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A major puzzle in neural networks is understanding the information encoding principles that
implement the functions of the brain systems. Population coding in neurons and plastic changes
in synapses are two important subjects in attempts to explore such principles. This forms the basis
of modern theory of neuroscience concerning self-organization and associative memory. Here we
wish to suggest an information storage scheme based on the dynamics of evolutionary neural
networks, essentially reflecting the meta-complication of the dynamical changes of neurons as well
as plastic changes of synapses. The information storage scheme may lead to the development of
a complete description of all the equilibrium states (fixed points) of Hopfield networks, a space-
filling network that weaves the intricate structure of Hamming star-convexity, and a plasticity
regime that encodes information based on algorithmic Hebbian synaptic plasticity.

1. Introduction

The study of memory includes two important components: the storage component of
memory and the systems component of memory [1, 2]. The first is concerned with exploring
the molecular mechanisms whereby memory is stored, whereas the second is concerned
with analyzing the organizing principles that mediate brain systems to encode, store, and
retrieve memory. The first neurophysiological description about the systems component of
memory was proposed by Hebb [3]. His postulate reveals a principle of learning, which
is often summarized as “the connections between neurons are strengthened when they fire
simultaneously.” The Hebbian concept stimulates an intensive effort to promote the building
of associative memory models of the brain [4–9]. Also, it leads to the development of a
LAMINART model matching in laminar visual cortical circuitry [10, 11], the development of
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an Ising model used in statistical physics [12–15], and the study of constrained optimization
problems such as the famous traveling salesman problem [16].

However, since it was initiated by Kohonen andAnderson in 1972, associativememory
has remained widely open in neural networks [17–21]. It generally includes questions
concerning a description of collective dynamics and computing with attractors in neural
networks. Hence the central question [22]: “given an arbitrary set of prototypes of 01-strings
of length n, is there any recurrent network such that the set of all equilibrium states of
this network is exactly the set of those prototypes?” Many attempts have been made to
tackle this problem. For instance, using the method of energy minimization, Hopfield in 1982
constructed a network of nerve cells whose dynamics tend toward an equilibrium state when
the retrieval operation is performed asynchronously [13]. Furthermore, to circumvent limited
capacity in storage and retrieval of Hopfield networks, Personnaz et al. in 1986 investigated
the behavior of neural networks designed with the projection rule, which guarantees the
errorless storage and retrieval of prototypes [23, 24]. In 1987, Diederich and Opper proposed
an iterative scheme to substitute a local learning rule for the projection rule when the
prototypes are linearly independent [25, 26]. This sheds light on the possibility of storing
correlated prototypes in neural networks with local learning rules.

In addition to the discussion on learning mechanisms for associative memory,
Hopfield networks have also given a valuable impetus to basic research in combinatorial
fixed point theory in neural networks. In 1992, Shrivastava et al. conducted a convergence
analysis of a class of Hopfield networks and showed that all equilibrium states of these
networks have a one-to-one correspondence with the maximal independent sets of certain
undirected graphs [27]. Müezzinoğlu and Güzeliş in 2004 gave a further compatibility
condition on the correspondence between equilibrium states and maximal independent sets,
which avoids spurious stored patterns in information storage and provides attractiveness of
prototypes in retrieval operation [28]. Moreover, the analytic approach of Shih and Ho [29]
in 1999 as well as Shih and Dong [30] in 2005 illustrated the reverberating-circuit structure
to determine equilibrium states in generalized boolean networks, leading to a solution of
the boolean Markus-Yamabe problem and a proof of network perspective of the Jacobian
conjecture, respectively.

More recently, we described an evolutionary neural network in which the connection
strengths between neurons are highly evolved according to algorithmic Hebbian synaptic
plasticity [31]. To explore the influence of synaptic plasticity on the evolutionary neural
network’s dynamics, a sort of driving forces from the meta-complication of the evolutionary
neural network’s nodal-and-coupling activities is introduced, in contrast with the explicit
construction of global Lyapunov functions in neural networks [10, 13, 32, 33] and in
accordancewith the limitation of finding a common quadratic Lyapunov function to control a
switched system’s dynamics [34–36]. A mathematical proof asserts that the ongoing changes
of the evolutionary network’s nodal-and-coupling dynamics will eventually come to rest at
equilibrium states [31]. This result reflects, in a deep mathematical sense, that plastic changes
in the coupling dynamics may appear as a mechanism for associative memory.

In this respect, an information storage scheme for associative memory may be
suggested as follows. It comprises three ingredients. First, based on the Hebbian learning
rule, establish a primitive neural network whose equilibrium states contain the prototypes
and derive a common qualitative propertyP from all the domains of attraction of equilibrium
states. Second, determine a merging process that merges the domains of attraction of
equilibrium states such that each merging domain contains exactly one prototype and that
preserves the property P. Third, based on algorithmic Hebbian synaptic plasticity, probe
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a plasticity regime that guides the evolution of the primitive neural network such that
each vertex in the merging domain will tend toward the unique prototype underlying the
dynamics of the resulting evolutionary neural network.

Our point of departure is the convexity packing lurking behind Hopfield networks.
We consider the domain of attraction in which every initial state in the domain tends toward
the equilibrium state asynchronously. For the asynchronous operating mode, each trajectory
in the phase space can represent as one of the “connected” paths between the initial state and
the equilibrium state when it is measured by the Hamming metric. It provides a clear map
that all the domains of attraction in Hopfield networks are star-convexity-like and that the
phase space can be filled with those star-convexity-like domains. And it applies to frame a
primitive Hopfield network that might consolidate an insight of exploring a plasticity regime
in the information storage scheme.

2. Information Storage of Hopfield Networks

Let {0, 1}n denote the binary code consisting of all 01 strings of fixed length n, and let X =
{x1, x2, . . . , xp} be an arbitrary set of prototypes in {0, 1}n. For each positive integer k, let
�k = {1, 2, . . . , k}. Using the formal neurons of McCulloch and Pitts [37], we can construct
a Hopfield network of n coupled neurons, namely, 1, 2, . . . , n, whose synaptic strengths are
listed in an array, denoted by the matrixA = (aij)n×n, and defined on the basis of the Hebbian
learning rule, that is,

aij =
p∑

s=1

xs
i x

s
j for every i, j ∈ �n . (2.1)

The firing state of each neuron i is denoted by xi = 1, whereas the quiescent state is xi = 0.
The function � is the Heaviside function: �(u) = 1 for u ≥ 0, otherwise 0, which describes an
instantaneous unit pulse. The dynamics of the Hopfield network is encoded by the function
F = (f1, f2, . . . , fn), where

fi(x) = �

⎛
⎝

n∑

j=1

aijxj − bi

⎞
⎠ (2.2)

encodes the dynamics of neuron i, x = (x1, x2, . . . , xn) is a vector of state variables in the phase
space {0, 1}n, and bi ∈ � is the threshold of neuron i for each i ∈ �n .

For every x, y ∈ {0, 1}n, define the vectorial distance between x and y [38, 39], denoted
as d(x, y), to be

d
(
x, y

)
=

⎛
⎜⎜⎜⎝

∣∣x1 − y1
∣∣

...
∣∣xn − yn

∣∣

⎞
⎟⎟⎟⎠. (2.3)
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For every x, y ∈ {0, 1}n, define the order relation x ≤ y by xi ≤ yi for each i ∈ �n ; the chain
interval between x and y, denoted as C[x, y], to be

C
[
x, y

]
=
{
z ∈ {0, 1}n;d(z, y) ≤ d

(
x, y

)}
. (2.4)

Note that C[x, y] = C[y, x], and the notation C(x, y] means that C[x, y] \ {x}. The Hamming
metric ρH on {0, 1}n is defined to be

ρH
(
x, y

)
= #

{
i ∈ �n ;xi /=yi

}
(2.5)

for every x, y ∈ {0, 1}n [40]. Denote by γ(x, y) a chain joining x and y with the minimum
Hamming distance, meaning that

γ
(
x, y

)
=
{
x, u1, u2, . . . , ur−1, y

}
, (2.6)

where ρH(ui, ui+1) = 1 for i = 0, 1, . . . , r − 1 with u0 = x, ur = y, and ρH(x, u1) + ρH(u1, u2) +
· · · + ρH(ur−1, y) = ρH(x, y). Then we have C[x, y] =

⋃
γ(x, y), where the union is taken over

all chains joining x and y with the minimum Hamming distance.
Denote by 〈·, ·〉 the Euclidean scalar product in �

n . A set of elements yα in {0, 1}n,
where α runs through some index set in I, is called orthogonal if 〈yα, yβ〉 = 0 for each α, β ∈ I
with α/= β. Two sets Y and Z in {0, 1}n are called mutually orthogonal if 〈y, z〉 = 0 for each
y ∈ Y and z ∈ Z. Given a set Y = {y1, y2, . . . , yq} in {0, 1}n, we define the 01-span of Y ,
denoted as 01-span(Y), to be the set consists of all elements of the form τ1y1+τ2y2+ · · ·+τqyq,
where τi ∈ {0, 1} for each i ∈ �q . We assume that xi /= 0 for each i ∈ �p . For each i ∈ �p , define

N1
xi =

{
xs ∈ X;

〈
xs, xi

〉
/= 0

}
(2.7)

and define recursively

N
j+1
xi =

{
xs ∈ X;

〈
xs, xk

〉
/= 0 for some xk ∈ �j

xi

}
(2.8)

for each j ∈ �. Clearly, for each i ∈ �p we have

N1
xi ⊂ N2

xi ⊂ N3
xi ⊂ · · · , (2.9)

and thereby there exists a smallest positive integer, denoted as s(i), such that

N
s(i)
xi = N

s(i)+j
xi for each j ∈ �. (2.10)

It is readily seen that for each i ∈ �p and for each xj ∈ N
s(i)
xi , we have

N
s(i)
xi = N

s(j)
xj , (2.11)
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and clearly, for every i, j ∈ �p , exactly one of the following conditions holds:

N
s(i)
xi = N

s(j)
xj or N

s(i)
xi ∩N

s(j)
xj = ∅. (2.12)

According to (2.8) and (2.12), we can pick all distinct sets N1,N2, . . . ,Nq from {Ns(1)
x1 ,

N
s(2)
x2 , . . . ,N

s(p)
xp } and obtain the orthogonal partition of X, that is, Ni and Nj are mutually or-

thogonal for every i /= j and X =
⋃

i∈�q
Ni. For each k ∈ �q , define

ξk =

⎛
⎜⎜⎜⎝

max
{
xi
1;x

i ∈ Nk

}

...

max
{
xi
n;xi ∈ Nk

}

⎞
⎟⎟⎟⎠. (2.13)

Then we have the orthogonal set {ξ1, ξ2, . . . , ξq} generated by the orthogonal partition of X,
which is denoted as Gop(X).

Using the “orthogonal partition,” we can give a complete description of the equi-
librium states of the Hopfield network encoded by (2.1) and (2.2) with ultra-low thresh-
olds.

Theorem 2.1. LetX be a set consisting of nonzero vectors in {0, 1}n, and let the function F be defined
by (2.1) and (2.2) with 0 < bi ≤ 1 for each i ∈ �n . Then, Fix(F) = 01-span(Gop(X)).

Proof. Let X = {x1, x2, . . . , xp} and let Gop(X) = {ξ1, ξ2, . . . , ξq}. By orthogonality of Gop(X),
1 −∑q

i=1 ξ
i
j is 0 or 1 for each j ∈ �n . Thus the point �(Gop(X)), defined by

�
(
Gop(X)

)
=

(
1 −

q∑

i=1

ξi1, 1 −
q∑

i=1

ξi2, . . . , 1 −
q∑

i=1

ξin

)
, (2.14)

lies in {0, 1}n. Let U0 = C[0, �(Gop(X))] and Ui = C(0, ξi] for each i ∈ �q . Note that the sets
Ui and Uj are mutually orthogonal for every i /= j. Let ξ =

∑q

i=1 αiξi for αi ∈ {0, 1} and i ∈ �q .
We prove now that F(ξ) = ξ by showing that

F(x) ∈ C[x, ξ] for each x ∈ U0 +
q∑

i=1

αiUi. (2.15)

Let x = u0 +
∑q

i=1 αiu
i where ui ∈ Ui for i = 0, 1, . . . , q. Since X ∩C[0, ξk] = Nk for each k ∈ �q ,
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we have

F(x) = �

⎛

⎝
p∑

i=1

(
xiTu0

)
xi +

q∑

j=1

p∑

i=1

(
αj

(
xiTuj

)
xi
)
− b

⎞

⎠

= �

⎛

⎝
q∑

j=1

∑

xi∈Nj

(
αj

(
xiTuj

)
xi
)
− b

⎞

⎠

≤
q∑

j=1

αjξ
j .

(2.16)

Thus we need only consider the case F(x)ν = 0 and ξν = 1 for some ν ∈ �n . Under the case,
there exists r ∈ �q such that αr = 1 and ξrν = 1, so that

F(x)ν ≥ �

⎛

⎝
∑

xi∈Nr

(
xiTur

)
xi
ν − bν

⎞

⎠

≥ �

⎛

⎝
∑

xi∈Nr

ur
ν

(
xi
ν

)2
− bν

⎞

⎠.

(2.17)

Since F(x)ν = 0, we have xν = ur
ν = 0. This implies that d(F(x), ξ) ≤ d(x, ξ), that is,

F(x) ∈ C[x, ξ].
We turn now to prove that F(x)/=x for each x/∈ 01-span(Gop(X)). To accomplish this,

we first show that

{0, 1}n =
⋃

αi∈{0,1}, i∈�q

U0 +
q∑

i=1

αiUi. (2.18)

Let x ∈ {0, 1}n. We associate to each i ∈ �q a point

zi =
(
x1ξ

i
1, x2ξ

i
2, . . . , xnξ

i
n

)
(2.19)

and put z0 = x −∑q

i=1 z
i. Then for each i ∈ �q , there exist αi ∈ {0, 1} such that zi ∈ αiUi. Since

for each k ∈ �n

z0k = xk −
q∑

i=1

xkξ
i
k ≤ 1 −

q∑

i=1

ξik, (2.20)

we have z0 ∈ U0, proving (2.18). Thus each x/∈ 01-span(Gop(X)) can be written as
x = u0 +

∑q

i=1 αiui, where αi ∈ {0, 1}, ui ∈ Ui for i = 0, 1, . . . , q and, further, we have either
u0 /= 0 or there exists r ∈ �q such that αr = 1 and ur /= ξr .
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Case 1 (u0 /= 0). Then there exists ν ∈ �n such that u0
ν = 1 and xk

ν = 0 for each k ∈ �p . This
implies that

xν = u0
ν +

q∑

i=1

αiu
i
ν = 1,

F(x)ν = �

⎛
⎝

q∑

j=1

∑

xi∈Nj

(
αj

(
xiTuj

)
xi
ν

)
− bν

⎞
⎠ = 0,

(2.21)

proving F(x)/= x.

Case 2. There exists r ∈ �q such that αr = 1 and ur /= ξr . Then

C[0, ξr] ∩ (X \ C[0, ur]) ∩ (X \ C[0, ξr − ur])/= ∅. (2.22)

Indeed, if the left hand side of (2.22) is empty, then for every xi ∈ Nr = X ∩ C[0, ξr], exactly
one of the following conditions holds:

xi ∈ C[0, ur] or xi ∈ C[0, ξr − ur]. (2.23)

Divide the set Nr into two subsets:

xi ∈ M1 if xi ∈ C[0, ur],

xi ∈ M2 if xi ∈ C[0, ξr − ur].
(2.24)

Then, by the construction of ξr , we have M1 /= ∅ and M2 /= ∅. Now let xσ ∈ M1 and xη ∈ M2.
Since M1 and M2 are mutually orthogonal, we get N

s(σ)
xσ ⊂ M1 and N

s(η)
xη ⊂ M2. This

con-tradicts

N
s(σ)
xσ = N

s(η)
xη = Nr, (2.25)

proving (2.22). Therefore, there exist

xk ∈ C[0, ξr] ∩ (X \ C[0, ur]) ∩ (X \ C[0, ξr − ur]) (2.26)

and k1, k2 ∈ �n with ur
k1

= 1 and (ξr − ur)k2 = 1 such that xk
k1

= xk
k2

= 1. Since (ξr − ur)k2 = 1,
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ui
k2

= 0 for i = 0, 1, . . . , q and xi
k2

= 0 for each xi /∈Nr . This implies that

xk2 = u0
k2
+

q∑

i=1

αiu
i
k2

= 0,

F(x)k2 ≥ �

⎛
⎝

∑

xi∈Nr

(
xiTur

)
xi
k2
− bk2

⎞
⎠

≥ �

(
xk
k1
ur
k1
xk
k2
− bk2

)
= 1,

(2.27)

revealing F(x)/= x, proving Theorem 2.1.

3. Domains of Attraction and Hamming Star-Convex Building Blocks

By analogy with the notion of star-convexity in vector spaces, a set U in {0, 1}n is said to be
Hamming star-convex if there exists a point y ∈ U such that C[x, y] ⊂ U for each x ∈ U. We
call y a star-center of U.

Let X be a set in {0, 1}n, and let ΛX denote the collection of all 01-span(Y), where Y
is an orthogonal set consisting of nonzero vectors in {0, 1}n, such that X ⊂ 01-span(Y). Then
ΛX /= ∅. Indeed, if the order “≤” on ΛX is defined by A ≤ B if and only if A ⊂ B, then (ΛX,≤)
becomes a partially ordered set and there exists an orthogonal set Y such that 01-span(Y) is
minimal inΛX . We call such Y the kernel ofX. A labeling procedure for establishing the kernel
Y of X is described as follows. Let X = {x1, x2, . . . , xp} in {0, 1}n. If X = {0}, then Y = {y},
where y /= 0, is the kernel of X. Otherwise, define the labelings

λi =
(
x1
i , x

2
i , . . . , x

p

i

)
for each i ∈ �n (3.1)

and pick all distinct nonzero labelings v1, v2, . . . , vq from λ1, λ2, . . . , λn. Then the orthogonal
set Y = {y1, y2, . . . , yq}, given by yi

j = 1 if λj = vi, otherwise yi
j = 0 for each i ∈ �q and

j ∈ �n , is the kernel of X (see Figure 1). Note that since the computation of the kernel can be
implemented by radix sort, its computational complexity is in Θ(pn).

Let Y = {y1, y2, . . . , yq} be the kernel of X. We associate to each yk ∈ Y an integer
n(k) ∈ �, two sets of nodes

Vk =
{
vk,l; l ∈ �n(k)

}
, Wk =

{
wk,j ; yk

j = 1, j ∈ �n

}
, (3.2)

and a set of edges Ek such that Gk = (Vk ∪Wk, Ek) is a simple, connected, and bipartite graph
with color classes Vk and Wk. (The graph-theoretic notion and terminologies can be found
in [41]). For each j ∈ �n , put u

k,l
j = 1 if vk,l and wk,j are adjacent, otherwise 0. Let G =

{G1, G2, . . . , Gq} and denote by Bip(Y,G) the collection of all vectors uk,l constructed by the
bipartite graphs in G (see Figure 1).
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n(1) = 4 n(2) = 2 n(3) = 3

Bipartite
graphs

v1,1

v1,2

v1,3

v1,4

v3,1

v3,2

v3,3

v2,1

v2,2

w1,1

w1,3

w1,8

w1,9

w1,12

w2,4

w2,7

w2,15

w2,16

w3,10

w3,11

w3,13

x1 x2 x3

(1, 0, 0)

(0, 0, 0)

(0, 0, 0) (0, 0, 0)

(0, 0, 0)

(1, 1, 0)

(1, 1, 0)

(1, 1, 0)

(1, 1, 0)

(0, 1, 1)

(0, 1, 1) (1, 0, 0) (1, 0, 0)

(0, 1, 1)

(0, 1, 1)

(0, 1, 1)

y1 y2 y3

G1 G2 G3

u1,1 u1,2 u1,3 u1,4

u2,1 u2,2

u3,1 u3,2 u3,3

Bip(Y,G)

y1 y2 y3

v1 = (0, 1, 1), v2 = (1, 1, 0), v3 = (1, 0, 0)

The kernel
determined
by labelings

Labelings

Non-zero
labelings

Figure 1: A schematic illustration of the generation of the kernel Y and Bip(Y,G).

Denote by Fix(F) the set of all equilibrium states (fixed points) of F and denote by
DGS(ξ) the domain of attraction of the equilibrium state ξ underlying Gauss-Seidel iteration
(a particular mode of asynchronous iteration)

xi(t + 1) = fi(x1(t + 1), . . . , xi−1(t + 1), xi(t), . . . , xn(t)) (3.3)

for t = 0, 1, . . . and i ∈ �n .

Theorem 3.1. Let X be a subset of {0, 1}n, and let Y = {y1, y2, . . . , yq} be the kernel of X. Associate
to each

Bip(Y,G) =
{
uk,l; k ∈ �q , l ∈ �n(k)

}
(3.4)
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a function F defined by (2.2) with

aij =
q∑

k=1

n(k)∑

l=1

uk,l
i uk,l

j for each i, j ∈ �n (3.5)

and 0 < bi ≤ 1 for each i ∈ �n . Then

(i) X ⊂ Fix(F);

(ii) for each ξ ∈ Fix(F), the domain of attraction DGS(ξ) is Hamming star-convex with ξ as a
star-center.

Proof. For each k ∈ �q , since Gk is simple, connected, and bipartite with color classes Vk and
Wk, we have

N
s(k,l)
uk,l = N

s(k,j)
uk,j for each l, j ∈ �n(k) . (3.6)

It follows from the orthogonality of Y that

{
uk,l; l ∈ �n(k)

}
⊂ N

s(k,j)
uk,j ⊂ C

(
0, yk

]
(3.7)

for each k ∈ �q and j ∈ �n(k) . Furthermore, since Gk is connected for each k ∈ �q , we have

max
{
uk,l
j ; l ∈ �n(k)

}
= yk

j for each j ∈ �n . (3.8)

This implies that Gop(Bip(Y,G)) = Y , and by Theorem 2.1, we have

Fix(F) = 01-span
(
Gop

(
Bip(Y,G)

)) ⊃ X, (3.9)

proving (i). To prove (ii), we first show that for each i ∈ �q and αi ∈ {0, 1},

C[0, �(Y)] +
q∑

i=1

αiC
(
0, yi

]
⊂ DGS

(
q∑

i=1

αiy
i

)
, (3.10)

where �(Y) = (1 − ∑q

i=1 y
i
1, 1 −

∑q

i=1 y
i
2, . . . , 1 −∑q

i=1 y
i
n). Let U denote the set in the left hand

side of (3.10), and let x ∈ U, y =
∑q

i=1 αiyi, and z ∈ C[x, y]. Split z into two parts:

z =

(
z1 −

q∑

i=1

z1y
i
1, z2 −

q∑

i=1

z2y
i
2, . . . , zn −

q∑

i=1

zny
i
n

)
+

q∑

i=1

(
z1y

i
1, z2y

i
2, . . . , zny

i
n

)
. (3.11)

Then the first part of z lies in C[0, �(Y)], and the second part of z lies in
∑q

i=1 αiC(0, yi]. This
shows thatU is Hamming star-convex with y as a star-center, that is,

C
[
x, y

] ⊂ U for each x ∈ U. (3.12)
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Combining (3.12) with (2.15) shows that

(
x1, . . . , xi−1, fi(x), xi+1, . . . , xn

) ∈ C
[
x, y

] ⊂ U (3.13)

for each i ∈ �n and x ∈ U. Since Fix(F) ∩ U = {y} by Theorem 2.1, inclusion (3.10) follows
immediately from (3.13). Now, by combining (3.10) with (2.18), we obtain

C[0, �(Y)] +
q∑

i=1

αiC
(
0, yi

]
= DGS

(
q∑

i=1

αiy
i

)
. (3.14)

for each i ∈ �q and αi ∈ {0, 1}, proving (ii).

4. Hamming Star-convexity Packing

Theorem 3.1 reveals how a collection of Hamming star-convex sets is generated by the
dynamics of neural networks. These Hamming star-convex sets are called the building blocks
of {0, 1}n. By merging the Hamming star-convex building blocks, we obtain the Hamming
star-convexity packing as a consequence of the dynamics of neural networks (see Figure 2).

Theorem 4.1. Let X = {x1, x2, . . . , xp} be a subset of {0, 1}n. Then the phase space {0, 1}n can be
filled with p nonoverlapping Hamming star-convex sets with x1, x2, . . . , xp as star-centers, respec-
tively.

Proof. Let Y = {y1, y2, . . . , yq} be the kernel of X. According to Theorem 3.1, we can construct
a neural networkwith a function F encoding the dynamics such that the domains of attraction
DGS(ξ), where ξ ∈ 01-span(Y), are the Hamming star-convex building blocks of {0, 1}n. To
merge these Hamming star-convex building blocks, we establish first the following.

Assertion 4.2. For every x, y ∈ {0, 1}n and for every v1, v2, . . . , vk ∈ C[x, y], there exist
u1, u2, . . . , uk ∈ C[x, y] such that

C
[
x, y

]
= C

[
u1, v1

]
∪ C

[
u2, v2

]
∪ · · · ∪ C

[
uk, vk

]
,

C
[
ui, vi

]
∩C

[
uj, vj

]
= ∅

(4.1)

for every i, j ∈ �k with i /= j.
It is clear that the assertion is valid for every x, y ∈ {0, 1}n with ρH(x, y) = 0. Assume

that the assertion is valid for every x, y ∈ {0, 1}n with ρH(x, y) = p < n. Now let x, y ∈ {0, 1}n
with ρH(x, y) = p + 1. Choose α so that xα /=yα, and use the complemented notation: 0 = 1,
1 = 0. Then, we have

C
[
x, y

]
= C

[
x̃α, y

] ∪ C
[
x, ỹα], (4.2)

C
[
x̃α, y

] ∩C
[
x, ỹα] = ∅, (4.3)

where x̃α = (x1, . . . , xα−1, xα, xα+1, . . . , xn) and ỹα = (y1, . . . , yα−1, yα, yα+1, . . . , yn).
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Case 1. {v1, v2, . . . , vk} ∩ C[x̃α, y] = ∅ or {v1, v2, . . . , vk} ∩ C[x, ỹα] = ∅. We may assume
that v1, v2, . . . , vk ∈ C[x̃α, y]. Then, by the induction hypothesis, there exist u1, u2, . . . , uk ∈
C[x̃α, y] such that

C
[
x̃α, y

]
= C

[
u1, v1

]
∪ C

[
u2, v2

]
∪ · · · ∪ C

[
uk, vk

]
, (4.4)

C
[
ui, vi

]
∩C

[
uj, vj

]
= ∅ (4.5)

for every i, j ∈ �k with i /= j. For each i ∈ �k , let

ũi
α
=
(
ui
1, . . . , u

i
α−1, u

i
α, u

i
α+1, . . . , u

i
n

)
,

ṽi
α
=
(
vi
1, . . . , v

i
α−1, v

i
α, v

i
α+1, . . . , v

i
n

)
.

(4.6)

Since xα /=yα, it follows from (4.4) and (4.5) that

C
[
x, ỹα] = C

[
ũ1

α
, ṽ1

α] ∪C
[
ũ2

α
, ṽ2

α] ∪ · · · ∪ C
[
ũk

α
, ṽk

α]
, (4.7)

C
[
ũi

α
, ṽi

α] ∩C
[
ũj

α
, ṽj

α]
= ∅ (4.8)

for every i, j ∈ �k with i /= j. Now combining (4.2), (4.4), and (4.7) with the property

C
[
ui, ṽi

α]
= C

[
ui, vi

]
∪ C

[
ũi

α
, ṽi

α]
for each i ∈ �k , (4.9)

we obtain

C
[
x, y

]
= C

[
u1, ṽ1

α] ∪ C
[
u2, ṽ2

α] ∪ · · · ∪ C
[
uk, ṽk

α]
. (4.10)

Moreover, it follows from (4.3), (4.5), and (4.8) that

C
[
ui, ṽi

α] ∩C
[
uj, ṽj

α]
= ∅ (4.11)

for every i, j ∈ �k with i /= j.

Case 2. {v1, v2, . . . , vk} ∩ C[x̃α, y]/= ∅ and {v1, v2, . . . , vk} ∩ C[x, ỹα]/= ∅. We may assume that
v1, v2, . . . , vs ∈ C[x̃α, y] and vs+1, vs+2, . . . , vk ∈ C[x, ỹα], where s ∈ �k . Then, by (4.2), (4.3),
and the induction hypothesis, there exist u1, u2, . . . , us ∈ C[x̃α, y] and us+1, us+2, . . . , uk ∈
C[x, ỹα] such that

C
[
x, y

]
= C

[
u1, v1

]
∪ C

[
u2, v2

]
∪ · · · ∪ C

[
uk, vk

]
,

C
[
ui, vi

]
∩C

[
uj, vj

]
= ∅

(4.12)
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for every i, j ∈ �k with i /= j, completing the inductive proof of the assertion.

Applying now the assertion to C[x, y] = {0, 1}n and the given points x1, x2, . . . , xp, we
obtain u1, u2, . . . , ur such that

{0, 1}n = C
[
u1, x1

]
∪ C

[
u2, x2

]
∪ · · · ∪ C[up, xp],

C
[
ui, xi

]
∩C

[
uj, xj

]
= ∅

(4.13)

for every i, j ∈ �p with i /= j. For each k ∈ �p , define

Ωk = 01-span(Y) ∩ C
[
uk, xk

]
. (4.14)

Then, Ωk /= ∅ for each k ∈ �p , since 01-span(Y) ∈ ΛX .

Claim 4.3. For each k ∈ �p , the set
⋃

ξ∈Ωk
DGS(ξ) is Hamming star-convex with xk as a star

center.
Fix k ∈ �p and write xk =

∑q

i=1 γiy
i, where γi ∈ {0, 1} for each i ∈ �q . Let z ∈⋃

ξ∈Ωk
DGS(ξ). Then, there exists y ∈ Ωk such that z ∈ DGS(y). Write y =

∑q

i=1 αiyi, where αi ∈
{0, 1} for each i ∈ �q . Then, by (3.14), there exist z0 ∈ C[0, �(Y)] and zi ∈ C(0, yi] for each
i ∈ �q such that z = z0 +

∑q

i=1 αizi. We have to show that

C
[
z, xk

]
⊂

⋃

ξ∈Ωk∩C[y,xk]

DGS(ξ). (4.15)

Let v ∈ C[z, xk]. Then, by (2.18), there exist v0 ∈ C[0, �(Y)], vi ∈ C(0, yi], and βi ∈ {0, 1} for
each i ∈ �q such that v = v0 +

∑q

i=1 βiv
i. Since v ∈ C[z, xk], we have

d
(
v, xk

)
= v0 +

q∑

i=1

d
(
βiv

i, γiy
i
)

≤ z0 +
q∑

i=1

d
(
αiz

i, γiy
i
)

= d
(
z, xk

)
.

(4.16)

Since Y is orthogonal, (4.16) implies that

d
(
βiv

i, γiy
i
)
≤ d

(
αiz

i, γiy
i
)

(4.17)

for each i ∈ �q . Moreover, we have the following inequalities:

∣∣βi − γi
∣∣ ≤ ∣∣αi − γi

∣∣ for each i ∈ �q . (4.18)
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Figure 2: The proof given in Theorem 4.1 reveals a merging process of the Hamming star-convexity
packing. Here the 6-cube is filled with 3 nonoverlapping Hamming star-convex sets with star-centers spa-
tially distributed in three vertices.

To show (4.18), fix i ∈ �q and consider only two cases.

Case 1 (αi = γi = 1). Since zi ∈ C(0, yi], (4.17) implies that

d
(
βiv

i, yi
)
≤ d

(
zi, yi

)
< yi. (4.19)

Since vi ∈ C(0, yi], (4.19) implies that βi = 1, proving (4.18).

Case 2 (αi = γi = 0). Then, by (4.17), we have d(βivi, 0) ≤ 0. Since vi ∈ C(0, yi], we get βi = 0,
proving (4.18).

Now combining (4.18) with the equality

d
(
y, xk

)
=

q∑

i=1

d
(
αiy

i, γiy
i
)
=

q∑

i=1

∣∣αi − γi
∣∣yi (4.20)

shows that
∑q

i=1 βiy
i ∈ C[y, xk], and hence that

∑q

i=1 βiy
i ∈ Ωk ∩ C[y, xk]. On the other hand,

by (3.14), we have v ∈ DGS(
∑q

i=1 βiy
i), and that (4.15) holds.

Using the fact that

⋃

ξ∈Ωk∩C[y,xk]

DGS(ξ) ⊂
⋃

ξ∈Ωk

DGS(ξ), (4.21)

the claim follows. Combining the claim with (4.13), (4.14), and (3.14) proves the theorem.

5. Discussion

In respect of the underlying combinatorial space-filling structure of Hopfield networks, we
establish an exact formula for describing all the equilibrium states of Hopfield networks with
ultra-low thresholds. It provides a basis for the building of a primitive Hopfield network
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whose equilibrium states contain the prototypes. A common qualitative property, namely, the
Hamming star-convexity, can be deduced from all those domains of attraction of equilibrium
states and a merging process, which preserves the Hamming star-convexity, can also be
determined. As a result, the phase space can be filled with nonoverlapping Hamming star-
convex sets with all the star-centers exactly being the prototypes.

The design of the Hamming star-convexity packing can be used as a testbed for
exploring the plasticity regimes that guides the evolution of the primitive Hopfield network.
Indeed, we consider the evolutionary neural network whose dynamics is encoded by the
nonlinear parametric equations [31]:

x(t + 1) = HA(t),s(t)(x(t)), t = 0, 1, . . . ,

A(t + 1) = A(t) +Dx(t)→ x(t+1)A, t = 0, 1, . . . ,
(5.1)

where t is time, x(t) = (x1(t), x2(t), . . . , xn(t)) is the neuronal activity state at time t, A(t) =
(aij(t))n×n is the evolutionary coupling state at time t, s(t) ∈ {1, 2, . . . , n} denotes the neuron
that adjusts its activity at time t,HA(t),s(t)(x) is the time-and-state varying function whose ith
component is defined by xi if i /= s(t), otherwise �(

∑n
j=1 aij(t)xj − bi), and each Dx(t)→x(t+1)A is

an n-by-n real matrix whose (i, j)-entry is a plasticity parameter representing a choice of real
numbers based on algorithmic Hebbian synaptic plasticity. In [31], we have shown that for
each domain Δ ⊂ {0, 1}n \ {0} and for each choice of initial neuronal activity state x(0) ∈ Δ,
there exists a plasticity regime that guides the dynamics of the evolutionary coupling states
such that x(t) converges and x(t) ∈ Δ for every t = 0, 1, . . .. The plasticity regime, even when
insoluble in the information storage scheme by assigning A(0) to be the matrix of synaptic
strengths of the primitive Hopfield network given in Theorem 3.1 and Δ to be the Hamming
star-convex set given in Theorem 4.1, is a guide to understand and explain the dynamism role
of the Hamming star-convexity packing in storage and retrieval of associative memory.
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