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We introduce new general iterative approximation methods for finding a common fixed point of a
countable family of nonexpansive mappings. Strong convergence theorems are established in the
framework of reflexive Banach spaces which admit a weakly continuous duality mapping. Finally,
we apply our results to solve the the equilibrium problems and the problem of finding a zero of
an accretive operator. The results presented in this paper mainly improve on the corresponding
results reported by many others.

1. Introduction

In recent years, the existence of common fixed points for a finite family of nonexpansive
mappings has been considered by many authors (see [1–4] and the references therein). The
well-known convex feasibility problem reduces to finding a point in the intersection of the
fixed point sets of a family of nonexpansive mappings (see [5, 6]). The problem of finding
an optimal point that minimizes a given cost function over the common set of fixed points
of a family of nonexpansive mappings is of wide interdisciplinary interest and practical
importance (see [2, 7]). A simple algorithmic solution to the problem of minimizing a
quadratic function over the common set of fixed points of a family of nonexpansive mappings
is of extreme value in many applications including set theoretic signal estimation (see [7, 8]).

Let E be a normed linear space. Recall that a mapping T : E → E is called nonexpansive
if

∥
∥Tx − Ty

∥
∥ ≤ ∥∥x − y

∥
∥, ∀x, y ∈ E. (1.1)
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We use F(T) to denote the set of fixed points of T , that is, F(T) = {x ∈ E : Tx = x}. A self
mapping f : E → E is a contraction on E if there exists a constant α ∈ (0, 1) such that

∥
∥f(x) − f

(

y
)∥
∥ ≤ α

∥
∥x − y

∥
∥, ∀x, y ∈ E. (1.2)

One classical way to study nonexpansive mappings is to use contractions to
approximate a nonexpansive mapping [9–11]. More precisely, take t ∈ (0, 1) and define a
contraction Tt : E → E by

Ttx = tu + (1 − t)Tx, ∀x ∈ E, (1.3)

where u ∈ E is a fixed point. Banach’s contraction mapping principle guarantees that Tt has a
unique fixed point xt in E. It is unclear, in general, what is the behavior of xt as t → 0, even if
T has a fixed point. However, in the case of T having a fixed point, Browder [9] proved that
if E is a Hilbert space, then {xt} converges strongly to a fixed point of T . Reich [10] extended
Browder’s result to the setting of Banach spaces and proved that if E is a uniformly smooth
Banach space, then {xt} converges strongly to a fixed point of T and the limit defines the
(unique) sunny nonexpansive retraction from E onto F(T). Xu [11] proved Reich’s results
hold in reflexive Banach spaces which have a weakly continuous duality mapping.

The iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see, for example, [12–14] and the references therein. LetH be
a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖·‖, respectively.
Let A be a strongly positive bounded linear operator on H; that is, there is a constant γ > 0
with property

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H. (1.4)

A typical problem is to minimize a quadratic function over the set of the fixed points of a
nonexpansive mapping on a real Hilbert space H

min
x∈F(T)

1
2
〈Ax, x〉 − 〈x, b〉, (1.5)

where b is a given point in H. In 2003, Xu [13] proved that the sequence {xn} defined by the
iterative method below, with the initial guess x0 ∈ H chosen arbitrarily

xn+1 = (I − αnA)Txn + αnu, n ≥ 0 (1.6)

converges strongly to the unique solution of the minimization problem (1.5) provided
the sequence {αn} satisfies certain conditions. Using the viscosity approximation method,
Moudafi [15] introduced the following iterative process for nonexpansive mappings (see [16]
for further developments in both Hilbert and Banach spaces). Let f be a contraction on H.
Starting with an arbitrary initial x0 ∈ H, define a sequence {xn} recursively by

xn+1 = (1 − σn)Txn + σnf(xn), n ≥ 0, (1.7)
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where {σn} is a sequence in (0, 1). It is proved [15, 16] that under certain appropriate
conditions imposed on {σn}, the sequence {xn} generated by (1.7) strongly converges to the
unique solution x∗ in C of the variational inequality

〈(

I − f
)

x∗, x − x∗〉 ≥ 0, x ∈ H. (1.8)

Recently, Marino and Xu [17] mixed the iterative method (1.6) and the viscosity appro-
ximation method (1.7) and considered the following general iterative method:

xn+1 = (I − αnA)Txn + αnγf(xn), n ≥ 0, (1.9)

where A is a strongly positive bounded linear operator on H. They proved that if the
sequence {αn} of parameters satisfies the following conditions:

(C1) limn→∞ αn = 0,

(C2)
∑∞

n=1 αn = ∞,

(C3)
∑∞

n=1 |αn+1 − αn| < ∞,

then the sequence {xn} generated by (1.9) converges strongly to the unique solution x∗ in H
of the variational inequality

〈(

A − γf
)

x∗, x − x∗〉 ≥ 0, x ∈ H, (1.10)

which is the optimality condition for the minimization problem: minx∈C(1/2)〈Ax, x〉 − h(x),
where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).

On the other hand, in order to find a fixed point of nonexpansive mapping T , Halpern
[18] was the first who introduced the following iteration scheme which was referred to as
Halpern iteration in a Hilbert space: x, x0 ∈ C, {αn} ⊂ [0, 1],

xn+1 = αnx + (1 − αn)Txn, n ≥ 0. (1.11)

He pointed out that the control conditions (C1) limn→∞αn = 0 and (C2)
∑∞

n=1 αn = ∞ are
necessary for the convergence of the iteration scheme (1.11) to a fixed point of T . Furthermore,
the modified version of Halpern iteration was investigated widely by many mathematicians.
Recently, for the sequence of nonexpansive mappings {Tn}∞n=1 with some special conditions,
Aoyama et al. [1] studied the strong convergence of the following modified version of
Halpern iteration for x0, x ∈ C:

xn+1 = αnx + (1 − αn)Tnxn, n ≥ 0, (1.12)

where C is a nonempty closed convex subset of a uniformly convex Banach space E
whose norm is uniformly Gáteaux differentiable, {αn} is a sequence in [0, 1] satisfying (C1)
limn→∞ αn = 0, (C2)

∑∞
n=1 αn = ∞, and either (C3)

∑∞
n=1 |αn − αn+1| < ∞ or (C3

′
) αn ∈ (0, 1] for

all n ∈ N and limn→∞ (αn/αn+1) = 1. Very recently, Song and Zheng [19] also introduced the
conception of the condition (B) on a countable family of nonexpansive mappings and proved
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strong convergence theorems of the modified Halpern iteration (1.12) and the sequence {yn}
defined by

y0, y ∈ C, yn+1 = Tn
(

αny + (1 − αn)yn

)

, n ≥ 0, (1.13)

in a reflexive Banach space E with a weakly continuous duality mapping and in a reflexive
strictly convex Banach space with a uniformly Gáteaux differentiable norm.

Other investigations of approximating common fixed points for a countable family of
nonexpansive mappings can be found in [1, 20–24] and many results not cited here.

In a Banach space E having a weakly continuous duality mapping Jϕ with a gauge
function ϕ, an operator A is said to be strongly positive [25] if there exists a constant γ > 0
with the property

〈

Ax, Jϕ(x)
〉 ≥ γ‖x‖ϕ(‖x‖), (1.14)

∥
∥αI − βA

∥
∥ = sup

‖x‖≤1

∣
∣
〈(

αI − βA
)

x, Jϕ(x)
〉∣
∣, α ∈ [0, 1], β ∈ [−1, 1], (1.15)

where I is the identity mapping. If E := H is a real Hilbert space, then the inequality (1.14)
reduces to (1.4).

In this paper, motivated by Aoyama et al. [1], Song and Zheng [19], and Marino
and Xu [17], we will combine the iterative method (1.12) with the viscosity approximation
method (1.9) and consider the following three new general iterative methods in a reflexive
Banach space E which admits a weakly continuous duality mapping Jϕ with gauge ϕ:

x0 = x ∈ E,

xn+1 = αnγf(Tnxn) + (I − αnA)Tnxn, n ≥ 0,
(1.16)

z0 = z ∈ E,

zn+1 = αnγf(zn) + (I − αnA)Tnzn, n ≥ 0,

y0 = y ∈ E,

yn+1 = Tn
(

αnγf
(

yn

)

+ (I − αnA)yn

)

, n ≥ 0,

(1.17)

where A is strongly positive defined by (1.15), {Tn : E → E} is a countable family
of nonexpansive mappings, and f is an α-contraction. We will prove in Section 3 that if
the sequence {αn} of parameters satisfies the appropriate conditions, then the sequences
{xn}, {zn}, and {yn} converge strongly to the unique solution x̃ of the variational inequality

〈(

A − γf
)

x̃, Jϕ
(

x̃ − p
)〉 ≤ 0, ∀p ∈

∞⋂

n=1

F(Tn). (1.18)

Finally, we apply our results to solve the the equilibrium problems and the problem of finding
a zero of an accretive operator.
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2. Preliminaries

Throughout this paper, let E be a real Banach space, and E∗ be its dual space. We write xn ⇀ x
(resp., xn⇀

∗x ) to indicate that the sequence {xn} weakly (resp., weak∗) converges to x; as
usual xn → x will symbolize strong convergence. Let U = {x ∈ E : ‖x‖ = 1}. A Banach space
E is said to uniformly convex if, for any ε ∈ (0, 2], there exists δ > 0 such that, for any x, y ∈ U,
‖x − y‖ ≥ ε implies ‖(x + y)/2‖ ≤ 1 − δ. It is known that a uniformly convex Banach space is
reflexive and strictly convex (see also [26]). A Banach space E is said to be smooth if the limit
limt→ 0 ((‖x + ty‖ − ‖x‖)/t) exists for all x, y ∈ U. It is also said to be uniformly smooth if the
limit is attained uniformly for x, y ∈ U.

By a gauge function ϕ, we mean a continuous strictly increasing function ϕ : [0,∞) →
[0,∞) such that ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞. Let E∗ be the dual space of E. The duality
mapping Jϕ : E → 2E

∗
associated to a gauge function ϕ is defined by

Jϕ(x) =
{

f∗ ∈ E∗ :
〈

x, f∗〉 = ‖x‖ϕ(‖x‖), ∥
∥f∗∥∥ = ϕ(‖x‖)}, ∀x ∈ E. (2.1)

In particular, the duality mapping with the gauge function ϕ(t) = t, denoted by J , is
referred to as the normalized duality mapping. Clearly, there holds the relation Jϕ(x) =
(ϕ(‖x‖)/‖x‖)J(x) for all x /= 0 (see [27]). Browder [27] initiated the study of certain classes
of nonlinear operators by means of the duality mapping Jϕ. Following Browder [27], we say
that a Banach space E has a weakly continuous duality mapping if there exists a gauge ϕ for
which the duality mapping Jϕ(x) is single valued and continuous from the weak topology
to the weak∗ topology, that is, for any {xn} with xn ⇀ x, the sequence {Jϕ(xn)} converges
weakly∗ to Jϕ(x). It is known that lp has a weakly continuous duality mapping with a gauge
function ϕ(t) = tp−1 for all 1 < p < ∞. Set

Φ(t) =
∫ t

0
ϕ(τ)dτ, ∀t ≥ 0, (2.2)

then

Jϕ(x) = ∂Φ(‖x‖), ∀x ∈ E, (2.3)

where ∂ denotes the subdifferential in the sense of convex analysis.
Now, we collect some useful lemmas for proving the convergence result of this paper.

The first part of the next lemma is an immediate consequence of the subdifferential
inequality and the proof of the second part can be found in [28].

Lemma 2.1 (see [28]). Assume that a Banach space E has a weakly continuous duality mapping Jϕ
with gauge ϕ.

(i) For all x, y ∈ E, the following inequality holds:

Φ
(∥
∥x + y

∥
∥
) ≤ Φ(‖x‖) + 〈y, Jϕ

(

x + y
)〉

. (2.4)
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In particular, for all x, y ∈ E,

∥
∥x + y

∥
∥
2 ≤ ‖x‖2 + 2

〈

y, J
(

x + y
)〉

. (2.5)

(ii) Assume that a sequence {xn} in E converges weakly to a point x ∈ E,

then the following identity holds:

lim sup
n→∞

Φ
(∥
∥xn − y

∥
∥
)

= lim sup
n→∞

Φ(‖xn − x‖) + Φ
(∥
∥y − x

∥
∥
)

, ∀x, y ∈ E. (2.6)

Lemma 2.2 (see [1, Lemma 2.3]). Let {an} be a sequence of nonnegative real numbers such that
satisfying the property

an+1 ≤ (1 − αn)an + αncn + bn, ∀n ≥ 0, (2.7)

where {αn}, {bn}, {cn} satisfying the restrictions
(i)
∑∞

n=1 αn = ∞; (ii)
∑∞

n=1 bn < ∞; (iii) lim supn→∞cn ≤ 0.
Then, limn→∞an = 0.

Definition 2.3 (see [1]). Let {Tn} be a family of mappings from a subset C of a Banach space E
into E with

⋂∞
n=1 F(Tn)/= ∅. We say that {Tn} satisfies the AKTT-condition if for each bounded

subset B of C,

∞∑

n=1

sup
z∈B

‖Tn+1z − Tnz‖ < ∞. (2.8)

Remark 2.4. The example of the sequence of mappings {Tn} satisfying AKTT-condition is
supported by Lemma 4.6.

Lemma 2.5 (see [1, Lemma 3.2]). Suppose that {Tn} satisfies AKTT-condition, then, for each y ∈
C, {Tny} converses strongly to a point in C. Moreover, let the mapping T be defined by

Ty = lim
n→∞

Tny, ∀y ∈ C. (2.9)

Then, for each bounded subset B of C, limn→∞supz∈B‖Tz − Tnz‖ = 0.

The next valuable lemma was proved by Wangkeeree et al. [25]. Here, we present the
proof for the sake of completeness.

Lemma 2.6. Assume that a Banach space E has a weakly continuous duality mapping Jϕ with gauge
ϕ. Let A be a strongly positive bounded linear operator on E with coefficient γ > 0 and 0 < ρ ≤
ϕ(1)‖A‖−1, then ‖I − ρA‖ ≤ ϕ(1)(1 − ργ).
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Proof. From (1.15), we obtain that ‖A‖ = sup‖x‖≤1|〈Ax, Jϕ(x)〉|. Now, for any x ∈ E with
‖x‖ = 1, we see that

〈(

I − ρA
)

x, Jϕ(x)
〉

= ϕ(1) − ρ
〈

Ax, Jϕ(x)
〉 ≥ ϕ(1) − ρ‖A‖ ≥ 0. (2.10)

That is, I − ρA is positive. It follows that

∥
∥I − ρA

∥
∥ = sup

{〈(

I − ρA
)

x, Jϕ(x)
〉

: x ∈ E, ‖x‖ = 1
}

= sup
{

ϕ(1) − ρ
〈

Ax, Jϕ(x)
〉

: x ∈ E, ‖x‖ = 1
}

≤ ϕ(1) − ργϕ(1) = ϕ(1)
(

1 − ργ
)

.

(2.11)

Let E be a Banach space which admits a weakly continuous duality Jϕ with gauge ϕ
such that ϕ is invariant on [0, 1] that is, ϕ([0, 1]) ⊂ [0, 1]. Let T : E → E be a nonexpansive
mapping, t ∈ (0, 1), f an α-contraction, and A a strongly positive bounded linear operator
with coefficient γ > 0 and 0 < γ < γϕ(1)/α. Define the mapping St : E → E by

St(x) = tγf(x) + (I − tA)Tx, ∀x ∈ E. (2.12)

Then, St is a contraction mapping. Indeed, for any x, y ∈ E,

∥
∥St(x) − St

(

y
)∥
∥ =

∥
∥tγ
(

f(x) − f
(

y
))

+ (I − tA)
(

Tx − Ty
)∥
∥

≤ tγ
∥
∥f(x) − f

(

y
)∥
∥ + ‖I − tA‖∥∥Tx − Ty

∥
∥

≤ tγα
∥
∥x − y

∥
∥ + ϕ(1)

(

1 − tγ
)∥
∥x − y

∥
∥

≤ [1 − t
(

ϕ(1)γ − γα
)]∥
∥x − y

∥
∥.

(2.13)

Thus, by Banach contraction mapping principle, there exists a unique fixed point xt in E, that
is

xt = tγf(xt) + (I − tA)Txt. (2.14)

Remark 2.7. We note that lp space has a weakly continuous duality mapping with a gauge
function ϕ(t) = tp−1 for all 1 < p < ∞. This shows that ϕ is invariant on [0, 1].

Lemma 2.8 (see [25, Lemma 3.3]). Let E be a reflexive Banach space which admits a weakly
continuous duality mapping Jϕ with gauge ϕ such that ϕ is invariant on [0, 1]. Let T : E → E
be a nonexpansive mapping with F(T)/= ∅, f an α-contraction, and A a strongly positive bounded
linear operator with coefficient γ > 0 and 0 < γ < γϕ(1)/α. Then, the net {xt} defined by (2.14)
converges strongly as t → 0 to a fixed point x̃ of T which solves the variational inequality

〈(

A − γf
)

x̃, Jϕ
(

x̃ − p
)〉 ≤ 0, p ∈ F(T). (2.15)
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3. Main Results

We now state and prove the main theorems of this section.

Theorem 3.1. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
Jϕ with gauge ϕ such that ϕ is invariant on [0, 1]. Let {Tn : E → E}∞n=0 be a countable family of
nonexpansive mappings satisfying F :=

⋂∞
n=0 F(Tn)/= ∅. Let f be an α-contraction and A a strongly

positive bounded linear operator with coefficient γ > 0 and 0 < γ < γϕ(1)/α. Let the sequence {xn}
be generated by (1.16), where {αn} is a sequence in [0, 1] satisfying the following conditions:

(C1) lim
n→∞

αn = 0,

(C2)
∞∑

n=0
αn = ∞,

(C3)
∞∑

n=0
|αn − αn+1| < ∞.

Suppose that {Tn} satisfies the AKTT-condition. Let T be a mapping of E into itself defined by Tz =
limn→∞Tnz for all z ∈ E, and suppose that F(T) =

⋂∞
n=0 F(Tn). Then, {xn} converges strongly to x̃

which solves the variational inequality

〈(

A − γf
)

x̃, Jϕ
(

x̃ − p
)〉 ≤ 0, ∀p ∈ F. (3.1)

Proof. Applying Lemma 2.8, there exists a point x̃ ∈ F(T) which solves the variational
inequality (3.1). Next, we observe that {xn} is bounded. Indeed, pick any p ∈ F to obtain

∥
∥xn+1 − p

∥
∥ =

∥
∥αnγf(Tnxn) + (I − αnA)Tnxn − p

∥
∥

=
∥
∥αn

(

γf(Tnxn) −A
(

p
))

+ (I − αnA)Tnxn − (I − αnA)p
∥
∥

= ‖I − αnA‖∥∥Tnxn − Tnp
∥
∥ + αn

∥
∥γf(Tnxn) −A

(

p
)∥
∥

≤ ϕ(1)
(

1 − αnγ
)∥
∥xn − p

∥
∥ + αnγα

∥
∥xn − p

∥
∥ + αn

∥
∥γf

(

p
) −Ap

∥
∥

≤ (ϕ(1) − αn

(

ϕ(1)γ − γα
))∥
∥xn − p

∥
∥ + αn

∥
∥γf

(

p
) −A

(

p
)∥
∥

≤ (1 − αn

(

ϕ(1)γ − γα
))∥
∥xn − p

∥
∥ + αn

(

ϕ(1)γ − γα
)

∥
∥γf

(

p
) −A

(

p
)∥
∥

ϕ(1)γ − γα
.

(3.2)

It follows from induction that

∥
∥xn+1 − p

∥
∥ ≤ max

{

∥
∥x0 − p

∥
∥,

∥
∥γf

(

p
) −A

(

p
)∥
∥

ϕ(1)γ − γα

}

, n ≥ 0. (3.3)

Thus, {xn} is bounded, and hence so are {ATnxn} and {f(Tnxn)}. Now, we show that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.4)
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We observe that

‖xn+1 − xn‖ =
∥
∥αnγf(Tnxn) + (I − αnA)Tnxn − αn−1γf(Tn−1xn−1) − (I − αn−1A)Tn−1xn−1

∥
∥

=
∥
∥αnγf(Tnxn) − αnγf(Tn−1xn−1) + αnγf(Tn−1xn−1)

− αn−1γf(Tn−1xn−1) + (I − αnA)Tnxn − (I − αnA)Tn−1xn−1

+(I − αnA)Tn−1xn−1 − (I − αn−1A)Tn−1xn−1
∥
∥

≤ αnγα‖Tnxn − Tn−1xn‖ + |αn − αn−1|
∥
∥γf(Tn−1xn−1) −ATn−1xn−1

∥
∥

+ ‖I − αnA‖‖Tnxn − Tn−1xn−1‖
≤ αnγα‖Tnxn − Tnxn−1‖ + αnγα‖Tnxn−1 − Tn−1xn‖ + |αn − αn−1|M
+ ϕ(1)

(

1 − αγ
)‖Tnxn − Tnxn−1‖ + ϕ(1)

(

1 − αγ
)‖Tnxn−1 − Tn−1xn−1‖

≤ (1 − αn

(

ϕ(1)γ − γα
))‖xn − xn−1‖

+
(

1 − αn

(

ϕ(1)γ − γα
))‖Tnxn−1 − Tn−1xn−1‖ + |αn − αn−1|M

≤ (1 − αn

(

ϕ(1)γ − γα
))‖xn − xn−1‖ + ‖Tnxn−1 − Tn−1xn−1‖ + |αn − αn−1|M,

(3.5)

for all n ≥ 1, whereM is a constant satisfyingM ≥ supn≥1‖γf(Tn−1xn−1)−ATn−1xn−1‖. Putting
μn = ‖Tnxn−1 − Tn−1xn−1‖ + |αn − αn−1|M. From AKTT-condition and (C3), we have

∞∑

n=1

μn ≤
∞∑

n=1

sup
x∈{xn}

‖Tnx − Tn−1x‖ +
∞∑

n=1

|αn − αn−1|M < ∞. (3.6)

Therefore, it follows from Lemma 2.2 that limn→∞‖xn+1 − xn‖ = 0. Since limn→∞αn = 0, we
obtain

‖Tnxn − xn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tnxn‖
≤ ‖xn − xn+1‖ + αn

∥
∥γf(Tnxn) −ATnxn

∥
∥ −→ 0.

(3.7)

Using Lemma 2.5, we obtain

‖Txn − xn‖ ≤ ‖Txn − Tnxn‖ + ‖Tnxn − xn‖
≤ sup{‖Tz − Tnz‖ : z ∈ {xn}} + ‖Tnxn − xn‖ −→ 0.

(3.8)

Next, we prove that

lim sup
n→∞

〈

γf(x̃) −Ax̃, Jϕ(xn − x̃)
〉 ≤ 0. (3.9)
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Let {xnk} be a subsequence of {xn} such that

lim
k→∞

〈

γf(x̃) −Ax̃, Jϕ(xnk − x̃)
〉

= lim sup
n→∞

〈

γf(x̃) −Ax̃, Jϕ(xn − x̃)
〉

. (3.10)

If follows from reflexivity of E and the boundedness of a sequence {xnk} that there exists
{xnki

} which is a subsequence of {xnk} converging weakly to w ∈ E as i → ∞. Since Jϕ is
weakly continuous, we have by Lemma 2.1 that

lim sup
n→∞

Φ
(∥
∥
∥xnki

− x
∥
∥
∥

)

= lim sup
n→∞

Φ
(∥
∥
∥xnki

−w
∥
∥
∥

)

+ Φ(‖x −w‖), ∀x ∈ E. (3.11)

Let

H(x) = lim sup
n→∞

Φ
(∥
∥
∥xnki

− x
∥
∥
∥

)

, ∀x ∈ E. (3.12)

It follows that

H(x) = H(w) + Φ(‖x −w‖), ∀x ∈ E. (3.13)

Then, from limn→∞‖xn − Txn‖ = 0, we have

H(Tw) = lim sup
i→∞

Φ
(∥
∥
∥xnki

− Tw
∥
∥
∥

)

= lim sup
i→∞

Φ
(∥
∥
∥Txnki

− Tw
∥
∥
∥

)

≤ lim sup
i→∞

Φ
(∥
∥
∥xnki

−w
∥
∥
∥

)

= H(w).
(3.14)

On the other hand, however,

H(Tw) = H(w) + Φ(‖T(w) −w‖). (3.15)

It follows from (3.14) and (3.15) that

Φ(‖T(w) −w‖) = H(Tw) −H(w) ≤ 0. (3.16)

Therefore, Tw = w, and hencew ∈ F(T). Since the duality map Jϕ is single valued andweakly
continuous, we obtain, by (3.1), that

lim sup
n→∞

〈

γf(x̃) −Ax̃, Jϕ(xn − x̃)
〉

= lim
k→∞

〈

γf(x̃) −Ax̃, Jϕ(xnk − x̃)
〉

= lim
i→∞

〈

γf(x̃) −Ax̃, Jϕ
(

xnki
− x̃
)〉

=
〈(

A − γf
)

x̃, Jϕ(x̃ −w)
〉 ≤ 0.

(3.17)
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Next, we show that xn → x̃ as n → ∞. In fact, since Φ(t) =
∫ t

0 ϕ(τ)dτ, for all t ≥ 0, and
ϕ : [0,∞) → [0,∞) is a gauge function, then for 1 ≥ k ≥ 0, ϕ(kx) ≤ ϕ(x) and

Φ(kt) =
∫kt

0
ϕ(τ)dτ = k

∫ t

0
ϕ(kx)dx ≤ k

∫ t

0
ϕ(x)dx = kΦ(t). (3.18)

Finally, we show that xn → x̃ as n → ∞. Following Lemma 2.1, we have

Φ(‖xn+1 − x̃‖) = Φ
(∥
∥αn

(

γf(Tnxn) −Ax̃
)

+ (I − αnA)Tnxn − (I − αnA)x̃
∥
∥
)

≤ Φ(‖(I − αnA)Tnxn − (I − αnA)x̃‖) + αn

〈

γf(Tnxn) −Ax̃, Jϕ(xn+1 − x̃)
〉

≤ ϕ(1)
(

1 − αnγ
)

Φ(‖Tnxn − x̃‖) + αn

〈

γf(Tnxn) −Ax̃, Jϕ(xn+1 − x̃)
〉

≤ (1 − αnγ
)

Φ(‖xn − x̃‖) + αn

〈

γf(Tnxn) −Ax̃, Jϕ(xn+1 − x̃)
〉

=
(

1 − αnγ
)

Φ(‖xn − x̃‖) + αn

〈

γf(Tnxn) − γf(Tnxn+1), Jϕ(xn+1 − x̃)
〉

+ αn

〈

γf(Tnxn+1) − γf(x̃), Jϕ(xn+1 − x̃)
〉

+ αn

〈

γf(x̃) −Ax̃, Jϕ(xn+1 − x̃)
〉

≤ (1 − αnγ
)

Φ(‖xn − x̃‖) + αnγα‖xn − xn+1‖
∥
∥Jϕ(xn+1 − x̃)

∥
∥

+ αnγα‖xn+1 − x̃‖∥∥Jϕ(xn+1 − x̃)
∥
∥ + αn

〈

γf(x̃) −Ax̃, Jϕ(xn+1 − x̃)
〉

=
(

1 − αnγ
)

Φ(‖xn − x̃‖) + αnγα‖xn − xn+1‖
∥
∥Jϕ(xn+1 − x̃)

∥
∥

+ αnγαΦ(‖xn+1 − x̃‖) + αn

〈

γf(x̃) −Ax̃, Jϕ(xn+1 − x̃)
〉

.

(3.19)

It then follows that

Φ(‖xn+1 − x̃‖)

≤ 1 − αnγ

1 − αnγα
Φ(‖xn − x̃‖)

+ αn

[
γα

1 − αnγα
‖xn − xn+1‖M′ +

1
1 − αnγα

〈

γf(x̃) −Ax̃, Jϕ(xn+1 − x̃)
〉
]

=

(

1 − αn

(

γ + γα
)

1 − αnγα

)

Φ(‖xn − x̃‖) + αn
γ + γα

1 − αnγα

×
[
1 − αnγα

γ + γα

(
γα

1 − αnγα
‖xn − xn+1‖M′ +

1
1 − αnγα

〈

γf(x̃) −Ax̃, Jϕ(xn+1 − x̃)
〉
)]

,

(3.20)

where M′ = supn≥0‖Jϕ(xn+1 − x̃)‖. Put

γn =
αn

(

γ + γα
)

1 − αnγα
,

δn =
1 − αnγα

γ + γα

(
γα

1 − αnγα
‖xn − xn+1‖M′ +

1
1 − αnγα

〈

γf(x̃) −Ax̃, Jϕ(xn+1 − x̃)
〉
)

.

(3.21)
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It follows that from condition (C1), limn→∞‖xn+1 − xn‖ = 0 and (3.9) that

lim
n→∞

γn = 0,
∞∑

n=1

γn = ∞, lim sup
n→∞

δn ≤ 0. (3.22)

Applying Lemma 2.2 to (3.20), we conclude that Φ(‖xn+1 − x̃‖) → 0 as n → ∞; that is,
xn → x̃ as n → ∞. This completes the proof.

Setting γ = 1, A ≡ I, where I is the identity mapping and f(x) = x for all x ∈ E in
Theorem 3.1, we have the following result.

Corollary 3.2. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
Jϕ with gauge ϕ. Suppose that {Tn : E → E} is a countable family of nonexpansive mappings

satisfying F :=
∞⋂

n=0
F(Tn)/= ∅. Assume that {xn} is defined by, for x0, x ∈ E,

xn+1 = αnx + (1 − αn)Tnxn, n ≥ 0, (3.23)

where {αn} is a sequence in [0, 1] satisfying the following conditions:

(C1) lim
n→∞

αn = 0,

(C2)
∞∑

n=0
αn = ∞,

(C3)
∞∑

n=0
|αn − αn+1| < ∞.

Suppose that {Tn} satisfies the AKTT-condition. Let T be a mapping of E into itself defined by Tz =
limn→∞Tnz for all z ∈ E, and suppose that F(T) = ∩∞

n=0F(Tn), then {xn} converges strongly to x̃ of
F which solves the variational inequality

〈(

I − f
)

x̃, Jϕ
(

x̃ − p
)〉 ≤ 0, ∀p ∈ F. (3.24)

Applying Theorem 3.1, we can obtain the following two strong convergence theorems
for the iterative sequences {zn} and {yn} defined by (1.17).

Theorem 3.3. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
Jϕ with gauge ϕ such that ϕ is invariant on [0, 1]. Let {Tn : E → E}∞n=0 be a countable family of
nonexpansive mappings satisfying F :=

⋂∞
n=0 F(Tn)/= ∅. Let f be an α-contraction and A a strongly

positive bounded linear operator with coefficient γ > 0 and 0 < γ < γϕ(1)/α. Let the sequence {zn}
be generated by (1.17), where {αn} is a sequence in [0, 1] satisfying the following conditions:

(C1) lim
n→∞

αn = 0,

(C2)
∞∑

n=0
αn = ∞,

(C3)
∞∑

n=0
|αn − αn+1| < ∞.
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Suppose that {Tn} satisfies the AKTT-condition. Let T be a mapping of E into itself defined by Tz =
limn→∞Tnz for all z ∈ E, and suppose that F(T) =

⋂∞
n=0 F(Tn), then {zn} converges strongly to x̃

which solves the variational inequality (3.1).

Proof. Let {xn} be the sequence given by x0 = z0 and

xn+1 = αnγf(Tnxn) + (I − αnA)Tnxn, n ≥ 0. (3.25)

Form Theorem 3.1, xn → x̃. We claim that zn → x̃. Applying Lemma 2.6, we estimate

‖xn+1 − zn+1‖ ≤ αnγ
∥
∥f(zn) − f(Tnxn)

∥
∥ + ‖I − αnA‖‖Tnxn − Tnzn‖

≤ αnγα‖zn − Tnxn‖ + ϕ(1)
(

1 − αnγ
)‖xn − zn‖

≤ αnγα‖zn − Tnx̃‖ + αnγα‖Tnx̃ − Tnxn‖ + ϕ(1)
(

1 − αnγ
)‖xn − zn‖

≤ αnγα‖zn − x̃‖ + αnγα‖Tnx̃ − Tnxn‖ + ϕ(1)
(

1 − αnγ
)‖xn − zn‖

≤ αnγα‖zn − xn‖ + αnγα‖xn − x̃‖ + αnγα‖x̃ − xn‖ + ϕ(1)
(

1 − αnγ
)‖xn − zn‖

=
(

1 − αn

(

ϕ(1)γ − γα
))‖xn − zn‖ + αn

(

ϕ(1)γ − γα
) 2αγ
ϕ(1)γ − γα

‖x̃ − xn‖.
(3.26)

It follows from
∑∞

n=1 αn = ∞, limn→∞‖xn − x̃‖ = 0, and Lemma 2.2 that ‖xn − zn‖ → 0.
Consequently, zn → x̃ as required.

Theorem 3.4. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
Jϕ with gauge ϕ such that ϕ is invariant on [0, 1]. Let {Tn : E → E}∞n=0 be a countable family of
nonexpansive mappings satisfying F :=

⋂∞
n=0 F(Tn)/= ∅. Let f be an α-contraction and A a strongly

positive bounded linear operator with coefficient γ > 0 and 0 < γ < γϕ(1)/α. Let the sequence {yn}
be generated by (1.17), where {αn} is sequence in [0, 1] satisfying the following conditions:

(C1) lim
n→∞

αn = 0,

(C2)
∞∑

n=0
αn = ∞,

(C3)
∞∑

n=0
|αn − αn+1| < ∞.

Suppose that {Tn} satisfies the AKTT-condition. Let T be a mapping of E into itself defined by Tz =
limn→∞Tnz for all z ∈ E, and suppose that F(T) =

⋂∞
n=0 F(Tn), then {yn} converges strongly to x̃

which solves the variational inequality (3.1).

Proof. Let the sequences {zn} and {βn} be given by

zn = αnγf
(

yn

)

+ (I − αnA)yn, βn = αn+1 ∀n ∈ N. (3.27)
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Taking p ∈ ⋂∞
n=0 F(Tn), we have

∥
∥yn+1 − p

∥
∥ =

∥
∥Tnzn − Tnp

∥
∥ ≤ ∥∥zn − p

∥
∥

=
∥
∥αnγf

(

yn

)

+ (I − αnA)yn − p
∥
∥

≤ (1 − αn

(

ϕ(1)γ − γα
))∥
∥yn − p

∥
∥ + αn

∥
∥γf

(

p
) −A

(

p
)∥
∥

=
(

1 − αn

(

ϕ(1)γ − γα
))∥
∥yn − p

∥
∥ + αn

(

ϕ(1)γ − γα
)

∥
∥γf

(

p
) −A

(

p
)∥
∥

ϕ(1)γ − γα
.

(3.28)

It follows from induction that

∥
∥yn+1 − p

∥
∥ ≤ max

{

∥
∥y0 − p

∥
∥,

∥
∥γf

(

p
) −A

(

p
)∥
∥

ϕ(1)γ − γα

}

, n ≥ 0. (3.29)

Thus, both {yn} and {zn} are bounded. We observe that

zn+1 = αn+1γf
(

yn+1
)

+ (I − αn+1A)yn+1 = βnγf(Tnzn) +
(

I − βnA
)

Tnzn. (3.30)

Thus, Theorem 3.1 implies that {zn} converges strongly to some point x̃. In this case, we also
have

∥
∥yn − x̃

∥
∥ ≤ ∥∥yn − zn

∥
∥ + ‖zn − x̃‖ = αn

∥
∥γf

(

yn

) −Ayn

∥
∥ + ‖zn − x̃‖ −→ 0. (3.31)

Hence, the sequence {yn} converges strongly to x̃. This competes the proof.

Setting γ = 1, A ≡ I, where I is the identity mapping and f(x) = x for all x ∈ E in
Theorem 3.4, we have the following result.

Corollary 3.5. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
Jϕ with gauge ϕ. Suppose that {Tn : E → E} is a countable family of nonexpansive mappings
satisfying F :=

⋂∞
n=0 F(Tn)/= ∅. Assume that {xn} is defined by for x0, x ∈ E,

xn+1 = Tn(αnx + (1 − αn)xn), n ≥ 0, (3.32)

where {αn} is a sequence in [0, 1] satisfying the following conditions:

(C1) lim
n→∞

αn = 0,

(C2)
∞∑

n=0
αn = ∞,

(C3)
∞∑

n=0
|αn − αn+1| < ∞.
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Suppose that {Tn} satisfies the AKTT-condition. Let T be a mapping of E into itself defined by Tz =
limn→∞Tnz for all z ∈ E, and suppose that F(T) =

⋂∞
n=0 F(Tn), then {xn} converges strongly to x̃ of

F which solves the variational inequality

〈(

I − f
)

x̃, Jϕ
(

x̃ − p
)〉 ≤ 0, ∀p ∈ F. (3.33)

4. Applications

4.1. W-Mappings

Let T1, T2, . . . be infinite mappings of C into itself, and let {ξi} be a nonnegative real sequence
with 0 ≤ ξi < 1, for all i ≥ 1. For any n ∈ N, define a mapping Wn of C into itself as follows:

Un,n+1 = I,

Un,n = ξnTnUn,n+1 + (1 − ξn)I,

Un,n−1 = ξn−1Tn−1Un,n + (1 − ξn−1)I,

...

Un,k = ξkTkUn,k+1 + (1 − ξk)I,

Un,k−1 = ξk−1Tk−1Un,k + (1 − ξk−1)I,

...

Un,2 = μ2T2Un,3 + (1 − ξ2)I,

Wn = Un,1 = ξ1T1Un,2 + (1 − ξ1)I.

(4.1)

Nonexpansivity of each Ti ensures the nonexpansivity of Wn. The mapping Wn is called a
W-mapping generated by T1, T2, . . . , Tn and ξ1, ξ2, . . . , ξn.

Throughout this section, we will assume that 0 < ξn ≤ ξ < 1, for all n ≥ 1. Concerning
Wn defined by (4.1), we have the following useful lemmas.

Lemma 4.1 (see [4]). Let C be a nonempty closed convex subset of a a strictly convex, reflexive
Banach space E, {Ti : C → C} a family of infinitely nonexpansive mapping with

⋂∞
i=1 F(Ti)/= ∅, and

{ξi} a real sequence such that 0 < ξi ≤ ξ < 1, for all i ≥ 1, then:

(1) Wn is nonexpansive and F(Wn) =
⋂∞

i=1 F(Ti) for each n ≥ 1;

(2) for each x ∈ C and for each positive integer k, the limit limn→∞Un,kx exists;

(3) the mapping W : C → C define by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x, x ∈ C (4.2)

is a nonexpansive mapping satisfying F(W) =
⋂∞

i=1 F(Ti), and it is called the W-mapping generated
by T1, T2, . . . and ξ1, ξ2, . . ..
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From Remark 3.1 of Peng and Yao [29], we obtain the following lemma.

Lemma 4.2. Let E be a strictly convex, reflexive Banach space, {Ti : E → E} a family of infinitely
nonexpansive mappings with

⋂∞
i=1 F(Ti)/= ∅, and {ξi} a real sequence such that 0 < ξi ≤ ξ < 1,

for all i ≥ 1. Then sequence {Wn} satisfies the AKTT -condition.

Applying Lemma 4.2 and Theorem 3.1, we obtain the following result.

Theorem 4.3. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
Jϕ with gauge ϕ such that ϕ is invariant on [0, 1]. Let {Tn : E → E}∞n=1 be a countable family of
nonexpansive mappings with F :=

⋂∞
n=1 F(Tn)/= ∅ and f an α-contraction and A a strongly positive

bounded linear operator with coefficient γ > 0 and 0 < γ < γϕ(1)/α. Let the sequence {xn} be
generated by the following:

x1 = x ∈ E, xn+1 = αnγf(Wnxn) + (I − αnA)Wnxn, (4.3)

where {Wn} is defined by (4.1) and {αn} is a sequence in [0, 1] satisfying the conditions (C1), (C2),
and (C3). Then {xn} converges strongly to x̃ in F.

Applying Lemma 4.2 and Theorem 3.3, we obtain the following result.

Theorem 4.4. Let E, {Tn}, {Wn}, f , A, and {αn} be as in Theorem 4.3. Let the sequence {zn} be
generated by the following:

z1 = z ∈ E, zn+1 = αnγf(zn) + (I − αnA)Wnzn, (4.4)

then {zn} converges strongly to x̃ in F.

Applying Lemma 4.2 and Theorem 3.4, we obtain the following result.

Theorem 4.5. Let E, {Tn}, {Wn}, f , A, and {αn} be as in Theorem 4.3. Let the sequence {yn} be
generated by the following:

y1 = y ∈ E, yn+1 = Wn

(

αnγf
(

yn

)

+ (I − αnA)yn

)

, (4.5)

then {yn} converges strongly to x̃ in F.

4.2. Accretive Operators

We consider the problem of finding a zero of an accretive operator. An operator Ψ ⊂ E × E is
said to be accretive if for each (x1, y1) and (x2, y2) ∈ Ψ, there exists j ∈ J(x1−x2) such that 〈y1−
y2, j〉 ≥ 0. An accretive operator Ψ is said to satisfy the range condition if D(Ψ) ⊂ R(I + λΨ)
for all λ > 0, where D(Ψ) is the domain of Ψ, I is the identity mapping on E, R(I + λΨ) is the
range of I + λΨ, andD(Ψ) is the closure ofD(Ψ). If Ψ is an accretive operator which satisfies
the range condition, then we can define, for each λ > 0, a mapping Jλ : R(I + λΨ) → D(Ψ)
by Jλ = (I − λΨ)−1, which is called the resolvent of Ψ. We know that Jλ is nonexpansive
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and F(Jλ) = Ψ−1(0) for all λ > 0. We also know the following [30]: for each λ, μ > 0 and
x ∈ R(I + λΨ)

⋂
R(I + μΨ), it holds that

∥
∥Jλx − Jμx

∥
∥ ≤

∣
∣λ − μ

∣
∣

λ
‖x − Jλx‖. (4.6)

From the Resolvent identity, we have the following lemma.

Lemma 4.6. Let E be a Banach space and C a nonempty closed convex subset of E. Let Ψ ⊆ E × E be
an accretive operator such that Ψ−10/= ∅ and D(Ψ) ⊂ C ⊂ ⋂λ>0 R(I + λΨ). Suppose that {λn} is a
sequence of (0,∞) such that inf{λn : n ∈ N} > 0 and

∑∞
n=1 |λn+1 − λn| < ∞, then

(i) the sequence {Jλn} satisfies AKTT-condition,
(ii) limn→∞Jλnz = Jλz for all z ∈ C and F(Jλ) =

⋂∞
n=1 F(Jλn), where λn → λ as n → ∞.

Proof. By the proof of Theorem 4.3 in [1] and applying Lemma 4.6 and Theorem 3.1, we obtain
the following result.

Theorem 4.7. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
Jϕ with gauge ϕ such that ϕ is invariant on [0, 1]. Let Ψ : D(Ψ) ⊂ E → 2E be an accretive
operator such thatΨ−10/= ∅. Assume thatK is a nonempty closed convex subset of E such thatD(Ψ) ⊂
K ⊂ ⋂

λ>0
R(I + λΨ) and f is an α-contraction. Let A be a strongly positive bounded linear operator

with coefficient γ > 0 and 0 < γ < γϕ(1)/α. Suppose that {λn} is a sequence of (0,∞) such that
limn→∞λn = +∞. Let the sequence {xn} be generated by the following:

x0 = x ∈ E, xn+1 = αnγf(Jλnxn) + (I − αnA)Jλnxn, (4.7)

where {αn} is a sequence in [0, 1] satisfying the following conditions (C1), (C2), and (C3), then {xn}
converges strongly to x̃ in Ψ−10.

Applying Lemma 4.6 and Theorem 3.3, we obtain the following result.

Theorem 4.8. Let E, Ψ, K, f , A, {αn}, and {λn} be as in Theorem 4.7. Let {zn} be generated by the
following:

z0 = z ∈ E, zn+1 = αnγf(zn) + (I − αnA)Jλnzn, (4.8)

then {zn} converges strongly to x̃ in Ψ−10.

Applying Lemma 4.6 and Theorem 3.4, we obtain the following result.

Theorem 4.9. Let E, Ψ, K, f , A, {αn}, and {λn} be as in Theorem 4.7. Let {yn} be generated by the
following:

y0 = z ∈ E, yn+1 = Jλn
(

αnγf
(

yn

)

+ (I − αnA)yn

)

, (4.9)

Then {yn} converges strongly to x̃ in Ψ−10.
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4.3. The Equilibrium Problems

Let H be a real Hilbert space, and let F be a bifunction of H ×H → R, where R is the set of
real numbers. The equilibrium problem for F : H ×H → R is to find x ∈ H such that

F
(

x, y
) ≥ 0, ∀y ∈ H. (4.10)

The set of solutions of (4.10) is denoted by EP(F). Given a mapping T : H → H, let F(x, y) =
〈Tx, y −x〉 for all x, y ∈ H. Then, z ∈ EP(F) if and only if 〈Tx, y −z〉 ≥ 0 for all y ∈ H, that is,
z is a solution of the variational inequality. Numerous problems in physics, optimization, and
economics reduce to find a solution of (4.10). Some methods have been proposed to solve the
equilibrium problem; see, for instance, Blum and Oettli [31] and Combettes and Hirstoaga
[32]. For the purpose of solving the equilibrium problem for a bifunction F, let us assume
that F satisfies the following conditions:

(A1) F〈x, x〉 = 0 for all x ∈ H,

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ H,

(A3) for each x, y, z ∈ H, limt→ 0F(tz + (1 − t)x, y) ≤ F(x, y),

(A4) for each x ∈ H,y �→ F(x, y) is convex and lower semicontinuous.

The following lemmas were also given in [31, 32], respectively.

Lemma 4.10 (see [31, Corollary 1]). Let C be a nonempty closed convex subset of H, and let F be
a bifunction of C ×C → R satisfying (A1)–(A4). Let r > 0 and x ∈ H, then there exists z ∈ C such
that F(z, y) + (1/r)〈y − z, z − x〉 ≥ 0 for all y ∈ C.

Lemma 4.11 (see [32, Lemma 2.12]). Assume that F : C × C ∈ R satisfies (A1)–(A4). For r > 0
and x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) =
{

z ∈ C;F
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C

}

∀x ∈ H, (4.11)

then, the following hold:

(1) Tr is single valued,

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H, ‖Trx − Try‖2 ≤ 〈Trx − Try, x − y〉,
(3) F(Tr) = EP(F),

(4) EP(F) is closed and convex.

Theorem 4.12. Let H be a real Hilbert space. Let F be a bifunction from H × H → R satisfying
(A1)–(A4) and EP(F)/= ∅. Let f be an α-contraction, A a strongly positive bounded linear operator
with coefficient γ > 0 and 0 < γ < γ/α. Let the sequences {xn}, {un} be generated by x0 ∈ H and

F
(

un, y
)

+
1
rn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ H,

xn+1 = αnγf(un) + (I − αnA)un,

(4.12)



Fixed Point Theory and Applications 19

for all n ≥ 0, where {αn} is a sequence in [0, 1] and rn ∈ (0,∞) satisfying the following conditions:

(C1) limn→∞αn = 0,

(C2)
∑∞

n=1 αn = ∞,

(C3)
∑∞

n=1 |αn+1 − αn| < ∞,

(C4) lim infn→∞rn > 0 and
∑∞

n=1 |rn+1 − rn| < ∞.

then {xn} and {un} converge strongly to x̃ ∈ EP(F).

Proof. Following the proof technique of Theorem 3.1, we only need, show that limn→∞‖xn −
Trxn‖ = 0, for all r > 0. From (4.12), it follows that

‖xn+2 − xn+1‖ =
∥
∥αn+1γf(un+1) + (I − αn+1A)un+1 − αnγf(un) − (I − αnA)un

∥
∥

=
∥
∥αn+1γf(un+1) + (I − αn+1A)un+1 − (I − αn+1A)un + (I − αn+1A)un

−αnγf(un) − (I − αnA)un − αn+1γf(un) + αn+1γf(un)
∥
∥

≤ ‖(I − αn+1A)(un+1 − un)‖ + αn+1γ
∥
∥f(un+1) − f(un)

∥
∥

+ |αn+1 − αn|γ
∥
∥f(un)

∥
∥ + ‖(αnA − αn+1A)un‖

= ‖(I − αn+1A)(un+1 − un)‖ + αn+1γ
∥
∥f(un+1) − f(un)

∥
∥

+ |αn+1 − αn|γ
∥
∥f(un)

∥
∥ + ‖(αn − αn+1)Aun‖

≤ (1 − αn+1γ
)‖Trn+1xn+1 − Trnxn‖ + αn+1γ

∥
∥f(un+1) − f(un)

∥
∥

+ |αn+1 − αn|γ
∥
∥f(un)

∥
∥ + |αn − αn+1|‖Aun‖

=
(

1 − αn+1γ
)‖Trn+1xn+1 − Trn+1xn + Trn+1xn − Trnxn‖

+ αn+1γ
∥
∥f(un+1) − f(un)

∥
∥ + |αn+1 − αn|γ

∥
∥f(un)

∥
∥ + |αn − αn+1|‖Aun‖

≤ (1 − αn+1γ
)‖Trn+1xn+1 − Trn+1xn‖ +

(

1 − αn+1γ
)‖Trn+1xn − Trnxn‖

+ αn+1γ
∥
∥f(un+1) − f(un)

∥
∥ + |αn+1 − αn|γ

∥
∥f(un)

∥
∥ + |αn − αn+1|‖Aun‖

≤ (1 − αn+1γ
)‖xn+1 − xn‖ +

(

1 − αn+1γ
)‖Trn+1xn − Trnxn‖

+ αn+1γα‖un+1 − un‖ + |αn+1 − αn|γ
∥
∥f(un)

∥
∥ + |αn − αn+1|‖Aun‖

≤ (1 − αn+1γ
)‖xn+1 − xn‖ +

(

1 − αn+1γ
)‖Trn+1xn − Trnxn‖ + αn+1γα‖xn+1 − xn‖

+ αn+1γα‖Trn+1xn − Trnxn‖ + |αn+1 − αn|γ
∥
∥f(un)

∥
∥ + |αn − αn+1|‖Aun‖

=
(

1 − αn+1
(

γ − γα
))‖xn+1 − xn‖ +

(

1 − αn+1
(

γ − γα
))‖Trn+1xn − Trnxn‖

+ |αn+1 − αn|γ
∥
∥f(un)

∥
∥ + |αn − αn+1|‖Aun‖.

(4.13)
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On the other hand, from the definition of Tr we have

F
(

Trnxn, y
)

+
1
rn

〈

y − Trnxn, Trnxn − xn

〉 ≥ 0, ∀y ∈ H,

F
(

Trn+1xn, y
)

+
1
rn
〈y − Trn+1xn, Trn+1xn − xn〉 ≥ 0, ∀y ∈ H.

(4.14)

Putting y = Trn+1xn and y = Trnxn in (4.14), we have

F(Trnxn, Trn+1xn) +
1
rn

〈

Trn+1xn − Trnxn, y, Trnxn, Trn+1xn − xn

〉 ≥ 0,

F(Trn+1xn, Trnxn) +
1
rn
〈Trnxn − Trn+1xn, Trnxn, Trn+1xn, Trnxn − xn〉 ≥ 0.

(4.15)

So, from (A2), we have

〈

Trnxn − Trn+1xn,
Trn+1xn − xn

rn+1
− Trnxn − xn

rn

〉

≥ 0, (4.16)

and hence,

〈

Trnxn − Trn+1xn,
Trn+1xn − Trnxn

rn+1
+
(

1
rn+1

− 1
rn

)

(Trnxn − xn)
〉

≥ 0, (4.17)

then we have

‖Trn+1xn − Trnxn‖2
rn+1

≤
〈

Trnxn − Trn+1xn,

(
1

rn+1
− 1
rn

)

(Trnxn − xn)
〉

≤ ‖Trnxn − Trn+1xn‖
∣
∣
∣
∣

1
rn+1

− 1
rn

∣
∣
∣
∣
‖Trnxn − xn‖

≤ ‖Trnxn − Trn+1xn‖
∣
∣
∣
∣

1
rn+1

− 1
rn

∣
∣
∣
∣
2M,

(4.18)

and hence,

‖Trn+1xn − Trnxn‖ ≤
∣
∣
∣
∣
1 − rn+1

rn

∣
∣
∣
∣
2M, (4.19)

where M is a constant satisfying M ≥ supn≥0‖Trnxn − xn‖. Substituting (4.19) in (4.13) yields

‖xn+2 − xn+1‖ ≤ (1 − αn+1
(

γ − γα
))‖xn+1 − xn‖ +

(

1 − αn+1
(

γ − γα
))2M

b
|rn+1 − rn|

+ |αn+1 − αn|γ
∥
∥f(un)

∥
∥ + |αn − αn+1|‖Aun‖

≤ (1 − αn+1
(

γ − γα
))‖xn+1 − xn‖ + 2M|αn+1 − αn| + 2M

b
|rn+1 − rn|,

(4.20)
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for some b with rn > b > 0 (the definition lim infn→∞rn > 0). By the assumptions on {rn} and
{αn} and using Lemma 2.2, we conclude that

lim
n→∞

‖xn+1 − xn‖ = 0. (4.21)

From the definition of xn and limn→∞αn = 0, it follows that

‖xn+1 − un‖ =
∥
∥αnγf(un) + (I − αnA)un − un

∥
∥

=
∥
∥αnγf(un) − αnAun

∥
∥

= αn

∥
∥γf(un) −Aun

∥
∥ −→ 0.

(4.22)

Combining (4.21) and (4.22), we have

lim
n→∞

‖xn − un‖ = lim
n→∞

‖xn − Trnxn‖ = 0. (4.23)

From the definition of Tr , it follows that

F
(

TrTrnxn, y
)

+
1
r

〈

y − TrTrnxn, TrTrnxn − Trnxn

〉 ≥ 0, ∀y ∈ H. (4.24)

Putting y = TrTrnxn in (4.14) and y = Trnxn in (4.24), we have

F(Trnxn, TrTrnxn) +
1
rn
〈TrTrnxn − Trnxn, Trnxn − xn〉 ≥ 0, ∀y ∈ H,

F(TrTrnxn, Trnxn) +
1
r
〈Trnxn − TrTrnxn, TrTrnxn − Trnxn〉 ≥ 0, ∀y ∈ H.

(4.25)

So, from (A2), we have

〈

Trnxn − TrTrnxn,
TrTrnxn − xn

r
− Trnxn − xn

rn

〉

≥ 0, (4.26)

and hence, for each r > 0,

‖TrTrnxn − Trnxn‖2
r

≤
〈

Trnxn − TrTrnxn,
1
rn
(xn − Trnxn)

〉

≤ ‖TrTrnxn − Trnxn‖ 1
rn
‖Trnxn − xn‖,

(4.27)

then

‖TrTrnxn − Trnxn‖ ≤ r‖Trnxn − xn‖
b

. (4.28)
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Since

‖xn − Trxn‖ ≤ ‖xn − Trnxn‖ + ‖Trnxn − TrTrnxn‖ + ‖TrTrnxn − Trxn‖

≤ 2‖xn − Trnxn‖ +
r‖Trnxn − xn‖

b
=
(

2 +
r

b

)

‖xn − Trnxn‖,
(4.29)

then for each r > 0, we have from (4.23)

lim
n→∞

‖xn − Trxn‖ = 0. (4.30)

This completes the proof.

Applying Theorem 4.12, we can obtain the following result.

Corollary 4.13. Let H be a real Hilbert space. Let F be a bifunction from H × H → R satisfying
(A1)–(A4) and EP(F)/= ∅. Let f be an α-contraction, A a strongly positive bounded linear operator
with coefficient γ > 0 and 0 < γ < γ/α. Let the sequences {zn}, {un} be generated by z0 ∈ H and

F
(

un, y
)

+
1
rn

〈

y − un, un − zn
〉 ≥ 0, ∀y ∈ H,

zn+1 = αnγf(zn) + (I − αnA)un,

(4.31)

for all n ∈ N, where {αn} is a sequence in [0, 1] and rn ∈ (0,∞) satisfying the following conditions:

(C1) limn→∞αn = 0,

(C2)
∑∞

n=1 αn = ∞,

(C3)
∑∞

n=1 |αn+1 − αn| < ∞,

(C4) lim infn→∞rn > 0 and
∑∞

n=1 |rn+1 − rn| < ∞,

then {zn} and {un} converge strongly to x̃ ∈ EP(F).

Proof. We observe that un = Trnzn for all n ≥ 0. Then we rewrite the iterative sequence (4.31)
by the following:

z0 ∈ H, zn+1 = αnγf(zn) + (I − αnA)Trnzn. (4.32)

Let {xn} be the sequence given by x0 = z0 and

xn+1 = αnγf(Trnxn) + (I − αnA)Trnxn. (4.33)
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Form Theorem 4.12, xn → x̃ in EP(F). We claim that zn → x̃. Applying Lemma 2.6, we
estimate

‖xn+1 − zn+1‖ ≤ αnγ
∥
∥f(zn) − f(Trnxn)

∥
∥ + ‖I − αnA‖‖Trnxn − Trnzn‖

≤ αnγα‖zn − Trnxn‖ +
(

1 − αnγ
)‖xn − zn‖

≤ αnγα‖zn − Trn x̃‖ + αnγα‖Trn x̃ − Trnxn‖ +
(

1 − αnγ
)‖xn − zn‖

≤ αnγα‖zn − x̃‖ + αnγα‖x̃ − xn‖ +
(

1 − αnγ
)‖xn − zn‖

≤ αnγα‖zn − xn‖ + αnγα‖xn − x̃‖ + αnγα‖x̃ − xn‖ +
(

1 − αnγ
)‖xn − zn‖

=
(

1 − αn

(

γ − γα
))‖xn − zn‖ + αn

(

γ − γα
) 2αγ
γ − γα

‖x̃ − xn‖.

(4.34)

It follows from
∑∞

n=1 αn = ∞, limn→∞‖xn − x̃‖ = 0, and Lemma 2.2 that ‖xn − zn‖ → 0 as
n → ∞. Consequently, zn → x̃ as required.
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