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Using the fixed-point method, we prove the generalized Hyers-Ulam stability of a generalized
Apollonius type quadratic functional equation in random Banach spaces.

1. Introduction

The stability problem of functional equations was originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki
[3] for additive mappings and by Th. M. Rassias [4] for linear mappings by considering an
unbounded Cauchy difference. The paper of Th. M. Rassias [4] has provided a lot of influence
in the development of what we call generalized Hyers-Ulam stability of functional equations. A
generalization of the Th. M. Rassias theorem was obtained by Găvruţa [5] by replacing the
unbounded Cauchy difference by a general control function in the spirit of the Th. M. Rassias’
approach.

On the other hand, in 1982–1998, J. M. Rassias generalized the Hyers’ stability result
by presenting a weaker condition controlled by a product of different powers of norms.

Theorem 1.1 (see [6–12]). Assume that there exist constants Θ ≥ 0 and p1, p2 ∈ R such that
p = p1 +p2 /= 1, and f :E → E′ is a mapping from a normed space E into a Banach space E′, such that
the inequality

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ ε‖x‖p1∥∥y∥∥p2 , (1.1)
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for all x, y ∈ E, then there exists a unique additive mapping T :E → E′, such that

∥
∥f(x) − L(x)

∥
∥ ≤ Θ

2 − 2p
‖x‖p, (1.2)

for all x ∈ E.

The control function ‖x‖p · ‖y‖q+‖x‖p+q+‖y‖p+q was introduced by Ravi et al. [13] and
was used in several papers (see [14–19]).

The functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y) is called a quadratic
functional equation. In particular, every solution of the quadratic functional equation is said
to be a quadratic mapping. The generalized Hyers-Ulam stability of the quadratic functional
equation was proved by Skof [20] for mappings f :X → Y , where X is a normed space
and Y is a Banach space. Cholewa [21] noticed that the theorem of Skof is still true if the
relevant domain X is replaced by an Abelian group. Czerwik [22] proved the generalized
Hyers-Ulam stability of the quadratic functional equation. The stability problems of several
functional equations have been extensively investigated by a number of authors, and there
are many interesting results concerning this problem (see [23–44]).

In [45], Park and Th. M. Rassias defined and investigated the following generalized
Apollonius type quadratic functional equation:
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) (1.3)

in Banach spaces.

2. Preliminaries

We define the notion of a random normed space, which goes back to Šerstnev et al. (see, e.g.,
[46, 47]).

In the sequel, we adopt the usual terminology, notations, and conventions of the theory
of random normed spaces, as in [47, 48]. Throughout this paper, let Δ+ be the space of
distribution functions, that is,

Δ+ := {F : R ∪ {−∞,∞} −→ [0, 1] : F is leftcontinuous,

nondecreasing on R, F(0) = 0 and F(+∞) = 1
}

,
(2.1)

and the subset D+ ⊆ Δ+ is the set D+ = {F ∈ Δ+ : l−F(+∞) = 1}, where l−f(x) denotes the left
limit of the function f at the point x. The spaceΔ+ is partially ordered by the usual pointwise
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ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t) for all t ∈ R. The maximal
element for Δ+ in this order is the distribution function given by

ε0(t) =

⎧

⎨

⎩

0 if t ≤ 0,

1 if t > 0.
(2.2)

Definition 2.1 (see [48]). A function T : [0, 1] × [0, 1] → [0, 1] is a continuous triangular norm
(briefly, a t-norm) if T satisfies the following conditions:

(TN1) T is commutative and associative;

(TN2) T is continuous;

(TN3) T(a, 1) = a for all a ∈ [0, 1];

(TN4) T(a, b) ≤ T(c, d)whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM(a, b) = min(a, b) and
TL(a, b) = max(a+ b− 1, 0) (the Łukasiewicz t-norm). Recall (see [46, 49]) that if T is a t-norm
and {xn} is a given sequence of numbers in [0, 1], Tn

i=1xi is defined recurrently by

Tn
i=1xi =

⎧

⎨

⎩

x1 if n = 1,

T
(

Tn−1
i=1 xi, xn

)

if n ≥ 2.
(2.3)

T∞
i=nxi is defined as T∞

i=1xn+i.

Definition 2.2 (see [47]). A random normed space (briefly, RN-space) is a triple (X,Λ, T), where
X is a vector space, T is a continuous t-norm, and Λ is a mapping from X into D+, such that
the following conditions hold:

(RN1) Λx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2) Λαx(t) = Λx(t/(|α|)) for all x ∈ X, α/= 0;

(RN3) Λx+y(t + s) ≥ T(Λx(t),Λy(s)) for all x, y ∈ X and all t, s ≥ 0.

Every normed space (X, ‖ · ‖) defines a random normed space (X,Λ, TM), where Λu(t) =
t/(t + ‖u‖) for all t > 0, and TM is the minimum t-norm. This space is called the induced
random normed space.

Definition 2.3. Let (X,Λ, T) be an RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and λ > 0,
there exists a positive integer N, such that Λxn−x(ε) > 1 − λ whenever n ≥ N.

(2) A sequence {xn} in X is called Cauchy if, for every ε > 0 and λ > 0, there exists a
positive integer N, such that Λxn−xm(ε) > 1 − λ whenever n ≥ m ≥ N.

(3) An RN-space (X,Λ, T) is said to be complete if every Cauchy sequence in X is
convergent to a point in X. A complete RN-space is said to be a random Banach
space.
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Theorem 2.4 (see [48]). If (X,Λ, T) is an RN-space and {xn} is a sequence, such that xn → x,
then limn→∞Λxn(t) = Λx(t) almost everywhere.

Starting with the paper [50], the stability of some functional equations in the
framework of fuzzy normed spaces or random normed spaces has been investigated in
[51–57].

Let X be a set. A function d :X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Let (X, d) be a generalized metric space. An operator T :X → X satisfies a Lipschitz
condition with Lipschitz constant L if there exists a constant L ≥ 0 such that d(Tx, Ty) ≤
Ld(x, y) for all x, y ∈ X. If the Lipschitz constant L is less than 1, then the operator T is called
a strictly contractive operator. Note that the distinction between the generalized metric and
the usual metric is that the range of the former is permitted to include the infinity. We recall
the following theorem by Diaz and Margolis.

Theorem 2.5 (see [58, 59]). Let (X, d) be a complete generalized metric space and let J :X → X
be a strictly contractive mapping with Lipschitz constant L < 1, then for each given element x ∈ X,
either

d
(

Jnx, Jn+1x
)

= ∞, (2.4)

for all nonnegative integers n, or there exists a positive integer n0, such that

(1) d(Jnx, Jn+1x) < ∞, for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed-point y∗ of J ;

(3) y∗ is the unique fixed-point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};

(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

In 1996, Isac and Th. M Rassias [60] were the first to provide applications of stability
theory of functional equations for the proof of new fixed-point theorems with applications.
By using fixed point methods, the stability problems of several functional equations have
been extensively investigated by a number of authors (see [61–67]).

In this paper, we prove the generalized Hyers-Ulam stability of the generalized
Apollonius type quadratic functional equation (1.3) in random Banach space by using the
fixed point method.

Throughout this paper, assume that X is a vector spaces and (Y, μ, T) is a complete
RN-space.
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3. Generalized Hyers-Ulam Stability of the Quadratic Functional
Equation (1.3) in RN-Spaces

Let x =
∑n

i xi, y =
∑n

i yi, z =
∑n

i zi, and for a given mapping Q :X → Y , consider the
mapping DQ :X3 → Y , defined by

DQ
(

z, x, y
)

= Q(z − x) +Q
((

z − y
)) − 1

2
Q
(

x − y
)

+ 2Q
(

z − x + y

2

)

, (3.1)

for all x, y, z ∈ X.
Using the fixed-point method, we prove the generalized Hyers-Ulam stability of the

quadratic functional equation DQ(z, x, y) = 0 in complete RN-spaces.

Theorem 3.1. Let ρ :X3 → D+ be a mapping (ρ(z1, . . . , zn, x1, . . . , xn, y1, . . . , yn) is denoted by
ρz,x,y) such that, for some 0 < α < 4,

ρ2z,2x,2y(t) ≥ ρz,x,y(t), (3.2)

for all x, y, z ∈ X and all t > 0. Suppose that an even mapping Q :X → Y with Q(0) = 0 satisfies
the inequality

μDQ(z,x,y)(t) ≥ ρz,x,y(t), (3.3)

for all x, y, z ∈ X and all t > 0, then there exists a unique quadratic mapping R :X → Y , such that

μQ(x)−R(x)

(
t

4 − α

)

≥ ρx,x,−x(t), (3.4)

for all x ∈ X and all t > 0.

Proof. Putting z = x and y = −x in (3.3), we get

μQ(2x)−4Q(x)(t) ≥ ρx,x,−x(t), (3.5)

for all x ∈ X and all t > 0. Therefore,

μQ(2x)/4−Q(x)(t) ≥ ρx,x,−x(4t), (3.6)

for all x ∈ X and all t > 0.
Let S be the set of all even mappings h :X → Y with h(0) = 0 and introduce a

generalized metric on S as follows:

d(h, k) = inf
{

u ∈ R
+ : μh(x)−k(x)(ut) ≥ ρx,x,−x(t), ∀x ∈ X, ∀t > 0

}

, (3.7)

where, as usual, inf ∅ = +∞. It is easy to show that (S, d) is a generalized complete metric
space (see [68, Lemma 2.1]).
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Now, we define the mapping J :S → S

Jh(x) :=
h(2x)
4

, (3.8)

for all h ∈ S and x ∈ X. Let f, g ∈ S such that d(f, g) < ε. Therefore,

μJg(x)−Jf(x)
(αε

4
t
)

= μg(2x)/4−f(2x)/4
(αε

4
t
)

= μg(2x)−f(2x)(αεt)

≥ ρ2x,2x,−2x(αt) ≥ ρx,x,−x(t),
(3.9)

that is, if d(f, g) < ε, we have d(Jf, Jg) < (α/4)ε. Hence,

d
(

Jf, Jg
) ≤ α

4
d
(

f, g
)

, (3.10)

for all f, g ∈ S, that is, J is a strictly contractive self-mapping on Swith the Lipschitz constant
L = α/4 < 1.

It follows from (3.6) that

μJQ(x)−Q(x)

(
1
4
t

)

≥ ρx,x,−x(t), (3.11)

for all x ∈ X and all t > 0, which means that d(JQ,Q) ≤ 1/4.
By Theorem 2.5, there exists a unique mapping R :X → Y , such that R is a fixed point

of J , that is, R(2x) = 4R(x) for all x ∈ X.
Also, d(JmQ,R) → 0 as m → ∞, which implies the equality

lim
m→∞

Q(2mx)
22m

= R(x), (3.12)

for all x ∈ X.
It follows from (3.2) and (3.3) that

μDQ(2mz,2mx,2my)/22m(t) ≥ ρ2mz,2mx,2my
(

22mt
)

= ρ2mz,2mx,2my

(

αm

(
4
α

)m

t

)

≥ ρz,x,y

((
4
α

)m

t

)

,

(3.13)

for all x, y, z ∈ X and all t > 0. Letting m → ∞ in (3.13), we find that μDR(z,x,y)(t) = 1 for
all t > 0, which implies DR(z, x, y) = 0. By [45, Lemma 2.1], the mapping, R :X → Y is
quadratic.

Since R is the unique fixed point of J in the set Ω = {g ∈ S :d(f, g) < ∞}, R is the
unique mapping such that

μQ(x)−R(x)(ut) ≥ ρx,x,−x(t), (3.14)
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for all x, y, z ∈ X and all t > 0. Using the fixed-point alternative, we obtain that

d(Q,R) ≤ 1
1 − L

d(Q, JQ) ≤ 1
4(1 − L)

=
1

4 − α
, (3.15)

which implies the inequality

μQ(x)−R(x)

(
1

4 − α
t

)

≥ ρx,x,−x(t), (3.16)

for all x ∈ X and all t > 0. So

μQ(x)−R(x)(t) ≥ ρx,x,−x((4 − α)t), (3.17)

for all x ∈ X and all t > 0. This completes the proof.

Theorem 3.2. Let ρ :X3 → D+ be a mapping (ρ(z1, . . . , zn, x1, . . . , xn, y1, . . . , yn) is denoted by
ρz,x,y) such that, for some α > 4,

ρz/2, x/2, y/2(t) ≥ ρz,x,y(αt), (3.18)

for all x, y, z ∈ X and all t > 0. Suppose that an even mapping Q :X → Y satisfying Q(0) = 0 and
(3.3), then there exists a unique quadratic mapping R :X → Y , such that

μQ(x)−R(x)(t) ≥ ρx,x,−x((α − 4)t), (3.19)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 3.1.
We consider the mapping J :S → S defined by

Jh(x) := 4h
(x

2

)

, (3.20)

for all h ∈ S and x ∈ X. Let f, g ∈ S, such that d(f, g) < ε, then

μJg(x)−Jf(x)

(
4ε
α
t

)

= μ4g(x/2)−4f(x/2)

(
4ε
α
t

)

= μg(x/2)−f(x/2)
( ε

α
t
)

≥ ρx/2, x/2,−x/2

(
t

α

)

≥ ρx,x,−x(t),

(3.21)

that is, if d(f, g) < ε, we have d(Jf, Jg) < (4/α)ε. This means that

d
(

Jf, Jg
) ≤ 4

α
d
(

f, g
)

, (3.22)
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for all f, g ∈ S, that is, J is a strictly contractive self-mapping on Swith the Lipschitz constant
L = 4/α < 1.

By Theorem 2.5, there exists a unique mapping R :X → Y , such that R is a fixed point
of J , that is, R(x/2) = (1/4)R(x) for all x ∈ X.

Also, d(JmQ,R) → 0 as m → ∞, which implies the equality

lim
m→∞

22mQ
( x

2m
)

= R(x), (3.23)

for all x ∈ X.
It follows from (3.5) that

μJQ(x)−Q(x)

(
1
α
t

)

≥ ρx/2, x/2,−x/2

(
t

α

)

≥ ρx,x,−x(t), (3.24)

for all x ∈ X and all t > 0, which implies that d(JQ,Q) ≤ 1/α.
Since R is the unique fixed point of J in the set Ω = {g ∈ S :d(f, g) < ∞}, and R is the

unique mapping, such that

μQ(x)−R(x)(ut) ≥ ρx,x,−x(t), (3.25)

for all x ∈ X and all t > 0. Using the fixed point alternative, we obtain that

d(Q,R) ≤ 1
1 − L

d(Q, JQ) ≤ 1
α(1 − L)

=
1

α(1 − 4/α)
, (3.26)

which implies the inequality

μQ(x)−R(x)

(
1

α − 4
t

)

≥ ρx,x,−x(t), (3.27)

for all x ∈ X and all t > 0. So

μQ(x)−R(x)(t) ≥ ρx,x,−x((α − 4)t), (3.28)

for all x ∈ X and all t > 0.
The rest of the proof is similar to the proof of Theorem 3.1.
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[44] Th. M. Rassias and P. Šemrl, “On the behavior of mappings which do not satisfy Hyers-Ulam
stability,” Proceedings of the American Mathematical Society, vol. 114, no. 4, pp. 989–993, 1992.

[45] C.-G. Park and Th. M. Rassias, “Hyers-Ulam stability of a generalized Apollonius type quadratic
mapping,” Journal of Mathematical Analysis and Applications, vol. 322, no. 1, pp. 371–381, 2006.
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[61] L. Cădariu and V. Radu, “On the stability of the Cauchy functional equation: a fixed point approach,”
in Iteration Theory (ECIT ’02), vol. 346 of Grazer Math. Ber., pp. 43–52, Karl-Franzens-Univ. Graz, Graz,
Austria, 2004.
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[68] D.Miheţ and V. Radu, “On the stability of the additive Cauchy functional equation in random normed
spaces,” Journal of Mathematical Analysis and Applications, vol. 343, no. 1, pp. 567–572, 2008.


	1. Introduction
	2. Preliminaries
	3. Generalized Hyers-Ulam Stability of the Quadratic Functional Equation (1.3) in RN-Spaces
	Acknowledgments
	References

