone metric spaces,” Abstract
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