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We use the order relation on uniform spaces defined by Altun and Imdad (2009) to prove some
newfixed-point and coupled fixed-point theorems formultivaluedmonotonemappings in ordered
uniform spaces.

1. Introduction

There exists considerable literature of fixed-point theory dealing with results on fixed or
common fixed-points in uniform space (e.g., between [1–14]). But themajority of these results
are proved for contractive or contractive type mapping (notice from the cited references).
Also some fixed-point and coupled fixed-point theorems in partially ordered metric spaces
are given in [15–20]. Recently, Aamri and El Moutawakil [2] have introduced the concept of
E-distance function on uniform spaces and utilize it to improve some well-known results
of the existing literature involving both E-contractive or E-expansive mappings. Lately,
Altun and Imdad [21] have introduced a partial ordering on uniform spaces utilizing E-
distance function and have used the same to prove a fixed-point theorem for single-valued
nondecreasing mappings on ordered uniform spaces. In this paper, we use the partial
ordering on uniform spaces which is defined by [21], so we prove some fixed-point theorems
of multivalued monotone mappings and some coupled fixed-point theorems of multivalued
mappings which are given for ordered metric spaces in [22] on ordered uniform spaces.

Now, we recall some relevant definitions and properties from the foundation of
uniform spaces. We call a pair (X,ϑ) to be a uniform space which consists of a nonempty
set X together with an uniformity ϑ wherein the latter begins with a special kind of filter on
X × X whose all elements contain the diagonal Δ = {(x, x) : x ∈ X}. If V ∈ ϑ and (x, y) ∈ V ,
(y, x) ∈ V then x and y are said to be V -close. Also a sequence {xn} in X, is said to be
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a Cauchy sequence with regard to uniformity ϑ if for any V ∈ ϑ, there exists N ≥ 1 such that
xn and xm are V -close for m,n ≥ N. An uniformity ϑ defines a unique topology τ(ϑ) on X
for which the neighborhoods of x ∈ X are the sets V (x) = {y ∈ X : (x, y) ∈ V } when V runs
over ϑ.

A uniform space (X,ϑ) is said to be Hausdorff if and only if the intersection of all
the V ∈ ϑ reduces to diagonal Δ of X, that is, (x, y) ∈ V for V ∈ ϑ implies x = y. Notice
that Hausdorffness of the topology induced by the uniformity guarantees the uniqueness of
limit of a sequence in uniform spaces. An element of uniformity ϑ is said to be symmetrical
if V = V −1 = {(y, x) : (x, y) ∈ V }. Since each V ∈ ϑ contains a symmetrical W ∈ ϑ and if
(x, y) ∈ W then x and y are both W and V -close and then one may assume that each V ∈ ϑ
is symmetrical. When topological concepts are mentioned in the context of a uniform space
(X,ϑ), they are naturally interpreted with respect to the topological space (X, τ(ϑ)).

2. Preliminaries

We will require the following definitions and lemmas in the sequel.

Definition 2.1 (see [2]). Let (X,ϑ) be a uniform space. A function p : X × X → R
+ is said to

be an E-distance if

(p1) for any V ∈ ϑ, there exists δ > 0, such that p(z, x) ≤ δ and p(z, y) ≤ δ for some
z ∈ X imply (x, y) ∈ V ,

(p2) p(x, y) ≤ p(x, z) + p(z, y), for all x, y, z ∈ X.

The following lemma embodies some useful properties of E-distance.

Lemma 2.2 (see [1, 2]). Let (X,ϑ) be a Hausdorff uniform space and p be an E-distance on X. Let
{xn} and {yn} be arbitrary sequences in X and {αn}, {βn} be sequences in R

+ converging to 0. Then,
for x, y, z ∈ X, the following holds:

(a) if p(xn, y) ≤ αn and p(xn, z) ≤ βn for all n ∈ N, then y = z. In particular, if p(x, y) = 0
and p(x, z) = 0, then y = z,

(b) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for all n ∈ N, then {yn} converges to z,
(c) if p(xn, xm) ≤ αn for all m > n, then {xn} is a Cauchy sequence in (X,ϑ).

Let (X,ϑ) be a uniform space equipped with E-distance p. A sequence in X is p-Cauchy if it
satisfies the usual metric condition. There are several concepts of completeness in this setting.

Definition 2.3 (see [1, 2]). Let (X,ϑ) be a uniform space and p be an E-distance on X. Then

(i) X said to be S-complete if for every p-Cauchy sequence {xn} there exists x ∈ X with
limn→∞p(xn, x) = 0,

(ii) X is said to be p-Cauchy complete if for every p-Cauchy sequence {xn} there exists
x ∈ X with limn→∞xn = x with respect to τ(ϑ),

(iii) f : X → X is p-continuous if limn→∞p(xn, x) = 0 implies

lim
n→∞

p
(
fxn, fx

)
= 0, (2.1)
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(iv) f : X → X is τ(ϑ)-continuous if limn→∞xn = x with respect to τ(ϑ) implies
limn→∞fxn = fx with respect to τ(ϑ).

Remark 2.4 (see [2]). Let (X,ϑ) be a Hausdorff uniform space and let {xn} be a p-Cauchy
sequence. Suppose thatX is S-complete, then there exists x ∈ X such that limn→∞p(xn, x) = 0.
Then Lemma 2.2(b) gives that limn→∞xn = x with respect to the topology τ(ϑ) which shows
that S-completeness implies p-Cauchy completeness.

Lemma 2.5 (see [15]). Let (X,ϑ) be a Hausdorff uniform space, p be E-distance on X and ϕ : X →
R. Define the relation “�” on X as follows:

x � y ⇐⇒ x = y or p
(
x, y

) ≤ ϕ(x) − ϕ
(
y
)
. (2.2)

Then “�” is a (partial) order on X induced by ϕ.

3. The Fixed-Point Theorems of Multivalued Mappings

Theorem 3.1. Let (X,ϑ) a Hausdorff uniform space and p is an E-distance on X, ϕ : X → R

be a function which is bounded below and “�” the order introduced by ϕ. Let X be also a p-Cauchy
complete space, T : X → 2X be a multivalued mapping, [x,+∞) = {y ∈ X : x � y} and M = {x ∈
X | T(x) ∩ [x,+∞)/= ∅}. Suppose that:

(i) T is upper semicontinuous, that is, xn ∈ X and yn ∈ T(xn) with xn → x0 and yn → y0,
implies y0 ∈ T(x0),

(ii) M/= ∅,

(iii) for each x ∈ M, T(x) ∩M ∩ [x,+∞)/= ∅.

Then T has a fixed-point x∗ and there exists a sequence {xn} with

xn−1 � xn ∈ T(xn−1), n = 1, 2, 3, . . . (3.1)

such that xn → x∗. Moreover if ϕ is lower semicontinuous, then xn � x∗ for all n.

Proof. By the condition (ii), take x0 ∈ M. From (iii), there exist x1 ∈ T(x0) ∩M and x0 � x1.
Again from (iii), there exist x2 ∈ T(x1) ∩M. Thus x1 � x2.

Continuing this procedure we get a sequence {xn} satisfying

xn−1 � xn ∈ T(xn−1), n = 1, 2, 3, . . . . (3.2)

So by the definition of “�”, we have · · ·ϕ(x2) ≤ ϕ(x1) ≤ ϕ(x0), that is, the sequence {ϕ(xn)}
is a nonincreasing sequence in R. Since ϕ is bounded from below, {ϕ(xn)} is convergent and
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hence it is Cauchy, that is, for all ε > 0, there exists n0 ∈ N such that for allm > n > n0 we have
|ϕ(xm) − ϕ(xn)| < ε. Since xn � xm, we have xn = xm or p(xn, xm) ≤ ϕ(xn) − ϕ(xm). Therefore,

p(xn, xm) ≤ ϕ(xn) − ϕ(xm)

=
∣
∣ϕ(xn) − ϕ(xm)

∣
∣

< ε,

(3.3)

which shows that (in view of Lemma 2.2(c)) that {xn} is p-Cauchy sequence. By the p-Cauchy
completeness of X, {xn} converges to x∗. Since T is upper semicontinuous, x∗ ∈ T(x∗).

Moreover, when ϕ is lower semicontinuous, for each n

p(xn, x
∗) = lim

m→∞
p(xn, xm)

≤ lim
m→∞

sup
(
ϕ(xn) − ϕ(xm)

)

= ϕ(xn) − lim
m→∞

infϕ(xm)

≤ ϕ(xn) − ϕ(x∗).

(3.4)

So xn � x∗, for all n.

Similarly, we can prove the following.

Theorem 3.2. Let (X,ϑ) a Hausdorff uniform space and p an E-distance on X, ϕ : X → R be
a function which is bounded above and “�” the order introduced by ϕ. Let X be also a p-Cauchy
complete space, T : X → 2X be a multivalued mapping, (−∞, x] = {y ∈ X : y � x} and M = {x ∈
X | T(x) ∩ (−∞, x]/= ∅}. Suppose that

(i) T is upper semicontinuous, that is, xn ∈ X and yn ∈ T(xn) with xn → x0 and yn → y0,
implies y0 ∈ T(x0),

(ii) M/= ∅,
(iii) for each x ∈ M, T(x) ∩M ∩ (−∞, x]/= ∅.
Then T has a fixed-point x∗ and there exists a sequence {xn} with

xn−1  xn ∈ T(xn−1), n = 1, 2, 3, . . . (3.5)

such that xn → x∗. Moreover, if ϕ is upper semicontinuous, then x∗ � xn for all n.

Corollary 3.3. Let (X,ϑ) a Hausdorff uniform space and p is an E-distance on X, ϕ : X → R

be a function which is bounded below and “�” the order introduced by ϕ. Let X be also a p-Cauchy
complete space, T : X → 2X be a multivalued mapping and [x,+∞) = {y ∈ X : x � y}. Suppose
that:

(i) T is upper semicontinuous, that is, xn ∈ X and yn ∈ T(xn) with xn → x0 and yn → y0,
implies y0 ∈ T(x0),
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(ii) T satisfies the monotonic condition: for any x,y ∈ X with x � y and any u ∈ T(x), there
exists v ∈ T(y) such that u � v,

(iii) there exists an x0 ∈ X such that T(x0) ∩ [x0,+∞)/= ∅.

Then T has a fixed-point x∗ and there exists a sequence {xn} with

xn−1 � xn ∈ T(xn−1), n = 1, 2, 3, . . ., (3.6)

such that xn → x∗. Moreover if ϕ is lower semicontinuous, then xn � x∗ for all n.

Proof. By (iii), x0 ∈ M = {x ∈ X : T(x) ∩ [x,+∞)/= ∅}. For x ∈ M, take y ∈ T(x) and
x � y. By the monotonicity of T , there exists z ∈ T(y) such that y � z. So y ∈ M, and
T(x) ∩M ∩ [x,+∞)/= ∅. The conclusion follows from Theorem 3.1.

Corollary 3.4. Let (X,ϑ) a Hausdorff uniform space and p is an E-distance on X, ϕ : X → R

be a function which is bounded above and “�” the order introduced by ϕ. Let X be also a p-Cauchy
complete space, T : X → 2X be a multivalued mapping and (−∞, x] = {y ∈ X : y � x}. Suppose
that:

(i) T is upper semicontinuous,

(ii) T satisfies the monotonic condition; for any x, y ∈ X with x � y and any v ∈ T(y), there
exists u ∈ T(x) such that u � v,

(iii) there exists an x0 ∈ X such that T(x0) ∩ (−∞, x0]/= ∅.

Then T has a fixed-point x∗ and there exists a sequence {xn} with

xn−1  xn ∈ T(xn−1), n = 1, 2, . . . , (3.7)

such that xn → x∗. Moreover if ϕ is upper semicontinuous, then xn  x∗ for all n.

Corollary 3.5. Let (X,ϑ) a Hausdorff uniform space and p is an E-distance on X, ϕ : X → R

be a function which is bounded below and “�” the order introduced by ϕ. Let X be also a p-Cauchy
complete space, f : X → X be a map and M = {x ∈ X : x � f(x)}. Suppose that:

(i) f is τ(ϑ)-continuous,

(ii) M/= ∅,
(iii) for each x ∈ M, f(x) ∈ M.

Then f has a fixed-point x∗ and the sequence

xn−1 � xn = f(xn−1), n = 1, 2, 3, . . . (3.8)

converges to x∗. Moreover if ϕ is lower semicontinuous, then xn � x∗ for all n.

Corollary 3.6. Let (X,ϑ) be a Hausdorff uniform space, p is an E-distance on X, ϕ : X → R be
a function which is bounded above, and “�” the order introduced by ϕ. Let X be also a p-Cauchy
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complete space, f : X → X be a map and M = {x ∈ X : x  f(x)}. Suppose that:
(i) f is τ(ϑ)-continuous,

(ii) M/= ∅,
(iii) for each x ∈ M, f(x) ∈ M.

Then f has a fixed-point x∗. And the sequence

xn−1  xn = f(xn−1), n = 1, 2, 3, . . . (3.9)

converges to x∗. Moreover, if ϕ is upper semicontinuous, then xn  x∗ for all n.

Corollary 3.7. Let (X,ϑ) be a Hausdorff uniform space, p is an E-distance on X, ϕ : X → R be
a function which is bounded below, and “�” the order introduced by ϕ. Let X be also a p-Cauchy
complete space, f : X → X be a map and M = {x ∈ X : x  f(x)}. Suppose that:

(i) f is τ(ϑ)-continuous,

(ii) f is monotone increasing, that is, for x � y we have f(x) � f(y),

(iii) there exists an x0, with x0 � f(x0).

Then f has a fixed-point x∗ and the sequence

xn−1 � xn = f(xn−1), n = 1, 2, 3, . . . (3.10)

converges to x∗. Moreover if ϕ is lower semicontinuous, then xn � x∗ for all n.

Example 3.8. Let X = {k, l,m} and ϑ = {V ⊂ X × X : Δ ⊂ V }. Define p : X × X → R
+ as

p(x, x) = 0 for all x ∈ X, p(k, l) = p(l, k) = 2, p(k,m) = p(m, k) = 1 ve p(l,m) = p(m, l) = 3.
Since definition of ϑ,

⋂
V∈ϑ V = Δ and this show that the uniform space (X,ϑ) is a Hausdorff

uniform space. On the other hand, p(k, l) ≤ p(k,m) + p(m, l), p(k,m) ≤ p(k, l) + p(l,m) and
p(l,m) ≤ p(l, k) + p(k,m) for k, l,m ∈ X and thus p is an E-distance as it is a metric on
X. Next define ϕ : X → R ϕ(k) = 3, ϕ(l) = 2, ϕ(m) = 1. Since p(k,m) = p(m, k) = 1 ≤
ϕ(k) − ϕ(m), therefore k � m. But as p(l, k) = p(k, l) = 2 � |ϕ(k) − ϕ(l)| therefore k�� l and
l�� k. Again similarly l��m andm�� lwhich show that this ordering is partial and hence X is a
partially ordered uniform space. Define f : X → X as f(k) = k, f(l) = l and f(m) = m, then
by a routine calculation one can verify that all the conditions of Corollary 3.7 are satisfied
and f has a fixed-point. Notice that p(f(k), f(l)) = p(k, l) which shows that f is neither E-
contractive nor E expansive, therefore the results of [2] are not applicable in the context of
this example. Thus, this example demonstrates the utility of our result.

Corollary 3.9. Let (X,ϑ) be a Hausdorff uniform space, p is an E-distance on X, ϕ : X → R be a
function which is bounded above and “�” the order introduced by ϕ. LetX be also a p-Cauchy complete
space and f : X → X be a map. Suppose that

(i) f is τ(ϑ)-continuous,

(ii) f is monotone increasing, that is, for x � y we have f(x) � f(y),

(iii) there exists an x0 with x0  f(x0).
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Then f has a fixed-point x∗. And the sequence

xn−1  xn = f(xn−1), n = 1, 2, 3, . . . (3.11)

converges to x∗. Moreover if ϕ is upper semicontinuous, then xn  x∗ for all n.

Theorem 3.10. Let (X,ϑ) be a Hausdorff uniform space, p is an E-distance on X, ϕ : X → R be
a continuous function bounded below and “�” the order introduced by ϕ. Let X be also a p-Cauchy
complete space, T : X → 2X be a multivalued mapping and [x,+∞) = {y ∈ X : x � y}. Suppose
that

(i) T satisfies the monotonic condition: for each x � y and each u ∈ T(x) there exists v ∈ T(y)
such that u � v,

(ii) T(x) is compact for each x ∈ X,

(iii) M = {x ∈ X : T(x) ∩ [x,+∞)/= ∅}/= ∅.
Then T has a fixed-point x0.

Proof. Wewill prove thatM has a maximum element. Let {xv}v∈Λ be a totally ordered subset
in M, where Λ is a directed set. For v, μ ∈ Λ and v ≤ μ, one has xv � xμ, which implies
that ϕ(xv) ≥ ϕ(xμ) for v ≤ μ. Since ϕ is bounded below, {ϕ(xv)} is a convergence net in R.
From p(xv, xμ) ≤ ϕ(xv) − ϕ(xμ), we get that {xv} is a p-cauchy net in X. By the p-Cauchy
completeness of X, let xv converge to z in X.

For given μ ∈ Λ
p(xμ, z) = limvp(xμ, xv) ≤ limv(ϕ(xμ) − ϕ(xv)) = ϕ(xμ) − ϕ(xz). So xμ � z for all μ ∈ Λ.

For μ ∈ Λ, by the condition (i), for each uμ ∈ T(xμ), there exists a vμ ∈ T(z) such that
uμ � vμ. By the compactness of T(z), there exists a convergence subnet {vμ| } of {vμ}. Suppose
that {vμ| } converges to w ∈ T(z). Take Λ| such that μ| ≥ Λ| implies uμ � vμ � vμ| .

We have

p
(
uμ,w

)
= lim

μ|
p
(
uμ, vμ|

)
≤ lim

μ|

(
ϕ
(
uμ

) − ϕ
(
vμ|

))
= ϕ

(
uμ

) − ϕ(w). (3.12)

So uμ � w for all μ and

p(z,w) = lim
μ

p
(
uμ,w

) ≤ lim
μ

(
ϕ
(
uμ

) − ϕ(w)
)
= ϕ(z) − ϕ(w). (3.13)

So z � w and this gives that z ∈ M. Hence we have proven that {xμ} has an upper
bound in M.

By Zorn’s Lemma, there exists a maximum element x0 in M. By the definition of M,
there exists a y0 ∈ T(x0) such that x0 � y0. By the condition (i), there exists a z0 ∈ T(y0) such
that y0 � z0. Hence y0 ∈ M. Since x0 is the maximum element in M, it follows that y0 = x0

and x0 ∈ T(x0). So x0 is a fixed-point of T .

Theorem 3.11. Let (X,ϑ) be a Hausdorff uniform space, p is an E-distance on X, ϕ : X → R be
a continuous function bounded above and “�” the order introduced by ϕ. Let X be also a p-Cauchy
complete space, T : X → 2X be a multivalued mapping and (−∞, x] = {y ∈ X : y � x}. Suppose
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that

(i) T satisfies the following condition; for each x � y and v ∈ T(x), there exists u ∈ T(y) such
that u � v,

(ii) T(x) is compact for each x ∈ X,

(iii) M = {x ∈ X : T(x) ∩ (−∞, x]/= ∅}/= ∅.
Then T has a fixed-point.

Corollary 3.12. Let (X,ϑ) be a Hausdorff uniform space, p is an E-distance on X, ϕ : X → R be
a continuous function bounded below and “�” the order introduced by ϕ. Let X be also a p-Cauchy
complete space and f : X → X be a map. Suppose that;

(i) f is monotone increasing, that is for x � y, f(x) � f(y),

(ii) there is an x0 ∈ X such that x0 � f(x0).

Then f has a fixed-point.

Corollary 3.13. Let (X,ϑ) be a Hausdorff uniform space, p is an E-distance on X, ϕ : X → R be
a continuous function bounded above and “�” the order introduced by ϕ. Let X be also a p-Cauchy
complete space and f : X → X be a map. Suppose that;

(i) f is monotone increasing, that is, for x � y, f(x) � f(y);

(ii) there is an x0 ∈ X such that x0  f(x0).

Then f has a fixed-point.

4. The Coupled Fixed-Point Theorems of Multivalued Mappings

Definition 4.1. An element (x, y) ∈ X × X is called a coupled fixed-point of the multivalued
mapping T : X ×X → 2X if x ∈ T(x, y), y ∈ T(y, x).

Theorem 4.2. Let (X,ϑ) be a Hausdorff uniform space, p is an E-distance on X, ϕ : X → R be
a function bounded below and “�” be the order in X introduced by ϕ. Let X be also a p-Cauchy
complete space, T : X × X → 2X be a multivalued mapping, [x,+∞) = {y ∈ X : x � y},
(−∞, y] = {x ∈ X : x � y}, and M = {(x, y) ∈ X × X : x � y, T(x, y) ∩ [x,+∞)/= ∅ and
T(y, x) ∩ (−∞, y]/= ∅}. Suppose that:

(i) T is upper semicontinuous, that is, xn ∈ X, yn ∈ X and zn ∈ T(xn, yn), with xn → x0,
yn → y0 and zn → z0 implies z0 ∈ T(x0, y0),

(ii) M/= ∅,
(iii) for each (x, y) ∈ M, there is (u, v) ∈ M such that u ∈ T(x, y) ∩ [x,+∞) and v ∈

T(y, x) ∩ (−∞, y].

Then T has a coupled fixed-point (x∗, y∗), that is, x∗ ∈ T(x∗, y∗) and y∗ ∈ T(y∗, x∗). And
there exist two sequences {xn} and {yn} with

xn−1 � xn ∈ T
(
xn−1, yn−1

)
, yn−1  yn ∈ T

(
yn−1, xn−1

)
, n = 1, 2, 3, . . . (4.1)

such that xn → x∗ and yn → y∗.
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Proof. By the condition (ii), take (x0, y0) ∈ M. From (iii), there exist (x1, y1) ∈ M such that
x1 ∈ T(x0, y0), x0 � x1 and y1 ∈ T(y0, x0), y1 � y0. Again from (iii), there exist (x2, y2) ∈ M
such that x2 ∈ T(x1, y1), x1 � x2 and y2 ∈ T(y1, x1), y2 � y1.

Continuing this procedure we get two sequences {xn} and {yn} satisfying (xn, yn) ∈ M
and

xn−1 � xn ∈ T
(
xn−1, yn−1

)
, n = 1, 2, . . . ,

yn−1  yn ∈ T
(
yn−1, xn−1

)
, n = 1, 2, . . . .

(4.2)

So

x0 � x1 � · · · � xn � · · · � yn � · · · � y2 � y1. (4.3)

Hence,

ϕ(x0) ≥ ϕ(x1) ≥ · · · ≥ ϕ(xn) ≥ · · · ≥ ϕ
(
yn

) ≥ · · · ≥ ϕ
(
y1
) ≥ ϕ

(
y0
)
. (4.4)

From this we get that ϕ(xn) and ϕ(yn) are convergent sequences. By the definition of “�” as in
the proof of Theorem 3.1, it is easy to prove that {xn} and {yn} are p-Cauchy sequences. Since
X is p-Cauchy complete, let {xn} converge to x∗ and {yn} converge to y∗. Since T is upper
semicontinuous, x∗ ∈ T(x∗, y∗) and y∗ ∈ T(y∗, x∗). Hence (x∗, y∗) is a coupled fixed-point of
T .

Corollary 4.3. Let (X,ϑ) be a Hausdorff uniform space, p is an E-distance on X, ϕ : X → R be
a function bounded below, and “�” be the order in X introduced by ϕ. Let X be also a p-Cauchy
complete space, f : X × X → X be a mapping and M = {(x, y) ∈ X × X : x � y and x � f(x, y)
and f(x, y) � y}. Suppose that;

(i) f is τ(ϑ)-continuous,

(ii) M/= ∅,
(iii) for each (x, y) ∈ M, x � f(x, y) and f(y, x) � y.

Then f has a coupled fixed-point (x∗, y∗), that is, x∗ = f(x∗, y∗) and y∗ = f(y∗, x∗). And
there exist two sequences {xn} and {yn} with xn−1 � xn = f(xn−1, yn−1), yn−1  yn = f(yn−1, xn−1),
n = 1, 2, . . . such that xn → x∗ and yn → y∗.

Corollary 4.4. Let (X,ϑ) be a Hausdorff uniform space, p is an E-distance on X,ϕ : X → R be
a function bounded below, and “�” be the order in X introduced by ϕ. Let X be also a p-Cauchy
complete space, f : X × X → X be a mapping and M = {(x, y) ∈ X × X : x � y and x � f(x, y)
and f(x, y) � y}. Suppose that;

(i) f is τ(ϑ)-continuous,

(ii) M/= ∅,
(iii) f is mixed monotone, that is for each x1 � x2 and y1  y2, f(x1, y1) � f(x2, y2).

Then f has a coupled fixed-point (x∗, y∗). And there exist two sequences {xn} and {yn} with
xn−1 � xn = f(xn−1, yn−1), yn−1  yn = f(yn−1, xn−1), n = 1, 2, . . . such that xn → x∗ and
yn → y∗.
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Theorem 4.5. Let (X,ϑ) be a Hausdorff uniform space, p is an E-distance on X, ϕ : X → R

be a continuous function, and “�” be the order in X introduced by ϕ. Let X be also a p-Cauchy
complete space, T : X × X → 2X be a multivalued mapping, [x,+∞) = {y ∈ X : x � y},
(−∞, y] = {x ∈ X : x � y}, and M = {(x, y) ∈ X × X : x � y, T(x, y) ∩ [x,+∞)/= ∅ and
T(y, x) ∩ (−∞, y]/= ∅}. Suppose that;

(i) T is mixed monotone, that is, for x1 � y1, x2  y2 and u ∈ T(x1, y1), v ∈ T(y1, x1), there
exist w ∈ T(x2, y2), z ∈ T(y2, x2) such that u � w, v  z,

(ii) M/= ∅,
(iii) T(x, y) is compact for each (x, y) ∈ X ×X.

Then T has a coupled fixed-point.

Proof. By (ii), there exists (x0, y0) ∈ M with x0 � y0, T(x0, y0) ∩ [x0,+∞)/= ∅ and T(y0, x0) ∩
(−∞, y0]/= ∅. Let C = {(x, y) : x0 � x, y � y0, T(x, y) ∩ [x,+∞)/= ∅ and T(y, x) ∩ (−∞, y]/= ∅}.
Then (x0, y0) ∈ C. Define the order relation “�” in C by

(
x1, y1

) � (
x2, y2

) ⇐⇒ x1 � x2, y2 � y1. (4.5)

It is easy to prove that (C,�) becomes an ordered space.
We will prove that C has a maximum element. Let {xv, yv}v∈Λ be a totally ordered

subset in C, where Λ is a directed set. For v, μ ∈ Λ and v ≤ μ, one has (xv, yv) � (xμ, yμ). So
xv � xμ and yμ � yv, which implies that

ϕ(x0) ≥ ϕ(xv) ≥ ϕ
(
xμ

) ≥ ϕ
(
y0
)
,

ϕ
(
y0
) ≤ ϕ

(
yμ

) ≤ ϕ
(
yv

) ≤ ϕ(x0)
(4.6)

for v ≤ μ.
Since {ϕ(xv)} and {ϕ(yv)} are convergence nets in R. From

p
(
xv, xμ

) ≤ ϕ(xv) − ϕ
(
xμ

)
, p

(
yμ, yv

) ≤ ϕ
(
yμ

) − ϕ
(
yv

)
, (4.7)

we get that {xv} and {yv} are p-Cauchy nets in X. By the p-Cauchy completeness of X, let xv

convergence to x∗ and yv convergence to y∗ in X. For given μ ∈ Λ,

p
(
xμ, x

∗) = lim
v

p
(
xμ, xv

) ≤ lim
v

(
ϕ
(
xμ

) − ϕ(xv)
)
= ϕ

(
xμ

) − ϕ(x∗),

p
(
yμ, y

∗) = lim
v

p
(
yμ, yv

) ≤ lim
v

(
ϕ
(
yv

) − ϕ
(
yμ

))
= ϕ

(
yv

) − ϕ
(
y∗).

(4.8)

So x0 � xμ � x∗ and yμ  y∗  y0 for all μ ∈ Λ.
For μ ∈ Λ, by the condition (i), for each uμ ∈ T(xμ, yμ)with xμ � uμ and vμ ∈ T(yμ, xμ)

with vμ � yμ, there exist wμ ∈ T(x∗, y∗) and zμ ∈ T(y∗, x∗) such that uμ � wμ and vμ  zμ.
By the compactness of T(x∗, y∗) and T(y∗, x∗), there exist convergence subnets {wμ| } of {wμ}
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and {zμ| } of {zμ}. Suppose that {wμ| } converges to w ∈ T(x∗, y∗) and {zμ| } converges to
z ∈ T(y∗, x∗). Take Λ|, such that μ| ≥ Λ| implies uμ � vμ � vμ| . We have

p
(
uμ,w

)
= lim

μ|
p
(
uμ, uμ|

)
≤ lim

μ|

(
ϕ
(
uμ

) − ϕ
(
uμ|

))
= ϕ

(
uμ

) − ϕ(w),

p
(
z, vμ

)
= lim

μ|
p
(
vμ| , vμ

)
≤ lim

μ|

(
ϕ
(
vμ|

)
− ϕ

(
vμ

))
= ϕ(z) − ϕ

(
vμ

)
.

(4.9)

So xμ � uμ � w and z � vμ � yμ for all μ. And

p(x∗, w) = lim
μ|

p
(
xμ| , uμ|

)
≤ lim

μ|

(
ϕ
(
xμ|

)
− ϕ

(
uμ|

))
= ϕ(x∗) − ϕ(w),

p
(
z, y∗) = lim

μ|
p
(
vμ| , yμ|

)
≤ lim

μ|

(
ϕ
(
vμ|

)
− ϕ

(
yμ|

))
= ϕ(z) − ϕ

(
y∗).

(4.10)

So x∗ � w and z � y∗, this gives that (x∗, y∗) ∈ C. Hence we have proven that {xμ, yμ}μ∈Λ has
an upper bound in C.

By Zorn’s lemma, there exists a maximum element (x, y) in C. By the definition of C,
there exist u ∈ T(x, y), v ∈ T(y, x), such that x0 � u, v � y0 and x � u, v � y. By the

condition (i) there exist w ∈ T(u, v),
−
z∈ T(v, u) such that x0 � u � w and z � v � y0.

Hence (u, v) ∈ C and (x, y) � (u, v). Since (x, y) is maximum element in C, it follows that
(x, y) = (u, v), and it follows that x = u ∈ T(x, u) and y = v ∈ T(y, x). So (x, y) is a coupled
fixed-point of T .

Corollary 4.6. Let (X,ϑ) be a Hausdorff uniform space, p is an E-distance on X, ϕ : X → R be a
continuous function, and “�” be the order in X introduced by ϕ. Let X be also a p-Cauchy complete
space and f : X ×X → X be a mapping. Suppose that;

(i) f is mixed monotone, that is for x1 � y1, x2  y2 and f(x1, y1) � f(y2, x2),

(ii) there exist x0, y0 ∈ X such that x0 � f(x0, y0) and f(y0, x0) � y0.

Then f has a coupled fixed-point.
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[14] D. Türkoğlu and B. E. Rhoades, “A general fixed point theorem for multi-valued mapping in uniform
space,” The Rocky Mountain Journal of Mathematics, vol. 38, no. 2, pp. 639–647, 2008.

[15] R. P. Agarwal, M. A. El-Gebeily, and D. O’Regan, “Generalized contractions in partially ordered
metric spaces,” Applicable Analysis, vol. 87, no. 1, pp. 109–116, 2008.

[16] T. G. Bhaskar and V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces and
applications,” Nonlinear Analysis: Theory, Methods & Applications, vol. 65, no. 7, pp. 1379–1393, 2006.

[17] D. J. Guo and V. Lakshmikantham, “Coupled fixed points of nonlinear operators with applications,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 11, no. 5, pp. 623–632, 1987.

[18] V. Lakshmikantham and L. B. Ciric, “Coupled fixed point theorems for nonlinear contractions in
partially ordered metric spaces,”Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 12, pp.
4341–4349, 2009.

[19] J. J. Nieto and R. R. Lopez, “Contractive mapping theorems in partially ordered sets and applications
to ordinary differential equations,” Order, vol. 22, no. 3, pp. 223–239, 2005.

[20] B. Samet, “Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially
ordered metric spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 12, pp. 4508–
4517, 2010.

[21] I. Altun and M. Imdad, “Some fixed point theorems on ordered uniform spaces,” Filomat, vol. 23, no.
3, pp. 15–22, 2009.

[22] X. Zhang, “Fixed point theorems of multivalued monotone mappings in ordered metric spaces,”
Applied Mathematics Letters, vol. 23, no. 3, pp. 235–240, 2010.


	1. Introduction
	2. Preliminaries
	3. The Fixed-Point Theorems of Multivalued Mappings
	4. The Coupled Fixed-Point Theorems of Multivalued Mappings
	References

