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Let C be a nonempty closed convex subset of a real Hilbert space H. Let F : C → H be
a κ-Lipschitzian and η-strongly monotone operator with constants κ, η > 0, V, T : C → C
be nonexpansive mappings with Fix(T)/= ∅ where Fix(T) denotes the fixed-point set of T , and
f : C → H be a ρ-contraction with coefficient ρ ∈ [0, 1). Let 0 < μ < 2η/κ2 and 0 < γ ≤ τ ,

where τ = 1 −
√
1 − μ(2η − μκ2). For each s, t ∈ (0, 1), let xs,t be a unique solution of the fixed-point

equation xs,t = PC[sγf(xs,t) + (I − sμF)(tV + (1 − t)T)xs,t]. We derive the following conclusions on
the behavior of the net {xs,t} along the curve t = t(s): (i) if t(s) = O(s), as s → 0, then xs,t(s) → z∞
strongly, which is the unique solution of the variational inequality of finding z∞ ∈ Fix(T) such
that 〈[(μF − γf) + l(I − V )]z∞, x − z∞〉 ≥ 0, for all x ∈ Fix(T) and (ii) if t(s)/s → ∞, as s → 0,
then xs,t(s) → x∞ strongly, which is the unique solution of some hierarchical variational inequality
problem.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H . Throughout this paper,
we write xn ⇀ x to indicate that the sequence {xn} converges weakly to x. xn → x implies
that {xn} converges strongly to x. Let T : C → C be a nonexpansive mapping; namely,
‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. The set of fixed-points of T is denoted by the set
Fix(T) := {x ∈ C : Tx = x}. It is well known that if Fix(T)/= ∅, then Fix(T) is closed and
convex. Given nonexpansive mapping V : C → C, consider the variational inequality (for
short, VI) of finding hierarchically a fixed-point x∗ ∈ Fix(T) of T with respect to V such that

〈
(I − V )x∗, y − x∗〉 ≥ 0, ∀y ∈ Fix(T). (1.1)
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2 Fixed Point Theory and Applications

Equivalently, x∗ = PFix(T)Vx∗, that is, x∗ is a fixed-point of the nonexpansive mapping PFix(T)V ,
where PK denotes the metric projection from H onto a nonempty closed convex subset K
of H . Let S denote the solution set of the VI (1.1), and assume throughout the rest of this
paper that S/= ∅. It is easy to see that S = Fix(PFix(T)V ). The VI (1.1) covers several topics
investigated in the literature; see, for example, [1–7]. Related iterative methods for solving
fixed-point problems, variational inequalities, and optimization problems can also be found
in [8–20].

Let f : C → C be a ρ-contraction and define, for s, t ∈ (0, 1), two mappingsWt and fs,t
by

Wt = tV + (1 − t)T, fs,t = sf + (1 − s)Wt. (1.2)

It is easy to verify that Wt is nonexpansive and fs,t is a [1 − (1 − ρ)s]-contraction.
Let xs,t be the unique fixed-point of fs,t, that is, the unique solution of the fixed-point

equation

xs,t = sf(xs,t) + (1 − s)Wtxs,t. (1.3)

Moudafi and Maingé [21] initiated the investigation of the iterated behavior of the net
{xs,t} as s → 0 firstly and t → 0 secondly. They made the following assumptions:

(A1) for each t ∈ (0, 1), the fixed-point set Fix(Wt) ofWt is nonempty and the set

{Fix(Wt) : 0 < t < 1} =
⋃

t∈(0,1)
Fix(Wt) (1.4)

is bounded;

(A2) ∅/=S ⊂ ‖ · ‖ − lim inft→ 0 Fix(Wt) := {z : ∃zt ∈ Fix(Wt) such that zt → z}.
Moudafi andMaingé [21] (see also [22]) proved that, for each fixed t ∈ (0, 1), as s → 0,

xs,t → xt; moreover, as t → 0, xt ⇀ x∞ which is the unique solution of the variational
inequality of finding x∞ ∈ S, such that

〈(
I − f

)
x∞, x − x∞

〉 ≥ 0, ∀x ∈ S. (1.5)

The following theorem, due to Xu [23], improves Moudafi and Maingé’s result
since it shows that {xt} actually strongly converges to x∞. Moreover, it does not need the
boundedness assumption of the set

⋃
t∈(0,1) Fix(Wt).

Theorem 1.1 (see [23, Theorem 3.2]). Let the above assumption (A2) hold. Assume also that, for
each t ∈ (0, 1), Fix(Wt) is nonempty (but not necessarily bounded), then the strong lims→ 0xs,t =: xt

exists for each t ∈ (0, 1). Moreover, the strong limt→ 0xt =: x∞ exists and solves the VI (1.5). Hence,
for each null sequence {sn} in (0, 1), there is another null sequence {tn} in (0, 1) such that xsn,tn ,
converges strongly to x∞, as n → ∞.

In [21, 23], the authors stated the problem of the convergence of {xs,t} when (s, t) →
(0, 0) jointly. Very recently, Cianciaruso et al. [24] further investigated the behavior of the net
{xs,t} along the curve t = t(s), and their results point to a negative answer to this problem.
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Theorem 1.2 (see [24, Theorem 2.1]). LetH be a real Hilbert space, and let C be a nonempty closed
convex subset of H . Let V, T : C → C be nonexpansive mappings with Fix(T)/= ∅. Let f : C → C
be a ρ-contraction with ρ ∈ [0, 1). Assume that ts = O(s), as s → 0, and let l = lim sups→ 0(ts/s),
then the net {xs,ts}s∈(0,1), defined by

xs,ts = sf(xs,ts) + (1 − s)Wtsxs,ts , (1.6)

strongly converges to z∞ ∈ Fix(T) which is the unique solution of the variational inequality of finding
z∞ ∈ Fix(T), such that

〈[(I − f
)
+ l(I − V )

]
z∞, x − z∞〉 ≥ 0, ∀x ∈ Fix(T). (1.7)

Theorem 1.3 (see [24, Theorem 3.1]). LetH be a real Hilbert space and let C be a nonempty closed
convex subset of H . Assume that V, T : C → C are nonexpansive mappings with Fix(T)/= ∅ and
f : C → C is a ρ-contraction with ρ ∈ [0, 1). Assume the condition (A2) holds. Let ts = t(s) satisfy
lims→ 0ts/s = ∞. Then the net {xs,ts}s∈(0,1) defined by

xs,ts = sf(xs,ts) + (1 − s)Wtsxs,ts , (1.8)

strongly converges to x∞ ∈ S which is the unique solution of the VI (1.5).

On the other hand, let F : H → H be a κ-Lipschitzian and η-strongly monotone
operator with constants κ, η > 0, and let T : H → H be nonexpansive such that Fix(T)/= ∅.
In 2001, Yamada [6] introduced the so-called hybrid steepest descent method for solving the
variational inequality problem: finding x̃ ∈ Fix(T) such that

〈Fx̃, x − x̃〉 ≥ 0, ∀x ∈ Fix(T). (1.9)

This method generates a sequence {xn} via the following iterative scheme:

xn+1 = Txn − λn+1μF(Txn), ∀n ≥ 0, (1.10)

where 0 < μ < 2η/κ2, the initial guess x0 ∈ H is arbitrary, and the sequence {λn} in (0, 1)
satisfies the conditions

λn −→ 0,
∞∑
n=0

λn = ∞,
∞∑
n=0

|λn+1 − λn| < ∞. (1.11)

A key fact in Yamada’s argument is that, for small enough λ > 0, the mapping

Tλx := Tx − λμF(Tx), ∀x ∈ H (1.12)

is a contraction, due to the κ-Lipschitz continuity and η-strong monotonicity of F.
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In this paper, let C be a nonempty closed convex subset of a real Hilbert space H .
Assume that F : C → H is a κ-Lipschitzian and η-stronglymonotone operator with constants
κ, η > 0, f : C → H is a ρ-contraction with coefficient ρ ∈ [0, 1) and T, V : C → C are
nonexpansive mappings with Fix(T)/= ∅. Let 0 < μ < 2η/κ2, and 0 < γ ≤ τ , where τ = 1 −√
1 − μ(2η − μκ2). Consider the hierarchical variational inequality problem (for short, HVIP):

VI (a): finding z∗ ∈ Fix(T) such that 〈(I − V )z∗, z − z∗〉 ≥ 0, for all z ∈ Fix(T);

VI (b): finding x∗ ∈ S such that 〈(μF − γf)x∗, x − x∗〉 ≥ 0, for all x ∈ S.

Here, S denotes the nonempty solution set of the VI (a).
Motivated and inspired by the above-hybrid steepest descent method and hierarchical

fixed-point approximation method, we define, for each s, t ∈ (0, 1), two mappingsWt and fs,t
by

Wt = tV + (1 − t)T, fs,t = PC

[
sγf +

(
I − sμF

)
Wt

]
. (1.13)

It is easy to see thatWt is a nonexpansive self-mapping on C. Moreover, utilizing Lemma 2.5
in Section 2, we can see that fs,t is a (1 − (τ − γρ)s)-contraction. Indeed, observe that

‖fs,t(x) − fs,t
(
y
)‖ = ∥∥PC

[
sγf(x) +

(
I − sμF

)
Wtx

] − PC

[
sγf

(
y
)
+
(
I − sμF

)
Wty

]∥∥

≤ ∥∥[sγf(x) + (
I − sμF

)
Wtx

] − [
sγf

(
y
)
+
(
I − sμF

)
Wty

]∥∥

≤ sγ
∥∥f(x) − f

(
y
)∥∥ +

∥∥(I − sμF
)
Wtx − (

I − sμF
)
Wty

∥∥

≤ sγρ
∥∥x − y

∥∥ + (1 − sτ)
∥∥x − y

∥∥

=
(
1 − (

τ − γρ
)
s
)∥∥x − y

∥∥.

(1.14)

Let xs,t be the unique fixed-point of fs,t in C, that is, the unique solution of the fixed-point
equation

xs,t = PC

[
sγf(xs,t) +

(
I − sμF

)
Wt(xs,t)

]
. (1.15)

We investigate the behavior of the net {xs,t} (generated by (1.15)) along the curve
t = t(s) and our results give a negative answer to the problemput forth in [21, 23]. Specifically,
we derive the following conclusions:

(i) if t(s) = O(s), as s → 0, then xs,t(s) → z∞ ∈ Fix(T), which is the unique solution of
the variational inequality of finding z∞ ∈ Fix(T) such that

〈[(
μF − γf

)
+ l(I − V )

]
z∞, x − z∞

〉 ≥ 0, ∀x ∈ Fix(T), (1.16)

(ii) if t(s)/s → ∞, as s → 0, then xs,t(s) → x∞ ∈ S, which is the unique solution of the
VI (b).

In particular, if we put μ = 1, F = I, and γ = τ = 1, and let f be a contractive self-
mapping on C with coefficient ρ ∈ [0, 1), then our results reduce to the above Theorems 1.2



Fixed Point Theory and Applications 5

and 1.3, respectively. There is no doubt that our results cover Theorems 1.2 and 1.3 as special
cases, respectively. In the meantime, our results also extend and improve Xu’s Theorem 3.2
[23].

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H . Recall that
the metric (or nearest point) projection from H onto C is the mapping PC : H → C which
assigns to each point x ∈ H the unique point PCx ∈ C satisfying the property

‖x − PCx‖ = inf
y∈C

∥∥x − y
∥∥ =: d(x, C). (2.1)

Lemma 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H . Given x ∈ H and
z ∈ C

(i) that z = PCx if and only if there holds the relation

〈
x − z, y − z

〉 ≤ 0, ∀y ∈ C, (2.2)

(ii) that z = PCx if and only if there holds the relation:

‖x − z‖2 ≤ ∥∥x − y
∥∥2 − ∥∥y − z

∥∥2
, ∀y ∈ C, (2.3)

(iii) there holds the relation

〈
PCx − PCy, x − y

〉 ≥ ∥∥PCx − PCy
∥∥2
, ∀x, y ∈ H. (2.4)

Consequently, PC is nonexpansive and monotone.

Lemma 2.2 (see [25, Demiclosedness principle]). Let C be a nonempty closed convex subset of a
real Hilbert space H and let T : C → C be a nonexpansive mapping with Fix(T)/= ∅. If {xn} is a
sequence in C weakly converging to x and if {(I − T)xn} converges strongly to y, then (I − T)x = y;
in particular, if y = 0, then x ∈ Fix(T).

The following lemmas are not difficult to prove.

Lemma 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H , f : C → H a
ρ-contraction with coefficient ρ ∈ [0, 1), and F : C → H a κ-Lipschitzian and η-strongly monotone
operator with constants κ, η > 0, then for 0 ≤ γρ < μη,

〈
x − y,

(
μF − γf

)
x − (

μF − γf
)
y
〉 ≥ (

μη − γρ
)∥∥x − y

∥∥2
, ∀x, y ∈ C, (2.5)

that is, μF − γf is strongly monotone with constant μη − γρ.
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Lemma 2.4. There holds the following inequality in a real Hilbert space H :

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, x + y

〉
, ∀x, y ∈ H. (2.6)

The following lemma plays a key role in proving strong convergence of our implicit
hybrid method.

Lemma 2.5 (see [5, Lemma 3.1]). Let λ be a number in (0, 1] and let μ > 0. Let F : C → H be an
operator on C such that, for some constants κ, η > 0, F is κ-Lipschitzian and η-strongly monotone.
Associating with a nonexpansive mapping T : C → C, define the mapping Tλ : C → H by

Tλx := Tx − λμF(Tx), ∀x ∈ C, (2.7)

then Tλ is a contraction provided μ < 2η/κ2, that is,

∥∥∥Tλx − Tλy
∥∥∥ ≤ (1 − λτ)

∥∥x − y
∥∥, ∀x, y ∈ C, (2.8)

where τ = 1 −
√
1 − μ(2η − μκ2) ∈ (0, 1].

Remark 2.6. Put F = I, where I is the identity operator of H . Then κ = η = 1 and hence
μ < 2η/κ2 = 2. Also, put μ = 1, then it is easy to see that

τ = 1 −
√
1 − μ

(
2η − μκ2

)
= 1. (2.9)

In particular, whenever λ > 0, we have Tλx := Tx − λμF(Tx) = (1 − λ)Tx.

3. On Convergence of {xs,t}s,t∈(0,1)
In this section we study the convergence of the net {xs,t} along the curve t = t(s) =: ts, where
ts = O(s), as s → 0.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H . Let F : C → H
be a κ-Lipschitzian and η-strongly monotone operator with constants κ, η > 0, V, T : C → C
be nonexpansive mappings with Fix(T)/= ∅, and f : C → H be a ρ-contraction with coefficient

ρ ∈ [0, 1). Let 0 < μ < 2η/κ2 and 0 < γ ≤ τ , where τ = 1 −
√
1 − μ(2η − μκ2). Assume that

ts = O(s), as s → 0, and let l = lim sups→ 0(ts/s), then the net {xs,ts}s∈(0,1) defined by

xs,ts = PC

[
sγf(xs,ts) +

(
I − sμF

)
Wtsxs,ts

]
, (3.1)

whereWts = tsV + (1 − ts)T , strongly converges to a fixed-point z∞ of T which is the unique solution
of the variational inequality of finding z∞ ∈ Fix(T) such that

〈[(
μF − γf

)
+ l(I − V )

]
z∞, x − z∞

〉 ≥ 0, ∀x ∈ Fix(T). (3.2)
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Proof. First, let us show that the VI (3.2) has a unique solution. Indeed, it is sufficient to show
that the operator (μF − γf) + l(I − V ) is strongly monotone. Observe that

μη ≥ τ ⇐⇒ μη ≥ 1 −
√
1 − μ

(
2η − μκ2

)

⇐⇒
√
1 − μ

(
2η − μκ2

) ≥ 1 − μη

⇐⇒ 1 − 2μη + μ2κ2 ≥ 1 − 2μη + μ2η2

⇐⇒ κ2 ≥ η2

⇐⇒ κ ≥ η,

〈[(
μF − γf

)
+ l(I − V )

]
x − [(

μF − γf
)
+ l(I − V )

]
y, x − y

〉

= 〈(μF − γf
)
x − (

μF − γf
)
y, x − y〉 + l

〈
(I − V )x − (I − V )y, x − y

〉

≥ 〈(
μF − γf

)
x − (

μF − γf
)
y, x − y

〉

≥ (
μη − γρ

)‖x − y‖2, ∀x, y ∈ C.

(3.3)

Since

0 ≤ γρ < γ ≤ τ ≤ μη, (3.4)

it follows that (μF − γf) + l(I − V ) is strongly monotone with constant μη − γρ > 0. So the
variational inequality (3.2) has only one solution. Below we use z∞ ∈ Fix(T) to denote the
unique solution of VI (3.2).

The remainder of the proof is divided into two steps.
The first step is to prove that the net {xs,ts}s∈(0,1) is bounded. Indeed, set

ys,ts = sγf(xs,ts) +
(
I − sμF

)
Wtsxs,ts , (3.5)

whereWts = tsV + (1 − ts)T . Take a fixed p ∈ Fix(T) arbitrarily, then from (3.1) we obtain that
xs,ts = PCys,ts and

ys,ts − p = sγf(xs,ts) +
(
I − sμF

)
Wtsxs,ts − p

= s
(
γf(xs,ts) − μFWtsp

)
+
(
I − sμF

)
Wtsxs,ts −

(
I − sμF

)
Wtsp +Wtsp − p

= sγ
(
f(xs,ts) − f

(
p
))

+ s
(
γf

(
p
) − μFWtsp

)
+
(
I − sμF

)
Wtsxs,ts −

(
I − sμF

)
Wtsp

+ ts(V − I)p.
(3.6)

Since PC is the metric projection fromH onto C, utilizing Lemma 2.1, we have

〈
PCys,ts − ys,ts , PCys,ts − p

〉 ≤ 0. (3.7)
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Thus, utilizing Lemma 2.5, we get

∥∥xs,ts − p
∥∥2 =

〈
PCys,ts − ys,ts , PCys,ts − p

〉
+
〈
ys,ts − p, xs,ts − p

〉

≤ 〈
ys,ts − p, xs,ts − p

〉

= sγ
〈
f(xs,ts) − f

(
p
)
, xs,ts − p

〉
+ s

〈
γf

(
p
) − μFWtsp, xs,ts − p

〉

+
〈(
I − sμF

)
Wtsxs,ts −

(
I − sμF

)
Wtsp, xs,ts − p

〉
+ ts

〈
(V − I)p, xs,ts − p

〉

≤ sγ‖f(xs,ts) − f
(
p
)‖‖xs,ts − p‖ + s

〈
γf

(
p
) − μFWtsp, xs,ts − p

〉

+ ‖(I − sμF
)
Wtsxs,ts −

(
I − sμF

)
Wtsp‖‖xs,ts − p‖ + ts

〈
(V − I)p, xs,ts − p

〉

≤ sγρ‖xs,ts − p‖2 + s
〈
γf

(
p
) − μFWtsp, xs,ts − p

〉
+ (1 − sτ)

∥∥xs,ts − p
∥∥2

+ ts
〈
(V − I)p, xs,ts − p

〉

=
(
1 − s

(
τ − γρ

))∥∥xs,ts − p
∥∥2 + s

〈
γf

(
p
) − μFWtsp, xs,ts − p

〉

+ ts
〈
(V − I)p, xs,ts − p

〉
,

(3.8)

which hence implies that

∥∥xs,ts − p
∥∥2 ≤ 1

τ − γρ

[〈
γf

(
p
) − μFWtsp, xs,ts − p

〉
+
ts
s

〈
(V − I)p, xs,ts − p

〉]
. (3.9)

In particular,

‖xs,ts − p‖ ≤ 1
τ − γρ

[
‖γf(p) − μFWtsp‖ +

ts
s
‖(V − I)p‖

]
. (3.10)

Note that

‖Wtsp − p‖ = ts‖(V − I)p‖ ≤ ‖(V − I)p‖. (3.11)

Hence, we have

‖Wtsp‖ ≤ ‖p‖ + ‖(V − I)p‖. (3.12)

Since ts = O(s), as s → 0, (3.10) implies the boundedness of {xs,ts}, and the first step is
proved.
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The second step is to prove that the net xs,ts → z∞ ∈ Fix(T), as s → 0, where z∞ is the
unique solution of the VI (3.2). Indeed, observe that

‖xs,ts − Txs,ts‖ ≤ sγ‖f(xs,ts)‖ + ‖(I − sμF
)
Wtsxs,ts − Txs,ts‖

≤ sγ‖f(xs,ts)‖ + sμ‖FWtsxs,ts‖ + ‖Wtsxs,ts − Txs,ts‖
= sγ‖f(xs,ts)‖ + sμ‖FWtsxs,ts‖ + ts‖Vxs,ts − Txs,ts‖.

(3.13)

From (3.11), it follows that

‖FWtsxs,ts − Fp‖ = ‖FWtsxs,ts − FWtsp + FWtsp − Fp‖
≤ κ

(‖xs,ts − p‖ + ‖Wtsp − p‖)

≤ κ
(‖xs,ts − p‖ + ‖(V − I)p‖).

(3.14)

Since {xs,ts} is bounded when s → 0, (3.14) implies the boundedness of {FWtsxs,ts}.
Consequently, noticing that {xs,ts} and {FWtsxs,ts} are bounded when s → 0 (hence ts → 0),
we conclude from (3.13) that

‖xs,ts − Txs,ts‖ −→ 0. (3.15)

We now claim that {xs,ts}s∈(0,1) is relatively compact as s → 0 in the norm topology. To
see this, assume {sn} is a null sequence in (0, 1). Without loss of generality, we may assume
that xsn,tsn ⇀ x̂ which implies from (3.15) and Lemma 2.2 that x̂ ∈ Fix(T). It is clear that
FWtsn x̂ = F(tsnV x̂ + (1 − tsn)x̂) → Fx̂ as n → ∞. This implies that as n → ∞,

∣∣〈γf(x̂) − μFWtsn x̂, xsn,tsn − x̂
〉∣∣

=
∣∣〈γf(x̂) − μFx̂, xsn,tsn − x̂

〉
+
〈
μFx̂ − μFWtsn x̂, xsn,tsn − x̂

〉∣∣

≤ ∣∣〈γf(x̂) − μFx̂, xsn,tsn − x̂
〉∣∣ + μ‖Fx̂ − FWtsn x̂‖‖xsn,tsn − x̂‖ −→ 0.

(3.16)

We thus immediately get from (3.9) that xsn,tsn → x̂.
We next further claim that x̂ = z∞, the unique solution of the VI (3.2), which then

completes the proof. Indeed, observe that

(
μF − γf

)
xs,ts =

1
s

(
PCys,ts − ys,ts

) − 1
s
(I −Wts)xs,ts + μ(Fxs,ts − FWtsxs,ts). (3.17)
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Hence, utilizing Lemma 2.1, we deduce from the monotonicity of μF − γf and I −Wts that for
any fixed p ∈ Fix(T),

〈(
μF − γf

)
p, xs,ts − p

〉 ≤ 〈(
μF − γf

)
xs,ts , xs,ts − p

〉

=
1
s

〈
PCys,ts − ys,ts , PCys,ts − p

〉 − 1
s

〈
(I −Wts)xs,ts , xs,ts − p

〉

+ μ
〈
Fxs,ts − FWtsxs,ts , xs,ts − p

〉

≤ −1
s

〈
(I −Wts)xs,ts , xs,ts − p

〉
+ μ

〈
Fxs,ts − FWtsxs,ts , xs,ts − p

〉

= −1
s

〈
(I −Wts)xs,ts − (I −Wts)p, xs,ts − p

〉 − 1
s

〈
(I −Wts)p, xs,ts − p

〉

+ μ
〈
Fxs,ts − FWtsxs,ts , xs,ts − p

〉

≤ −1
s

〈
(I −Wts)p, xs,ts − p

〉
+ μ

〈
Fxs,ts − FWtsxs,ts , xs,ts − p

〉

=
ts
s

〈
(V − I)p, xs,ts − p

〉
+ μ

〈
Fxs,ts − FWtsxs,ts , xs,ts − p

〉
.

(3.18)

Now, since xsn,tsn → x̂, we have

Fxsn,tsn − FWtsnxsn,tsn = Fxsn,tsn − F
[
tsnVxsn,tsn + (1 − tsn)Txsn,tsn

] −→ Fx̂ − Fx̂ = 0. (3.19)

So, putting s = sn and t = tsn in (3.18) and letting n → ∞, we immediately conclude that

〈(
μF − γf

)
p, x̂ − p

〉 ≤ l
〈
(V − I)p, x̂ − p

〉
, ∀p ∈ Fix(T), (3.20)

that is,

〈[(
μF − γf

)
+ l(I − V )

]
p, x̂ − p

〉 ≤ 0, ∀p ∈ Fix(T). (3.21)

Upon replacing the p in the last inequality with x̂ + α(q − x̂) ∈ Fix(T), where α ∈ (0, 1) and
q ∈ Fix(T), we get

〈[(
μF − γf

)
+ l(I − V )

](
x̂ + α

(
q − x̂

))
, x̂ − q

〉 ≤ 0. (3.22)

Letting α → 0, we obtain the VI

〈[(
μF − γf

)
+ l(I − V )

]
x̂, x̂ − q

〉 ≤ 0, ∀q ∈ Fix(T). (3.23)

We immediately see that x̂ satisfies the VI (3.2) and therefore we must have x̂ = z∞ since z∞
is the unique solution of (3.2).
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Remark 3.2. (i) If ts = o(s) (i.e., l = 0), then the above argument shows that the net {xs,ts}
actually converges in norm to the unique solution of the variational inequality of finding
x∞ ∈ Fix(T) such that

〈(
μF − γf

)
x∞, p − x∞

〉 ≥ 0, ∀p ∈ Fix(T), (3.24)

which is also the unique fixed-point of the contraction PFix(T)(I − μF + γf), x∞ = PFix(T)(I −
μF + γf)x∞. In particular, if μ = 1, F = I, γ = τ = 1 and f is a ρ-contractive self-mapping on
C, then this is Theorem 3.2 in Xu [23].

(ii) The net {xs,t}s,t∈(0,1) does not converge, in general, as (s, t) → (0, 0) jointly, to the
unique solution x∞ ∈ S of the VI (b) in Section 1. As a matter of fact, if {xs,t}s,t∈(0,1) converges
to x∞ jointly as (s, t) → (0, 0), then (by (3.24) we would have the relation and the VI (b))

x∞ = PS

(
I − μF + γf

)
x∞ = PFix(T)

(
I − μF + γf

)
x∞ (3.25)

for all ρ-contraction f . In particular, if μ = 1, F = I and γ = τ = 1, then x∞ = PSf(x∞) =
PFix(T)f(x∞) for all ρ-contraction f . This implies that S = Fix(T) which is not true, in general.

(iii) Consider the case of l > 0. If x∞, the unique solution of (3.24), belongs to S, then,
clearly, x∞ = z∞. If x∞ /∈ S, the following example shows that there are, in general, no links
among z∞, S and x∞. Take

C = [0, 1], μ = 1, F = I, γ = τ = 1, T = I,

f(x) =
x

2
, V x = 1 − x, l = 1,

(3.26)

then Fix(T) = [0, 1]. Moreover, the unique solution x∞ of the variational inequality of finding
x∞ ∈ [0, 1] such that

〈(
μF − γf

)
x∞, z − x∞

〉 ≥ 0, ∀z ∈ [0, 1],
(
i.e.,

〈(
I − f

)
x∞, z − x∞

〉 ≥ 0, ∀z ∈ [0, 1]
) (3.27)

is x∞ = 0; the unique solution z∞ of the variational inequality of finding z∞ ∈ [0, 1] such that

〈[(
μF − γf

)
+ l(I − V )

]
z∞, z − z∞

〉 ≥ 0, ∀z ∈ [0, 1],
(
i.e.,

〈[(
I − f

)
+ (I − V )

]
z∞, z − z∞

〉 ≥ 0, ∀z ∈ [0, 1]
) (3.28)

is z∞ = 2/5, and the set S of solutions to the variational inequality of finding x ∈ [0, 1] such
that

〈(I − V )x, z − x〉 ≥ 0, ∀z ∈ [0, 1], (3.29)

is the singleton {1/2}.
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Remark 3.3. Compared with Theorem 2.1 of Cianciaruso et al. [24], our Theorem 3.1 improves
and extends their Theorem 2.1 [24] in the following aspects.

(i) The (self) contraction f : C → C in [24, Theorem 2.1] is extended to the case of
(possibly nonself) contraction f : C → H on a nonempty closed convex subset C
of H .

(ii) The convex combination of (self) contraction f and nonexpansive mapping Wts in
the implicit scheme (2.1) of Theorem 2.1 [24] is extended to the linear combination
of (possibly nonself) contraction f and hybrid steepest descent method involving
Wts .

(iii) In order to guarantee that the net {xs,ts} generated by the implicit scheme still lies
in C, the implicit scheme (2.1) in [24, Theorem 2.1] is extended to develop our new
implicit scheme (3.1) by virtue of the projection method.

(iv) The new technique of argument is applied to deriving our Theorem 3.1. For
instance, the characteristic properties (Lemma 2.4) of the metric projection play
a key role in proving the strong convergence of the net {xs,ts}s∈(0,1) in our
Theorem 3.1.

(v) If we put μ = 1, F = I, and γ = τ = 1, and let f be a contractive self-mapping on C
with coefficient ρ ∈ [0, 1), then our Theorem 3.1 reduces to Theorem 2.1 [24]. Thus,
our Theorem 3.1 covers Theorem 2.1 [24] as a special case.

4. The Case of l = ∞
In this section we examine the convergence of the net {xs,ts}s∈(0,1) along the curve where
ts/s → ∞, as s → 0. We will prove that the net converges strongly to a point x∞ ∈ S which
is the unique solution of the VI (b) in Section 1.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H . Assume that
F : C → H is a κ-Lipschitzian and η-strongly monotone operator with constants κ, η > 0, V, T :
C → C are nonexpansive mappings with Fix(T)/= ∅, and f : C → H is a ρ-contraction with
coefficient ρ ∈ [0, 1). Assume there holds the condition (A2) in Section 1. Let 0 < μ < 2η/κ2 and

0 < γ ≤ τ , where τ = 1 −
√
1 − μ(2η − μκ2). Let ts = t(s) satisfy lims→ 0ts/s = ∞, then the net

{xs,ts}s∈(0,1) defined by

xs,ts = PC

[
sγf(xs,ts) +

(
I − sμF

)
Wtsxs,ts

]
, (4.1)

whereWts = tsV + (1 − ts)T , strongly converges to x∞ ∈ S which is the unique solution of the VI (b).

Proof. The proof is divided into three steps, the first of which is to prove the boundedness of
{xs,ts}s∈(0,1). Indeed, let z ∈ S. By condition (A2), there exists ps ∈ Fix(Ws) such that ps → z
as s → 0. Now, set

ys,ts = sγf(xs,ts) +
(
I − sμF

)
Wtsxs,ts , (4.2)
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where Wts = tsV + (1 − ts)T , then from (4.1) we obtain that xs,ts = PCys,ts and

ys,ts − pts = sγf(xs,ts) +
(
I − sμF

)
Wtsxs,ts − pts

= sγ
(
f(xs,ts) − f

(
pts

))
+ s

(
γf − μF

)
pts +

(
I − sμF

)
Wtsxs,ts −

(
I − sμF

)
Wtspts .

(4.3)

Since PC is the metric projection fromH onto C, utilizing Lemma 2.1, we have

〈
PCys,ts − ys,ts , PCys,ts − pts

〉 ≤ 0. (4.4)

Thus, utilizing Lemma 2.5, we get

∥∥xs,ts − pts
∥∥2 =

〈
PCys,ts − ys,ts , PCys,ts − pts

〉
+
〈
ys,ts − pts , xs,ts − pts

〉

≤ 〈
ys,ts − pts , xs,ts − pts

〉

= sγ
〈
f(xs,ts) − f

(
pts

)
, xs,ts − pts

〉
+ s

〈(
γf − μF

)
pts , xs,ts − pts

〉

+
〈(
I − sμF

)
Wtsxs,ts −

(
I − sμF

)
Wtspts , xs,ts − pts

〉

≤ sγ
∥∥f(xs,ts) − f

(
pts

)∥∥∥∥xs,ts − pts
∥∥ + s

〈(
γf − μF

)
pts , xs,ts − pts

〉

+
∥∥(I − sμF

)
Wtsxs,ts −

(
I − sμF

)
Wtspts

∥∥∥∥xs,ts − pts
∥∥

≤ sγρ
∥∥xs,ts − pts

∥∥2 + s
〈(
γf − μF

)
pts , xs,ts − pts

〉
+ (1 − sτ)

∥∥xs,ts − pts
∥∥2

=
(
1 − s

(
τ − γρ

))∥∥xs,ts − pts
∥∥2 + s

〈(
γf − μF

)
pts , xs,ts − pts

〉
.

(4.5)

It follows that

∥∥xs,ts − pts
∥∥2 ≤ 1

τ − γρ

〈(
γf − μF

)
pts , xs,ts − pts

〉
. (4.6)

This implies immediately that

∥∥xs,ts − pts
∥∥ ≤ 1

τ − γρ

∥∥(γf − μF
)
pts

∥∥. (4.7)

From (4.7), the boundedness of {xs,ts}s∈(0,1) follows since {ps} is bounded.
The second step is to prove that the set of weak cluster points of {xs,ts}s∈(0,1), ωw(xs,ts),

is a subset of S; moreover, ωw(xs,ts) = ωS(xs,ts). First observe that the boundedness of {xs,ts},
(3.15), and Lemma 2.2 imply that ωw(xs,ts) ⊂ Fix(T).

Now, let w ∈ ωw(xs,ts) and assume that xn := xsn,tsn ⇀ w, where sn → 0. For
convenience, we write tn = tsn for all n; thus, tn/sn → ∞ as n → ∞. Now, take a fixed
x̂ ∈ Fix(T) arbitrarily and set

yn = snγf(xn) +
(
I − snμF

)
Wtnxn, (4.8)
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where Wtn = tnV + (1 − tn)T , then from (4.1) we obtain that xn = PCyn and

yn − x̂ = snγ
(
f(xn) − f(x̂)

)
+ s

(
γf(x̂) − μFWtnx̂

)
+
(
I − snμF

)
Wtnxn

− (
I − snμF

)
Wtnx̂ + tn(V − I)x̂.

(4.9)

Since PC is the metric projection fromH onto C, utilizing Lemma 2.1, we have

〈PCyn − yn, PCyn − x̂〉 ≤ 0. (4.10)

Thus, utilizing Lemma 2.5, we obtain that for a constantM ≥ supn{‖(γf −μFWtn)x̂‖‖xn− x̂‖},

‖xn − x̂‖2 = 〈PCyn − yn, PCyn − x̂〉 + 〈
yn − x̂, xn − x̂

〉

≤ 〈
yn − x̂, xn − x̂

〉

= snγ〈f(xn) − f(x̂), xn − x̂〉 + sn
〈(
γf − μFWtn

)
x̂, xn − x̂

〉

+
〈(
I − snμF

)
Wtnxn −

(
I − snμF

)
Wtnx̂, xn − x̂

〉
+ tn〈(V − I)x̂, xn − x̂〉

≤ snγ‖f(xn) − f(x̂)‖‖xn − x̂‖ + sn‖
(
γf − μFWtn

)
x̂‖‖xn − x̂‖

+ ‖(I − snμF
)
Wtnxn −

(
I − snμF

)
Wtnx̂‖‖xn − x̂‖ + tn〈(V − I)x̂, xn − x̂〉

≤ snγρ‖xn − x̂‖2 + snM + (1 − snτ)‖xn − x̂‖2 + tn〈(V − I)x̂, xn − x̂〉

=
(
1 − sn

(
τ − γρ

))‖xn − x̂‖2 + tn〈(V − I)x̂, xn − x̂〉 + snM.

(4.11)

It follows that

〈(I − V )x̂, xn − x̂〉 ≤ snM

tn
−→ 0, (4.12)

as sn/tn → 0. But xn ⇀ w, and we derive

〈(I − V )x̂, w − x̂〉 ≤ 0, ∀x̂ ∈ Fix(T). (4.13)

Upon replacing the x̂ in (4.13) with w + α(x̃ − w) ∈ Fix(T), where α ∈ (0, 1) and x̃ ∈ Fix(T),
we get

〈(I − V )(w + α(x̃ −w)), w − x̃〉 ≤ 0. (4.14)

Letting α → 0, we obtain the VI

〈(I − V )w,w − x̃〉 ≤ 0, ∀x̃ ∈ Fix(T). (4.15)

Therefore,w ∈ S.
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Next using condition (A2) again, we have a sequence ptn ∈ Fix(Wtn) such that ptn →
w. Then in relation (4.6), we replace z and pts withw and ptn , respectively, to derive

∥∥xn − ptn
∥∥2 ≤ 1

τ − γρ

〈(
γf − μF

)
ptn , xn − ptn

〉
. (4.16)

Now since (γf − μF)ptn → (γf − μF)w and xn − ptn ⇀ 0, taking the limit in (4.16), we
immediately get xn → w. Hence w ∈ ωS(xs,ts).

The third and final step is to prove that the net {xs,ts} converges in norm to x∞ =
PS(I − μf + γf)x∞. It suffices to prove that each norm limit point w ∈ ωS(xs,ts) solves the VI
(b) in Section 1. We still use the same subsequence {xn} of the net {xs,ts} such that xn → w
as shown in the second step. On the other hand, for every p ∈ S, by condition (A2), we have,
for each n, ptn ∈ Fix(Wtn), such that ptn → p as n → ∞. Observe that

(
μF − γf

)
xn =

1
sn

(
PCyn − yn

) − 1
sn

(I −Wtn)xn + μ(Fxn − FWtnxn), (4.17)

where yn = snγf(xn) + (I − snμF)Wtnxn and xn = PCyn. Utilizing Lemmas 2.1 and 2.5, we
deduce from the monotonicity of I −Wtn that

〈(
μF − γf

)
xn, xn − ptn

〉

=
1
sn

〈
PCyn − yn, PCyn − ptn

〉
− 1
sn

〈
(I −Wtn)xn, xn − ptn

〉
+ μ

〈
Fxn − FWtnxn, xn − ptn

〉

=
1
sn

〈
PCyn − yn, PCyn − ptn

〉
− 1
sn

〈
(I −Wtn)xn − (I −Wtn)ptn , xn − ptn

〉

+ μ
〈
Fxn − FWtnxn, xn − ptn

〉

≤ μ
〈
Fxn − FWtnxn, xn − ptn

〉
.

(4.18)

Note that Fxn − FWtnxn = Fxn − F[tnVxn + (1 − tn)Txn] → Fw − Fw = 0 as n → ∞. Passing
to the limit as n → ∞ in the last inequality, we conclude that

〈(
μF − γf

)
w,w − p

〉 ≤ 0, ∀p ∈ S. (4.19)

This implies that w satisfies the VI (b) in Section 1. Hence w = x∞, as required.

Remark 4.2. Comparedwith Theorem 3.1 of Cianciaruso et al. [24], our Theorem 4.1 improves
and extends their Theorem 3.1 [24] in the following aspects.

(i) The (self) contraction f : C → C in [24, Theorem 3.1] is extended to the case of
(possibly nonself) contraction f : C → H on a nonempty closed convex subset C
of H .
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(ii) The convex combination of (self) contraction f and nonexpansive mapping Wts in
the implicit scheme (3.1) of Theorem 3.1 [24] is extended to the linear combination
of (possibly nonself) contraction f and hybrid steepest descent method involving
Wts .

(iii) In order to guarantee that the net {xs,ts} generated by the implicit scheme still lies
in C, the implicit scheme (3.1) in [24, Theorem 3.1] is extended to develop our new
implicit scheme (4.1) by virtue of the projection method.

(iv) The new technique of argument is applied to deriving our Theorem 4.1. For
instance, the characteristic properties (Lemma 2.4) of the metric projection play
a key role in proving the strong convergence of the net {xs,ts}s∈(0,1) in our
Theorem 4.1.

(v) If we put μ = 1, F = I, and γ = τ = 1, and let f be a contractive self-mapping on C
with coefficient ρ ∈ [0, 1), then our Theorem 4.1 reduces to Theorem 3.1 [24]. Thus,
our Theorem 4.1 covers Theorem 3.1 [24] as a special case.
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