
Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2011, Article ID 754702, 28 pages
doi:10.1155/2011/754702

Research Article
A Generalized Hybrid Steepest-Descent Method
for Variational Inequalities in Banach Spaces

D. R. Sahu,1 N. C. Wong,2 and J. C. Yao3

1 Department of Mathematics, Banaras Hindu University, Varanasi 221005, India
2 Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
3 Center for General Education, Kaohsiung Medical University, Kaohsiung 807, Taiwan

Correspondence should be addressed to N. C. Wong, wong@math.nsysu.edu.tw

Received 13 September 2010; Accepted 9 December 2010

Academic Editor: S. Al-Homidan

Copyright q 2011 D. R. Sahu et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The hybrid steepest-descent method introduced by Yamada (2001) is an algorithmic solution to
the variational inequality problem over the fixed point set of nonlinear mapping and applicable to
a broad range of convexly constrained nonlinear inverse problems in real Hilbert spaces. Lehdili
and Moudafi (1996) introduced the new prox-Tikhonov regularization method for proximal point
algorithm to generate a strongly convergent sequence and established a convergence property for
it by using the technique of variational distance in Hilbert spaces. In this paper, motivated by
Yamada’s hybrid steepest-descent and Lehdili and Moudafi’s algorithms, a generalized hybrid
steepest-descent algorithm for computing the solutions of the variational inequality problem over
the common fixed point set of sequence of nonexpansive-type mappings in the framework of
Banach space is proposed. The strong convergence for the proposed algorithm to the solution
is guaranteed under some assumptions. Our strong convergence theorems extend and improve
certain corresponding results in the recent literature.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be
a nonempty closed convex subset of H and D a nonempty closed convex subset of C.

It is well known that the standard smooth convex optimization problem [1], given
a convex, Fréchet-differentiable function f : H → R and a closed convex subset C of H, find
a point x∗ ∈ C such that

f(x∗) = min
{
x ∈ C : f(x)

}
(1.1)
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can be formulated equivalently as the variational inequality problem VIP(∇f,H) over C (see
[2, 3]):

〈∇fx∗, v − x∗〉 ≥ 0 ∀v ∈ C, (1.2)

where ∇f : H → H is the gradient of f .
In general, for a nonlinear mapping F : H → H over C, the variational inequality

problem VIP(F, C) over D is to find a point x∗ ∈ D such that

〈Fx∗, v − x∗〉 ≥ 0 ∀v ∈ D. (1.3)

It is important to note that the theory of variational inequalities has been playing
an important role in the study of many diverse disciplines, for instance, partial differential
equations, optimal control, optimization, mathematical programming, mechanics, finance,
and so forth, see, for example, [1, 2, 4–6] and references therein.

It is also known that if F is Lipschitzian and strongly monotone, then for small μ > 0,
the mapping PC(I − μF) is a contraction, where PC is the metric projection from H onto C
(see Section 2.3). In this case, the Banach contraction principle guarantees that VIP(F, C) has
a unique solution x∗ and the sequence of Picard iteration process, given by,

xn+1 = PC

(
I − μF)xn ∀n ∈ N (1.4)

converges strongly to x∗. This simplest iterative method for approximating the unique
solution of VIP(F, C) over C is called the projected gradient method [1]. It has been used widely
in many practical problems, due, partially, to its fast convergence.

The projected gradient method was first proposed by Goldstein [7] and Levitin and
Polyak [8] for solving convexly constrained minimization problems. This method is regarded
as an extension of the steepest-descent or Cauchy algorithm for solving unconstrained
optimization problems. It now has many variants in different settings, and supplies
a prototype for various more advanced projection methods. In [9], the first author introduced
the normal S-iteration process and studied an iterative method for approximating the unique
solution of VIP(F, C) over C as follows:

xn+1 = PC

(
I − μF)[(1 − αn)xn + αnPC

(
I − μF)xn

] ∀n ∈ N. (1.5)

Note that the rate of convergence of iterative method (1.5) is faster than projected gradient
method (1.4), see [9].

The projected gradient method requires repetitive use of PC, although the closed
form expression of PC is not always known in many situations. In order to reduce the
complexity probably caused by the projection mapping PC, Yamada (see [6]) introduced a
hybrid steepest-descent method for solving the problem VIP(F,H). Here is the idea. Suppose
T (e.g., T = PC) is a mapping from a Hilbert space H into itself with a nonempty fixed point
set F[T], and F is a Lipschitzian and strongly monotone over H. Starting with an arbitrary
initial guess x1 in H, one generates a sequence {xn} by the following algorithm:

xn+1 := T[xn − λnF(xn)] ∀n ∈ N, (1.6)
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where {λn} is a slowly diminishing sequence. Yamada [6, Theorem 3.3, page 486] proved that
the sequence {xn} defined by (1.6) converges strongly to a unique solution of VIP(F,H) over
F[T].

Let X be a real Banach space with dual space X∗. We denote by J the normalized
duality mapping from X into 2X

∗
defined by

J(x) :=
{
f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2

}
, x ∈ X, (1.7)

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that the normalized
duality mapping is single-valued if X smooth, see [10]. Let C be a nonempty subset of a real
Banach space X. A mapping T : X → X is said to be

(1) pseudocontractive over C if for each x, y ∈ C, there exists j(x−y) ∈ J(x−y) satisfying

〈Tx − Ty, j
(
x − y

)〉 ≤ ‖x − y‖2, (1.8)

(2) δ-strongly accretive over C if for each x, y ∈ C, there exist a constant δ > 0 and
j(x − y) ∈ J(x − y) satisfying

〈Tx − Ty, j
(
x − y

)〉 ≥ δ‖x − y‖2. (1.9)

We consider the following general variational inequality problem over the fixed point
set of nonlinear mapping in the framework of Banach space.

Problem 1.1. (general variational inequality problem over the fixed point set of nonlinear mapping).
Let C be a nonempty closed convex subset of a real smooth Banach space X. Let T : C → C
be a (possibly nonlinear) mapping of which fixed point set F[T] is a nonempty closed convex
set. Then for a given strongly accretive operator F : X → X over C, the general variational
inequality problem VIP(F, C) over F[T] is

find a point x∗ ∈ F[T] such that 〈Fx∗, J(v − x∗)〉 ≥ 0 ∀v ∈ F[T]. (1.10)

Recently, the method (1.6) has been applied successfully to signal processing, inverse
problems, and so on [11–13]. This situation induces a natural question.

Question 1.2. Does sequence {xn}, defined by (1.6), converges strongly a solution to a general
variational inequality problem in the Banach space setting, that is, Problem 1.1 in a case where
T : C → C is given as such a nonexpansive mapping?

We now consider the following variational inclusion problem:

find z ∈ C such that 0 ∈ Az, (P)

in the framework of Banach space X, where A : X → 2X is a multivalued operator acting
on C ⊆ X. In the sequel, we assume that S = A−1(0), the set of solutions of Problem (P) is
nonempty.
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The Problem (P) can be regarded as a unified formulation of several important
problems. For an appropriate choice of the operator A, Problem (P) covers a wide range of
mathematical applications; for example, variational inequalities, complementarity problems,
and nonsmooth convex optimization. Problem (P) has applications in physics, economics,
and in several areas of engineering. In particular, if ψ : H → R ∪ {∞} is a proper, lower
semicontinuous convex function, its subdifferential ∂ψ = A is a maximal monotone operator,
and a point z ∈ H minimizes ψ if and only if 0 ∈ ∂ψ(z).

One of the most interesting and important problems in the theory of maximal
monotone operators is to find an efficient iterative algorithm to compute approximately
zeroes of maximal monotone operators. One method for solving zeros of maximal monotone
operators is proximal point algorithm. Let A be a maximal monotone operator in a Hilbert
space H. The proximal point algorithm generates, for starting x1 ∈ H, a sequence {xn} in H
by

xn+1 = Jcnxn ∀n ∈ N, (1.11)

where Jcn := (I + cnA)−1 is the resolvent operator associated with the operator A, and {cn}
is a regularization sequence in (0,∞). This iterative procedure is based on the fact that the
proximal map Jcn is single-valued and nonexpansive. This algorithm was first introduced by
Martinet [14]. If ψ : H → R ∪ {∞} is a proper lower semicontinuous convex function, then
the algorithm reduces to

xn+1 = argmin
y∈H

{
ψ
(
y
)
+

1
2cn

‖xn − y‖2
}

∀n ∈ N. (1.12)

Rockafellar [15] studied the proximal point algorithm in the framework of Hilbert space and
he proved the following.

Theorem 1.3. Let H be a Hilbert space and A ⊂ H ×H a maximal monotone operator. Let {xn} be
a sequence in H defined by (1.11), where {cn} is a sequence in (0,∞) such that lim infn→∞cn > 0.
If S/= ∅, then the sequence {xn} converges weakly to an element of S.

Such weak convergence is global; that is, the just announced result holds in fact for
any x1 ∈ H.

Further, Rockafellar [15] posed an open question of whether the sequence generated
by (1.11) converges strongly or not. This question was solved by Güler [16], who constructed
an example for which the sequence generated by (1.11) converges weakly but not strongly.
This brings us to a natural question of how to modify the proximal point algorithm so that
strongly convergent sequence is guaranteed. The Tikhonov method which generates a sequence
{x̃n} by the rule

x̃n = JAμn
u ∀n ∈ N, (1.13)

where u ∈ H and μn > 0 such that μn → ∞ is studied by several authors (see, e.g., Takahashi
[17] and Wong et al. [18]) to answer the above question.
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In [19], Lehdili and Moudafi combined the technique of the proximal map and the
Tikhonov regularization to introduce the prox-Tikhonov method which generates the sequence
{xn} by the algorithm

xn+1 = JAn

λn
xn ∀n ∈ N, (1.14)

where An = μnI + A, μn > 0 is viewed as a Tikhonov regularization of A. Note that An is
strongly monotone, that is, 〈x − x′, y − y′〉 ≥ μn‖x − x′‖2 for all (x, y), (x′, y′) ∈ G(An), where
G(An) is graph of An.

Using the technique of variational distance, Lehdili and Moudafi [19] were able to
prove strong convergence of the algorithm (1.14) for solving Problem (P) when A is maximal
monotone operator on H under certain conditions imposed upon the sequences {λn} and
{μn}.

It should be also noted that An is now a maximal monotone operator, hence {JAn

λn
} is

a sequence of nonexpansive mappings.
The main objective of this article is to solve the proposed Problem 1.1. To achieve

this goal, we present an existence theorem for Problem 1.1. Motivated by Yamada’s hybrid
steepest-descent and Lehdili and Moudafi’s algorithms (1.6) and (1.14), we also present an
iterative algorithm and investigate the convergence theory of the proposed algorithm for
solving Problem 1.1. The outline of this paper is as follows. In Section 2, we present some
theoretical tools which are needed in the sequel. In Section 3, we present (Theorem 3.3)
the existence and uniqueness of solution of Problem 1.1 in a case when T : C → C
is not necessarily nonexpansive mapping. In Section 4, we propose an iterative algorithm
(Algorithm 4.1), as a generalization of Yamada’s hybrid steepest-descent and Lehdili and
Moudafi’s algorithms (1.6) and (1.14), for computing to a unique solution of the variational
inequality VIP(F, C) over

⋂
n∈N F[Tn] in the framework of Banach space. In Section 5, we

apply our result to the problem of finding a common fixed point of a countable family of
nonexpansive mappings and the solution of Problem (P). Our strong convergence theorems
extend and improve corresponding results of Ceng et al. [20]; Ceng et al. [21]; Lehdili and
Moudafi [19]; Sahu [9]; and Yamada [6].

2. Preliminaries and Notations

2.1. Derivatives of Functionals

Let X be a real Banach space. In the sequel, we always use SX to denote the unit sphere
SX = {x ∈ X : ‖x‖ = 1}. Then X is said to be

(i) strictly convex if x, y ∈ SX with x /=y ⇒ ‖(1 − λ)x + λy‖ < 1 for all λ ∈ (0, 1);

(ii) smooth if the limit limt→ 0((‖x + ty‖ − ‖x‖)/t) exists for each x and y in SX . In this
case, the norm of X is said to be Gâteaux differentiable.

The norm of X is said to be uniformly Gâteaux differentiable if for each y ∈ SX , this limit is
attained uniformly for x ∈ SX .

It is well known that every uniformly smooth space (e.g., Lp space, 1 < p < ∞) has
a uniformly Gâteaux-differentiable norm (see, e.g., [10]).
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Let U be an open subset of a real Hilbert space H. Then, a function Θ : H → R ∪ {∞}
is called Gâteaux differentiable [22, page 135] on U if for each u ∈ U, there exists a(u) ∈ H
such that

lim
t→ 0

Θ(u + th) −Θ(u)
t

= 〈a(u), h〉 ∀h ∈ H. (2.1)

Then, Θ′ : U → H : u → a(u) is called the Gâteaux derivative of Θ on U.

Example 2.1 (see [6]). Suppose that h ∈ H, β ∈ R and Q : H → H is a bounded linear,
self-adjoint, that is, 〈Q(x), y〉 = 〈x,Q(y)〉 for all x, y ∈ H, and strongly positive mapping,
that is, 〈Q(x), x〉 ≥ α‖x‖2 for all x ∈ H and for some α > 0. Define the quadratic function
Θ : H → R by

Θ(x) :=
1
2
〈Q(x), x〉 − 〈h, x〉 + β ∀x ∈ H. (2.2)

Then, the Gâteaux derivative Θ′(x) = Q(x) − β is ‖Q‖-Lipschitzian and α-strongly monotone
on H.

2.2. Lipschitzian Type Mappings

Let C be a nonempty subset of a real Banach space X and let S1, S2 : C → X be two mappings.
We denote B(C), the collection of all bounded subsets of C. The deviation between S1 and S2

on B ∈ B(C), denoted by DB(S1, S2), is defined by

DB(S1, S2) = sup{‖S1x − S2x‖ : x ∈ B}. (2.3)

A mapping T : C → X is said to be

(1) L-Lipschitzian if there exists a constant L ∈ (0,∞) such that ‖Tx−Ty‖ ≤ L‖x−y‖ for
all x, y ∈ C;

(2) nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C;

(3) strongly pseudocontractive if for each x, y ∈ C, there exist a constant k ∈ (0, 1) and
j(x − y) ∈ J(x − y) satisfying

〈Tx − Ty, j
(
x − y

)〉 ≤ k‖x − y‖2, (2.4)

(4) λ-strictly pseudocontractive (see [23]) if for each x, y ∈ C, there exist a constant
λ > 0 and j(x − y) ∈ J(x − y) such that

〈Tx − Ty, j
(
x − y

)〉 ≤ ‖x − y‖2 − λ‖x − y − (
Tx − Ty

)‖2. (2.5)

The inequality (2.5) can be restated as

〈x − y − (
Tx − Ty

)
, j
(
x − y

)〉 ≥ λ‖x − y − (
Tx − Ty

)‖2. (2.6)
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In Hilbert spaces, (2.5) (and so (2.6)) is equivalent to the following inequality

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k‖x − y − (
Tx − Ty

)‖2, (2.7)

where k = 1 − 2λ. From (2.6), one can prove that if T is λ-strict pseudocontractive, then
T is Lipschitz continuous with the Lipschitz constant L = (1 + λ)/λ (see, Proposition 3.1).
Throughout the paper, we assume that Lλ,δ :=

√
(1 − δ)/λ.

Fact 2.2 (see [10, Corollary 5.7.15]). Let C be a nonempty closed convex subset of a Banach
space X and T : C → C a continuous strongly pseudocontractive mapping. Then T has
a unique fixed point in C.

Fix a sequence {an} in [0,∞) with an → 0 and let {Tn} be a sequence of mappings
from C into X. Then {Tn} is called a sequence of asymptotically nonexpansive mappings if
there exists a sequence {kn} in [1,∞) with limn→∞kn = 1 such that

‖Tnx − Tny‖ ≤ kn‖x − y‖ ∀x, y ∈ C, n ∈ N. (2.8)

Motivated by the notion of nearly nonexpansive mappings (see [10, 24]), we say {Tn} is a
sequence of nearly nonexpansive mappings if

‖Tnx − Tny‖ ≤ ‖x − y‖ + an ∀x, y ∈ C, n ∈ N. (2.9)

Remark 2.3. If {Tn} is a sequence of asymptotically nonexpansive mappings with bounded
domain, then {Tn} is a sequence of nearly nonexpansive mappings. To see this, let {Tn}
be a sequence of asymptotically nonexpansive mappings with sequence {kn} defined on
a bounded set C with diameter diam(C). Fix an := (kn − 1)diam(C). Then,

‖Tnx − Tny‖ ≤ ‖x − y‖ + (kn − 1)‖x − y‖ ≤ ‖x − y‖ + an (2.10)

for all x, y ∈ C and n ∈ N.

We prove the following proposition.

Proposition 2.4. Let C be a closed bounded set of a Banach space X and {Tn} a sequence of
nearly nonexpansive self-mappings of C with sequence {an} such that

∑∞
n=1 DC(Tn, Tn+1) <

∞. Then, for each x ∈ C, {Tnx} converges strongly to some point of C. Moreover, if T is
a mapping of C into itself defined by Tz = limn→∞Tnz for all z ∈ C, then T is nonexpansive
and limn→∞DC(Tn, T) = 0.

Proof. The assumption
∑∞

n=1 DC(Tn, Tn+1) < ∞ implies that
∑∞

n=1 ‖Tnx − Tn+1x‖ < ∞ for all
z ∈ C. Hence {Tnz} is a Cauchy sequence for each z ∈ C. Hence, for x ∈ C, {Tnx} converges
strongly to some point in C. Let T be a mapping of C into itself defined by Tz = limn→∞Tnz
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for all z ∈ C. It is easy to see that T is nonexpansive. For z ∈ C and m,n ∈ N with m > n, we
have

‖Tnx − Tmx‖ ≤
m−1∑

k=n

‖Tkx − Tk+1x‖

≤
m−1∑

k=n

DC(Tk, Tk+1)

≤
∞∑

k=n

DC(Tk, Tk+1).

(2.11)

Then

‖Tnx − Tx‖ = lim
m→∞

‖Tnx − Tmx‖ ≤
∞∑

k=n

DC(Tk, Tk+1) ∀x ∈ C, n ∈ N, (2.12)

which implies that

DC(Tn, T) ≤
∞∑

k=n

DC(Tk, Tk+1) ∀n ∈ N. (2.13)

Therefore, limn→∞DC(Tn, T) = 0.

2.3. Nonexpansive Mappings and Fixed Points

A closed convex subset C of a Banach space X is said to have the fixed-point property for
nonexpansive self-mappings if every nonexpansive mapping of a nonempty closed convex
bounded subset M of C into itself has a fixed point in M.

A closed convex subset C of a Banach space X is said to have normal structure if for
each closed convex bounded subset of D of C which contains at least two points, there exists
an element x ∈ D which is not a diametral point of D. It is well known that a closed convex
subset of a uniformly smooth Banach space has normal structure, see [10] for more details.

The following result was proved by Kirk [25].

Fact 2.5 (Kirk [25]). Let X be a reflexive Banach space and let C be a nonempty closed convex
bounded subset of X which has normal structure. Let T be a nonexpansive mapping of C into
itself. Then F[T] is nonempty.

A subset C of a Banach space X is called a retract of X if there exists a continuous
mapping P from X onto C such that Px = x for all x in C. We call such P a retraction of X
onto C. It follows that if a mapping P is a retraction, then Py = y for all y in the range of
P . A retraction P is said to be sunny if P(Px + t(x − Px)) = Px for each x in X and t ≥ 0.
If a sunny retraction P is also nonexpansive, then C is said to be a sunny nonexpansive retract of
X.
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Let C be a nonempty subset of a Banach space X and let x ∈ X. An element y0 ∈ C is
said to be a best approximation to x if ‖x−y0‖ = d(x,C), where d(x,C) = infy∈C‖x−y‖. The set
of all best approximations from x to C is denoted by

PC(x) =
{
y ∈ C : ‖x − y‖ = d(x,C)

}
. (2.14)

This defines a mapping PC from X into 2C and is called the nearest point projection
mapping (metric projection mapping) onto C. It is well known that if C is a nonempty closed
convex subset of a real Hilbert space H, then the nearest point projection PC from H onto C
is the unique sunny nonexpansive retraction of H onto C. It is also known that PCx ∈ C and

〈
x − PCx, PCx − y

〉 ≥ 0 ∀x ∈ H, y ∈ C. (2.15)

Let F be a monotone mapping of H into H over C ⊆ H. In the context of the variational
inequality problem, the characterization of projection (2.15) implies

x∗ ∈ VIP(F, C) ⇐⇒ x∗ = PC

(
x∗ − μAx∗) ∀μ > 0. (2.16)

We know the following fact concerning nonexpansive retraction.

Fact 2.6 (Goebel and Reich [26, Lemma 13.1]). Let C be a convex subset of a real smooth
Banach space X, D a nonempty subset of C, and P a retraction from C onto D. Then the
following are equivalent:

(a) P is a sunny and nonexpansive.

(b) 〈x − Px, J(z − Px)〉 ≤ 0 for all x ∈ C, z ∈ D.

(c) 〈x − y, J(Px − Py)〉 ≥ ‖Px − Py‖2 for all x, y ∈ C.

Fact 2.7 (Wong et al. [18, Proposition 6.1]). Let C be a nonempty closed convex subset of
a strictly convex Banach space X and let λi > 0 (i = 1, 2, . . . ,N) such that

∑N
i=1 λi = 1. Let

T1, T2, . . . , TN : C → C be nonexpansive mappings with
⋂N

i=1 F(Ti)/= ∅ and let T =
∑N

i=1 λiTi.
Then T is nonexpansive from C into itself and F(T) =

⋂N
i=1 F(Ti).

Fact 2.8 (Bruck [27]). Let C be a nonempty closed convex subset of a strictly convex Banach
space X. Let {Sk} be a sequence nonexpansive mappings of C into itself with

⋂∞
k=1 F[Sk]/= ∅

and {βk} sequence of positive real numbers such that
∑∞

k=1 βk = 1. Then the mapping T =∑∞
k=1 βkSk is well defined on C and F[T] =

⋂∞
k=1 F[Sk].

2.4. Accretive Operators and Zero

Let X be a real Banach space X. For an operator A : X → 2X , we define its domain, range,
and graph as follows:

D(A) = {x ∈ X : Ax/= ∅}, R(A) = ∪{Az : z ∈ D(A)},
G(T) =

{(
x, y

) ∈ X ×X : x ∈ D(A), y ∈ Ax
}
,

(2.17)
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respectively. Thus, we write A : X → 2X as follows: A ⊂ X × X. The inverse A−1 of A is
defined by

x ∈ A−1y ⇐⇒ y ∈ Ax. (2.18)

The operator A is said to be accretive if, for each xi ∈ D(A) and yi ∈ Axi (i = 1, 2), there is
j ∈ J(x1 − x2) such that 〈y1 − y2, j〉 ≥ 0. An accretive operator A is said to be maximal accretive
if there is no proper accretive extension of A and m-accretive if R(I + A) = X (it follows that
R(I + rA) = X for all r > 0). If A is m-accretive, then it is maximal accretive (see Fact 2.10),
but the converse is not true in general. If A is accretive, then we can define, for each λ > 0,
a nonexpansive single-valued mapping Jλ : R(1+λA) → D(A) by Jλ = (I +λA)−1. It is called
the resolvent of A. An accretive operator A defined on X is said to satisfy the range condition if
D(A) ⊂ R(1 + λA) for all λ > 0, where D(A) denotes the closure of the domain of A. It is well
known that for an accretive operator A which satisfies the range condition, A−1(0) = F(JA

λ
) for

all λ > 0. We also define the Yosida approximation Ar by Ar = (I − JAr )/r. We know that Arx ∈
AJAr x for all x ∈ R(I + rA) and ‖Arx‖ ≤ |Ax| = inf{‖y‖ : y ∈ Ax} for all x ∈ D(A)∩R(I + rA).
We also know the following [28]: for each λ, μ > 0 and x ∈ R(I +λA)∩R(I +μA), it holds that

‖Jλx − Jμx‖ ≤
∣∣λ − μ

∣∣

λ
‖x − Jλx‖. (2.19)

Let f be a continuous linear functional on �∞. We use fn(xn+m) to denote

f(xm+1, xm+2, xm+3, . . . , xm+n, . . .), (2.20)

for m = 0, 1, 2, . . .. A continuous linear functional j on l∞ is called a Banach limit if ‖j‖∗ = j(1) =
1 and jn(xn) = jn(xn+1) for each x = (x1, x2, . . .) in l∞.

Fix any Banach limit and denote it by LIM. Note that ‖LIM‖∗ = 1,

lim inf
n→∞

tn ≤ LIMntn ≤ lim sup
n→∞

tn,

LIMntn = LIMntn+1, ∀(tn) ∈ l∞.
(2.21)

The following facts will be needed in the sequel for the proof of our main results.

Fact 2.9 (Ha and Jung [29, Lemma 1]). Let X be a Banach space with a uniformly Gâteaux-
differentiable norm, C a nonempty closed convex subset of X, and {xn} a bounded sequence
in X. Let LIM be a Banach limit and y ∈ C such that LIMn‖yn − y‖2 = infx∈CLIMn‖yn − x‖2.
Then LIMn〈x − y, J(xn − y)〉 ≤ 0 for all x ∈ C.

Fact 2.10 (Cioranescu [30]). Let X be a Banach space and let A : X → 2X be an m-accretive
operator. Then A is maximal accretive. If H is a Hilbert space, then A : H → 2H is maximal
accretive if and only if it is m-accretive.
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3. Existence and Uniqueness of Solutions of VIP(F, C)
In this section, we deal with the existence and uniqueness of the solution of Problem 1.1 in
a case where T : C → C is given as such a pseudocontractive mapping.

The following propositions will be used frequently throughout the paper.

Proposition 3.1. Let C be a nonempty subset of a real smooth Banach space X and F : X → X
an operator over C. Then

(a) if F is λ-strictly pseudocontractive, then F is Lipschitzian with constant 1 + 1/λ;

(b) if F is both δ-strongly accretive and λ-strictly pseudocontractive over C with λ+δ >
1, then I − F is a contraction with Lipschitz constant Lλ,δ;

(c) if τ ∈ (0, 1) is a fixed number and F is both δ-strongly accretive and λ-strictly
pseudocontractive over C with λ + δ > 1 and R(I − τF) ⊆ C, then I − τF : C → C is
a contraction mapping with Lipschitz constant 1 − (1 − Lλ,δ)τ .

Proof. (a) Let x, y ∈ C. From (2.6), we have

λ‖x − y − (Fx − Fy)‖2 ≤ 〈x − y − (Fx − Fy), J(x − y
)〉

≤ ‖x − y − (Fx − Fy)‖‖x − y‖,
(3.1)

which gives us

‖x − y − (Fx − Fy)‖ ≤ 1
λ
‖x − y‖. (3.2)

Thus,

‖Fx − Fy‖ ≤ ‖x − y‖ + ‖x − y − (Fx − Fy)‖ ≤
(

1 +
1
λ

)
‖x − y‖. (3.3)

Hence, F is Lipschitzian with constant 1 + 1/λ.
(b) Let x, y ∈ C. Further, from (2.6), we have

λ‖x − y − (Fx − Fy)‖2 ≤ ‖x − y‖2 − 〈Fx − Fy, J(x − y
)〉

≤ (1 − δ)‖x − y‖2.
(3.4)

Observe that

λ + δ > 1 ⇐⇒ Lλ,δ ∈ (0, 1). (3.5)

Hence

‖x − y − (Fx − Fy)‖ ≤
√

1 − δ

λ
‖x − y‖ = Lλ,δ‖x − y‖. (3.6)
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(c) Let x, y ∈ C and fixed a number τ ∈ (0, 1). Assume that λ+δ > 1 and R(I−τF) ⊆ C.
Since I − F is a contraction with Lipschitz constant Lλ,δ, we have

‖(I − τF)x − (I − τF)y‖ ≤ ‖x − y − τ
(Fx − Fy)‖

= ‖(1 − τ)
(
x − y

)
+ τ

[
(I − F)x − (I − F)y]‖

≤ (1 − τ)‖x − y‖ + τ‖(I − F)x − (I − F)y‖
≤ (1 − (1 − Lλ,δ)τ)‖x − y‖.

(3.7)

Therefore, I−τF : C → C is a contraction mapping with Lipschitz constant 1−(1−Lλ,δ)τ .

Proposition 3.2. Let C be a nonempty closed convex subset of a real smooth Banach space X.
Let T : C → C be a continuous pseudocontractive mapping and let F : X → X be both δ-
strongly accretive and λ-strictly pseudocontractive over C with λ+δ > 1 and R(I−τF) ⊆ C for
each τ ∈ (0, 1). Assume that C has the fixed-point property for nonexpansive self-mappings.
Then one has the following.

(a) For each t ∈ (0, 1), one chooses a number μt ∈ (0, 1) arbitrarily, there exists a unique
point vt of C defined by

vt = (1 − t)Tvt + t
(
I − μtF

)
vt. (3.8)

(b) If F[T]/= ∅ and vt is a unique point of C defined by (3.8), then

(i) {vt} is bounded,
(ii) 〈F(vt), J(vt − v)〉 ≤ 0 for all v ∈ F[T].

Proof. (a) For each t ∈ (0, 1), we choose a number μt ∈ (0, 1) arbitrarily and then the mapping
Gt : C → C defined by

Gtv = (1 − t)Tv + t
(
I − μtF

)
v ∀v ∈ C (3.9)

is continuous and strongly pseudocontractive with constant 1 − (1 − Lλ,δ)tμt. Indeed, for all
x, y ∈ C, by Proposition 3.1 we have

〈Gtx −Gty, J
(
x − y

)〉 = (1 − t)〈Tx − Ty, J
(
x − y

)〉 + t〈(I − μtF
)
x − (

I − μtF
)
y, J

(
x − y

)〉

≤ (1 − t)‖x − y‖2 + t‖(I − μtF
)
x − (

I − μtF
)
y‖‖x − y‖

≤ [
1 − (1 − Lλ,δ)tμt

]‖x − y‖2.

(3.10)

By Fact 2.2, there exists a unique fixed point vt of Gt in C defined by

vt = (1 − t)Tvt + t
(
I − μtF

)
vt. (3.11)
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(b) Assume that F[T]/= ∅. Take any p ∈ F[T]. Using (3.8), we have

〈vt −
[
(1 − t)p + t

(
I − μtF

)
vt

]
, J
(
vt − p

)〉
= 〈(1 − t)Tvt + t

(
I − μtF

)
vt −

[
(1 − t)p + t

(
I − μtF

)
vt

]
, J
(
vt − p

)〉
= (1 − t)〈Tvt − p, J

(
vt − p

)〉

≤ (1 − t)‖vt − p‖2.

(3.12)

Observe that

〈vt −
[
(1 − t)p + t

(
I − μtF

)
vt

]
, J
(
vt − p

)〉 = 〈(1 − t)
(
vt − p

)
+ t

[
vt −

(
I − μtF

)
vt

]
, J
(
vt − p

)〉

= (1 − t)‖vt − p‖2 + tμt〈F(vt), J
(
vt − p

)〉.
(3.13)

Thus,

(1 − t)‖vt − p‖2 + tμt〈F(vt), J
(
vt − p

)〉 = 〈vt −
[
(1 − t)p + t

(
I − μtF

)
vt

]
, J
(
vt − p

)〉

≤ (1 − t)‖vt − p‖2,

(3.14)

which implies that

〈F(vt), J
(
vt − p

)〉 ≤ 0. (3.15)

Since F is δ-strongly accretive, we have

δ‖vt − p‖2 ≤ 〈F(vt) − F(p), J(vt − p
)〉

= 〈F(vt), J
(
vt − p

)〉 − 〈F(p), J(vt − p
)〉

≤ 〈−F(p), J(vt − p
)〉

≤ ‖F(p)‖‖vt − p‖,

(3.16)

which implies that

δ‖vt − p‖ ≤ ‖F(p)‖. (3.17)

It shows that {vt} is bounded.

Now, we are ready to present the main result of this section.

Theorem 3.3. Let C be a nonempty closed convex subset of a real reflexive Banach space X with
a uniformly Gâteaux-differentiable norm. Let T : C → C be a continuous pseudocontractive mapping
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with F[T]/= ∅ and let F : X → X be both δ-strongly accretive and λ-strictly pseudocontractive over
C with λ + δ > 1 and R(I − τF) ⊆ C for each τ ∈ (0, 1). Assume that C has the fixed-point property
for nonexpansive self-mappings. Then {vt} converges strongly as t → 0+ to a unique solution x∗ of
VIP(F, C) over F[T].

Proof. By Proposition 3.2, {vt : t ∈ (0, 1)} is bounded. Since F is a Lipschitzian mapping, it
follows that {Fvt : t ∈ (0, 1)} is bounded. From (3.8), we have

Tvt = vt +
tμt

1 − t
F(vt) ∀t ∈ (0, 1). (3.18)

and hence

‖Tvt‖ ≤ ‖vt‖ +
tμt

1 − t
‖F(vt)‖ ≤ ‖vt‖ + t

1 − t
‖F(vt)‖ ∀t ∈ (0, 1). (3.19)

Noticing that limt→ 0+(t/(1 − t)) = 0, there exists t0 ∈ (0, 1) that {Tvt : t ∈ (0, t0]} is bounded.
This implies from (3.18) that ‖vt − Tvt‖ → 0 as t → 0+. The key is to show that {vt : t ∈
(0, t0]} is relatively compact as t → 0+. We may choose a sequence {tn} in (0, t0] such that
limn→∞tn = 0. Set vn := vtn . We will show that {vn} contains a subsequence converging
strongly to an element of C. Define the function ϕ : C → R

+ by ϕ(x) := LIMn‖vn − x‖2, x ∈ C
and let

M :=
{
y ∈ C : ϕ

(
y
)
= inf

x∈C
ϕ(x)

}
. (3.20)

Since X is reflexive, ϕ(x) → ∞ as ‖x‖ → ∞, and ϕ is a continuous convex function. By
Barbu and Precupanu [31, Theorem 1.2, page 79], we have that the set M is nonempty. By
Takahashi [28], we see that M is also closed, convex, and bounded.

From [32, Theorem 6], we know that the mapping 2I − T has a nonexpansive inverse,
denoted by g, which maps C into itself with F[T] = F[g]. Note that limn→∞‖vn − Tvn‖ = 0
implies that limn→∞‖vn − gvn‖ = 0. Moreover, M is invariant under g, that is, R(g) ⊆ M.
In fact, for each y ∈ M, we have

ϕ
(
gy

)
= LIMn‖vn − gy‖2 ≤ LIMn‖gvn − gy‖2 ≤ LIMn‖vn − y‖2 = ϕ

(
y
)
, (3.21)

and hence gy ∈ M. By assumption, we have M ∩F[g]/= ∅. Let y∗ ∈ M ∩F[g]. By Fact 2.9, we
have

LIMn

〈
z − y∗, J

(
vn − y∗)〉 ≤ 0 ∀z ∈ C. (3.22)

In particular, by taking z = y∗ − F(y∗), we have

LIMn〈−F
(
y∗), J

(
vn − y∗)〉 ≤ 0. (3.23)
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Using (3.16) and (3.23), we have

δLIMn‖vn − y∗‖2 ≤ LIMn〈−F
(
y∗), J

(
vn − y∗)〉 ≤ 0. (3.24)

Thus, there exists a subsequence {vni} of {vn} such that vni → y∗.
Assume that {vnj} is another subsequence of {vn} such that vnj → z∗ /=y∗. It is easy

to see that z∗ ∈ F[T]. Since vni → y∗ and J is norm to weak∗ uniform continuous, we obtain
from Proposition 3.2(b) that

〈F(y∗), J
(
y∗ − z∗

)〉 ≤ 0. (3.25)

Similarly, we have

〈F(z∗), J(z∗ − y∗)〉 ≤ 0. (3.26)

Adding the above two inequalities yields

〈F(y∗) − F(z∗), J(y∗ − z∗
)〉 ≤ 0, (3.27)

which implies that

δ‖y∗ − z∗‖2 ≤ 〈F(y∗) − F(z∗), J(y∗ − z∗
)〉 ≤ 0, (3.28)

a contradiction. Hence, {vtn} converges strongly to y∗.
To see that the entire net {vt} actually converges strongly as t → 0+, we assume that

there is another sequence {sn} with sn ∈ (0, t0] and sn → 0 as n → ∞ such that vsn → z
as n → ∞, then, z ∈ F[T]. From Proposition 3.2(b), we conclude that z = y∗. Therefore, {vt}
converges strongly as t → 0+ to y∗ ∈ F[T]. Noticing that y∗ ∈ F[T] is a solution of VIP(F, C)
over F[T]. Indeed, from Proposition 3.2(b), we have

〈F(y∗), J
(
y∗ − v

)〉 ≤ 0 ∀v ∈ F[T]. (3.29)

One can easily see that y∗ is the unique solution of VIP(F, C) over F[T].

As the domain of operators considered in Theorem 3.3 is not necessarily the entire
space X, Theorem 3.3 is more general in nature. It improves Ceng et al. [20, Proposition 4.3]
significantly and provides solutions of Problem 1.1.

We now replace the fixed-point property assumption, mentioned in Theorem 3.3 by
imposing strict convexity on the underlying space.

Theorem 3.4. Let C be a nonempty closed convex subset of a real strictly convex reflexive Banach
space X with a uniformly Gâteaux-differentiable norm. Let T : C → C be a continuous
pseudocontractive mapping with F[T]/= ∅ and let F : X → X be both δ-strongly accretive and
λ-strictly pseudocontractive over C with λ + δ > 1 and R(I − τF) ⊆ C for each τ ∈ (0, 1). Then {vt}
converges strongly as t → 0+ to a unique solution x∗ of VIP(F, C) over F[T].
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Proof. To be able to use the argument of the proof of Theorem 3.3, we just need to show that
the set M defined by (3.20) has a fixed point of g. Since F[g]/= ∅, let v ∈ F[g]. Since X is
strictly convex, it follows from [10, Proposition 2.1.10] that the set M0 defined by M0 = {u ∈
M : ‖u − v‖ = infx∈M‖x − v‖} is a singleton. Let M0 = {u0} for some u0 ∈ M. Observe that

‖gu0 − v‖ = ‖gu0 − gv‖ ≤ ‖u0 − v‖ = inf
x∈M

‖x − v‖. (3.30)

Therefore, gu0 = u0.

4. Generalized Hybrid Steepest-Descent Algorithm

Motivated by Yamada’s hybrid steepest-descent and Lehdili and Moudafi’s algorithms, (1.6)
and (1.14), we introduce the following generalized hybrid steepest-descent algorithm for
computing a unique solution x∗ of VIP(F, C) over

⋂
n∈N F[Tn].

Algorithm 4.1. Let C be a nonempty closed convex subset of a real smooth Banach space X
and let F : X → X be an accretive operator over C such that R(I − τF) ⊆ C for each τ ∈
(0, 1). Assume that {Tn} is a sequence of nearly nonexpansive mappings from C into itself
with sequence {an} such that

⋂
n∈N F[Tn]/= ∅. Starting with an arbitrary initial guess x1 ∈ C,

a sequence {xn} in C is generated via the following iterative scheme:

xn+1 = Tn[xn − αnF(xn)] ∀n ∈ N, (4.1)

where {αn} is a sequence in (0, 1].

We will study our Algorithm 4.1 under the conditions:

(C1) limn→∞αn = 0,
∑∞

n=1 αn = ∞, and either
∑∞

n=1 |αn−αn+1| < ∞ or limn→∞|1−αn/αn+1| =
0;

(C2) either
∑∞

n=1 DD(Tn, Tn+1) < ∞ or limn→∞(DD(Tn, Tn+1)/αn+1) = 0 for each D ∈ B(C);
(C3) limn→∞(an/αn) = 0.

Now, we are ready to prove the main theorem for computing solution of VIP(F, C)
over

⋂
n∈N F[Tn] in the framework of Banach space.

Theorem 4.2. Let C be a nonempty closed convex subset of a reflexive Banach space X with
a uniformly Gâteaux-differentiable norm and {Tn} a sequence of nearly nonexpansive mappings from
C into itself with sequence {an} such that

⋂
n∈N F[Tn]/= ∅. Let T be a mapping of C into itself defined

by Tz = limn→∞Tnz for all z ∈ C and let F : X → X be both δ-strongly accretive and λ-strictly
pseudocontractive over C with λ + δ > 1 and R(I − τF) ⊆ C for each τ ∈ (0, 1). Assume that C has
the fixed-point property for nonexpansive self-mappings. For a given x1 ∈ C, let {xn} be a sequence in
C generated by (4.1), where {αn} is a sequence in (0, 1] satisfying conditions (C1)∼(C3). Then, {xn}
converges strongly to a unique solution x∗ of VIP(F, C) over ⋂n∈N F[Tn].
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Proof. Let T be a mapping of C into itself defined by Tz = limn→∞Tnz for all z ∈ C. It is clear
that T is a nonexpansive mapping and

⋂
n∈N F[Tn] ⊆ F[T]. So, we have F[T]/= ∅. For each

t ∈ (0, 1), we choose a number μt ∈ (0, 1) arbitrarily, let xt be a unique point of C such that

xt = (1 − t)Txt + t
(
I − μtF

)
(xt). (4.2)

It follows from Theorem 3.3 that {xt} converges strongly as t → 0+ to a unique solution x∗ of
VIP(F, C) over

⋂
n∈N F[Tn]. Set yn := xn − αnF(xn). We now proceed with the following steps.

Step 1. {xn} and {yn} are bounded.

Observe that

‖yn − x∗‖ ≤ ‖xn − x∗‖ + αn‖F(xn)‖
≤ ‖xn − x∗‖ + ‖F(xn) − F(x∗)‖ + ‖F(x∗)‖

≤
(

2 +
1
λ

)
‖xn − x∗‖ + ‖F(x∗)‖ ∀n ∈ N.

(4.3)

Invoking (4.3), we have

‖xn+1 − x∗‖ = ‖Tn[xn − αnF(xn)] − x∗‖
≤ ‖xn − αnF(xn) − x∗‖ + an

≤ ‖(I − αnF)xn − (I − αnF)x∗‖ + αn‖F(x∗)‖ + an

≤ (1 − (1 − Lλ,δ)αn)‖xn − x∗‖ + αn‖F(x∗)‖ + an.

(4.4)

Note that limn→∞(an/αn) = 0, so there exists a constant K > 0 such that

αn‖F(x∗)‖ + an

αn
≤ K ∀n ∈ N. (4.5)

By (4.4), we have

‖xn+1 − x∗‖ ≤ (1 − (1 − Lλ,δ)αn)‖xn − x∗‖ + αnK

≤ max
{
‖xn − x∗‖, K

1 − Lλ,δ

}
∀n ∈ N.

(4.6)

Hence, {xn} is bounded and hence, from (4.3), {yn} is bounded.

Step 2. ‖yn − Tyn‖ → 0 as n → ∞.
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Note that the condition limn→∞αn = 0 implies that ‖yn − xn‖ = αn‖F(xn)‖ → 0 as
n → ∞. Observe that

‖yn − yn−1‖ = ‖(I − αnF)xn − (I − αnF)xn−1 + (I − αnF)xn−1 − (I − αn−1F)xn−1‖
≤ (1 − (1 − Lλ,δ)αn)‖xn − xn−1‖ + |αn − αn−1|‖F(xn−1)‖
≤ (1 − (1 − Lλ,δ)αn)‖xn − xn−1‖ + |αn − αn−1|K1

(4.7)

for some constant K1 > 0. Set B := {yn}. Then B ∈ B(C). It follows from (4.1) that

‖xn+1 − xn‖ = ‖Tnyn − Tn−1yn−1‖
≤ ‖Tnyn − Tnyn−1‖ + ‖Tnyn−1 − Tn−1yn−1‖
≤ ‖yn − yn−1‖ +DB(Tn, Tn−1) + an

≤ (1 − (1 − Lλ,δ)αn)‖xn − xn−1‖ +DB(Tn, Tn−1) + |αn − αn−1|K1 + an.

(4.8)

By conditions (C1)∼(C3) and Xu [33, Lemma 2.5], we obtain that ‖xn+1 −xn‖ → 0 as n → ∞.
Hence,

‖xn+1 − Tnxn‖ = ‖Tnyn − Tnxn‖ ≤ ‖yn − xn‖ + an −→ 0 as n −→ ∞,

‖xn − Tnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tnxn‖ −→ 0 as n −→ ∞.
(4.9)

Moreover,

‖yn − Tnyn‖ ≤ ‖yn − xn‖ + ‖xn − Tnxn‖ + ‖Tnxn − Tnyn‖
≤ 2‖yn − xn‖ + ‖xn − Tnxn‖ + an −→ 0 as n −→ ∞.

(4.10)

The definition of T implies that

‖Tyn − yn‖ ≤ ‖Tyn − Tnyn‖ + ‖xn+1 − xn‖ + ‖xn − yn‖
≤ DB(T, Tn) + ‖xn+1 − xn‖ + ‖xn − yn‖ −→ 0 as n −→ ∞.

(4.11)

Step 3. lim supn→∞〈F(x∗), J(x∗ − yn)〉 ≤ 0.
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Since xt − yn = (1 − t)(Txt − yn) + t[(I − μtF)(xt) − yn], we have

‖xt − yn‖2 = (1 − t)〈Txt − yn, J
(
xt − yn

)〉 + t〈(I − μtF
)
(xt) − yn, J

(
xt − yn

)〉
≤ (1 − t)〈Txt − Tyn + Tyn − yn, J

(
xt − yn

)〉

+ t
[
〈(I − μtF

)
(xt) − xt, J

(
xt − yn

)〉 + ‖xt − yn‖2
]

≤ ‖xt − yn‖2 + (1 − t)〈Tyn − yn, J
(
xt − yn

)〉 − tμt〈F(xt), J
(
xt − yn

)〉

≤ ‖xt − yn‖2 + (1 − t)‖Tyn − yn‖‖xt − yn‖ − tμt〈F(xt), J
(
xt − yn

)〉,

(4.12)

which implies that

〈F(xt), J
(
xt − yn

)〉 ≤ 1 − t

tμt
‖Tyn − yn‖‖xt − yn‖. (4.13)

Since {xt} and {yn} are bounded and ‖yn − Tyn‖ → 0 as n → ∞, taking the superior limit in
(4.13), we obtain that

lim sup
n→∞

〈F(xt), J
(
xt − yn

)〉 ≤ 0. (4.14)

Further, since xt → x∗ as t → 0+, the set {xt − yn} is bounded, and the duality mapping J is
norm-to-weak∗ uniformly continuous on bounded subsets of X, it follows that

∣∣〈F(x∗), J
(
yn − x∗)〉 − 〈F(xt), J

(
yn − xt

)〉∣∣

=
∣∣〈F(x∗), J

(
yn − x∗) − J

(
yn − xt

)〉 + 〈F(x∗) − F(xt), J
(
yn − xt

)〉∣∣

≤ ∣∣〈F(x∗), J
(
yn − x∗) − J

(
yn − xt

)〉∣∣

+ ‖F(x∗) − F(xt)‖‖yn − xt‖ −→ 0 as t −→ 0+.

(4.15)

Let ε > 0. Then there exists δ1 > 0 such that

〈F(x∗), J
(
x∗ − yn

)〉
<
〈
F(xt), J

(
xt − yn

)〉
+ ε ∀n ∈ N, t ∈ (0, δ1). (4.16)

Using (4.14), we get

lim sup
n→∞

〈F(x∗), J
(
x∗ − yn

)〉 ≤ lim sup
n→∞

〈F(xt), J
(
x∗ − yn

)〉 + ε

≤ ε.

(4.17)

Since ε is arbitrary, we obtain that lim supn→∞〈F(x∗), J(x∗ − yn)〉 ≤ 0.

Step 4. {xn} converges strongly to x∗.
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Observe that

‖yn − x∗‖2 = 〈(I − αnF)xn − (I − αnF)x∗ + (I − αnF)x∗ − x∗, J
(
yn − x∗)〉

≤ (1 − (1 − Lλ,δ)αn)‖xn − x∗‖‖yn − x∗‖ − αn〈F(x∗), J
(
yn − x∗)〉

≤ (1 − (1 − Lλ,δ)αn)
[‖xn − x∗‖2 + ‖yn − x∗‖2]

2
− αn〈F(x∗), J

(
yn − x∗)〉.

(4.18)

Hence,

‖yn − x∗‖2 ≤ (1 − (1 − Lλ,δ)αn)‖xn − x∗‖2 − 2αn〈F(x∗), J
(
yn − x∗)〉. (4.19)

From (4.1), we have

‖xn+1 − x∗‖2 = ‖Tnyn − x∗‖2

≤ (‖yn − x∗‖ + an

)2

≤ ‖yn − x∗‖2 +K2an.

(4.20)

for some K2 ≥ 0. Thus, we obtain

‖xn+1 − x∗‖2 ≤ (1 − (1 − Lλ,δ)αn)‖xn − x∗‖2 + 2αn〈F(x∗), J
(
x∗ − yn

)〉 +K2an (4.21)

for all n ∈ N. Note
∑∞

n=1 αn = ∞, limn→∞(an/αn) = 0 and lim supn→∞〈F(x∗), J(x∗ − yn)〉 ≤ 0.
Therefore, we conclude from Xu [33, Lemma 2.5] that {xn} converges strongly to x∗.

Corollary 4.3. Let C be a nonempty closed convex subset of a strictly convex reflexive Banach space
X with a uniformly Gâteaux-differentiable norm and {Tn} a sequence of nonexpansive mappings from
C into itself such that

⋂
n∈N F[Tn]/= ∅. Let T be a mapping ofC into itself defined by Tz = limn→∞Tnz

for all z ∈ C and let F : X → X be both δ-strongly accretive and λ-strictly pseudocontractive over C
with λ + δ > 1 and R(I − τF) ⊆ C for each τ ∈ (0, 1). For a given x1 ∈ C, let {xn} be a sequence in
C generated by (4.1), where {αn} is a sequence in (0, 1] satisfying conditions (C1)∼(C2). Then, {xn}
converges strongly to a unique solution x∗ of VIP(F, C) over ⋂n∈N F[Tn].

Theorem 4.4. Let C be a nonempty closed convex subset of a real strictly convex reflexive Banach
space X with a uniformly Gâteaux-differentiable norm and T a nonexpansive mapping from C into
itself such that F[T]/= ∅. LetF : X → X be both δ-strongly accretive and λ-strictly pseudocontractive
over C with λ+δ > 1 and R(I − τF) ⊆ C for each τ ∈ (0, 1). For given x1 ∈ C, let {xn} be a sequence
in C generated by

xn+1 = T[xn − αnF(xn)] ∀n ∈ N, (4.22)

where {αn} is a sequence in (0, 1] satisfying condition (C1). Then, {xn} converges strongly to a unique
solution x∗ of VIP(F, C) over F[T].
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Remark 4.5. an := 1/(n + 1)a (for all n ∈ N and a ∈ (0, 1]) satisfies the condition (C1).

Corollary 4.6. Let C be a nonempty closed convex subset of a reflexive Banach space X with a
uniformly Gâteaux-differentiable norm and T a nonexpansive mapping from C into itself such that
F[T]/= ∅. Let F : C → C be both κ-strongly pseudocontractive and λ-strictly pseudocontractive with
λ > κ. Assume that C has the fixed-point property for nonexpansive self-mappings. For given x1 ∈ C,
let {xn} be a sequence in C generated by

xn+1 = T[(1 − αn)xn + αnF(xn)] ∀n ∈ N, (4.23)

where {αn} is a sequence in (0, 1] satisfying condition (C1). Then, {xn} converges strongly to a unique
solution x∗ of VIP(I − F, C) over F[T].

Corollary 4.6 is an improvement upon Sahu [9, Theorem 5.6] in a Banach space
without uniform convexity.

5. Applications

5.1. Applications to the Common Fixed Point Problems for
Nonexpansive Mappings

Theorem 5.1. Let C be a nonempty closed convex subset of a strictly convex reflexive Banach space
X with a uniformly Gâteaux-differentiable norm. Let λi > 0 (i = 1, 2, . . . ,N) such that

∑N
i=1 λi = 1

and let T1, T2, . . . , TN : C → C be nonexpansive mappings with
⋂N

i=1 F(Ti)/= ∅. Let F : X → X be
both δ-strongly accretive and λ-strictly pseudocontractive over C with λ + δ > 1 and R(I − τF) ⊆ C
for each τ ∈ (0, 1). For a given x1 ∈ C, let {xn} be a sequence in C generated by

xn+1 =
N∑

i=1

λiTi[xn − αnF(xn)] ∀n ∈ N, (5.1)

where {αn} is a sequence in (0, 1] satisfying condition (C1). Then, {xn} converges strongly to a unique
solution x∗ of VIP(F, C) over ⋂N

i=1 F(Ti).

Proof. Define T =
∑N

i=1 λiTi. Then T is nonexpansive from C into itself and, hence, from Fact
2.7, we have F(T) =

⋂N
i=1 F(Ti). Therefore, Theorem 5.1 follows from Theorem 4.4.

Theorem 5.2. Let C be a nonempty closed convex subset of a strictly convex reflexive Banach spaceX
with a uniformly Gâteaux-differentiable norm. Let {Sn} be a sequence of nonexpansive mappings from
C into itself such that

⋂
n∈N F[Sn]/= ∅ and let F : X → X be both δ-strongly accretive and λ-strictly

pseudocontractive over C with λ+δ > 1 and R(I − τF) ⊆ C for each τ ∈ (0, 1). Let {βn,k} be a family
of nonnegative numbers with indices n, k ∈ N with k ≤ n such that

(i)
∑n

k=1 βn,k = 1 for each n ∈ N;

(ii) limn→∞βn,k > 0 for each k ∈ N;

(iii)
∑∞

n=1
∑n

k=1 |βn+1,k − βn,k| < ∞.
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For a given x1 ∈ C, let {xn} be a sequence in C generated by

xn+1 =
n∑

k=1

βn,kSk[xn − αnF(xn)] ∀n ∈ N, (5.2)

where {αn} is a sequence in (0, 1] satisfying conditions (C1)∼(C2). Then, {xn} converges strongly to
a unique solution x∗ of VIP(F, C) over ⋂n∈N F[Sn].

Proof. Define a sequence {Tn} of mappings on C by Tnx =
∑n

k=1 βn,kSkx for all x ∈ C and n ∈ N.
It is easy to see, from condition (i) and Fact 2.7, that each Tn is also a nonexpansive mapping
from C into itself and F[Tn] =

⋂n
k=1 F[Sk]. Note that

⋂
k∈N F[Sk] ⊆

⋂
n∈N F[Tn]. Moreover, by

(ii) we have that for every k ∈ N, there exists n0 ∈ N such that βn0,k > 0. Thus, we have that
F[Tn0] ⊆ F[Sk] for k ∈ N by Fact 2.8, which implies that

⋂
n∈N F[Tn] ⊆ F[Sk] for all k ∈ N.

Therefore, we obtain that
⋂

k∈N F[Sk] =
⋂

n∈N F[Tn]/= ∅. Now, let B ∈ B(C). The nonemptiness
of

⋂
k∈N F[Sk] implies that {Skx : x ∈ B, k ∈ N} is bounded. By using the argument of [34], we

see that Tz = limn→∞Tnz for all z ∈ C. Hence, Theorem 5.2 follows from Corollary 4.3.

5.2. Applications to the Zero Point Problems for Accretive Operators

Consider C a closed convex subset of a Banach space X and A ⊂ X×X is an accretive operator
such that S/= ∅ and D(A) ⊂ C ⊂ ⋂

t>0 R(I + tA). From Takahashi [28], we know that JAr is a
nonexpansive mapping of C into itself and F[JAr ] = S for each r > 0.

Motivated and inspired by two well-known methods, Yamada’s hybrid steepest-
descent method and Lehdili and Moudafi’s method, we introduce the following algorithm
which we call prox-Tikhonov regularized hybrid steepest-descent algorithm.

Algorithm 5.3. For a given x1 ∈ C, let {xn} be a sequence in C generated by

xn+1 = JArn[xn − αnF(xn)] ∀n ∈ N, (5.3)

where {αn} is a sequence in (0, 1] and {rn} is a regularization sequence in (0,∞).

One can easily see that the prox-Tikhonov regularized hybrid steepest-descent
algorithm is a special case of generalized hybrid steepest-descent algorithm.

The following theorem gives sufficient conditions for strong convergence of the prox-
Tikhonov regularized hybrid steepest-descent algorithm (5.3) to a solution of Problem (P).

Theorem 5.4. Let X be a reflexive Banach space with a uniformly Gâteaux-differentiable norm and
C a nonempty closed convex subset of X which has the fixed-point property for nonexpansive self-
mappings. LetA ⊂ X×X be an accretive operator such thatA−10/= ∅ andD(A) ⊂ C ⊂ ⋂

t>0 R(I+tA).
Let F : X → X be both δ-strongly accretive and λ-strictly pseudocontractive over C with λ + δ > 1
and R(I − τF) ⊆ C for each τ ∈ (0, 1). For a given x1 ∈ C, let {xn} be a prox-Tikhonov regularized
hybrid steepest-descent iterative sequence in C generated by (5.3), where {αn} is a sequence in (0, 1]
satisfying condition (C1) and {rn} is a regularization sequence in (0,∞) such that infn∈Nrn > 0 and∑∞

n=1 |rn+1 − rn| < ∞. Then {xn} converges strongly to a unique solution x∗ of VIP(F, C) over A−10.
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Proof. Set Tn := JArn . Then {Tn} is a sequence of nonexpansive mappings from C into itself such
that F[Tn] = A−10/= ∅ for every n ∈ N. We first verify that

∑∞
n=1 DB(Tn, Tn+1) < ∞ for every B ∈

B(C). Let B ∈ B(C). Since F[Tn] = A−10/= ∅ for every n ∈ N, it follows that {Tnz : z ∈ B, n ∈ N}
is bounded. Set K3 := sup{‖z − Jrn+1z‖ : z ∈ B, n ∈ N}. By the assumptions for {rn}, we may
assume that rn ≥ ε for all n ∈ N and rn → r for some r, ε > 0. From (2.19), we have

DB(Tn+1, Tn) = sup{‖Jrn+1z − Jrnz‖ : z ∈ B}

≤ sup
{ |rn+1 − rn|

rn+1
‖z − Jrn+1z‖ : z ∈ B

}

≤ |rn+1 − rn|
ε

K3 ∀n ∈ N.

(5.4)

Hence,
∑∞

n=1 DB(Tn, Tn+1) < ∞. Set T := Jr . Again, from (2.19), we have

‖Tx − Tnx‖ ≤ |r − rn|
r

‖x − Tx‖ ∀x ∈ C, (5.5)

which indicates that Tx = limn→∞Tnx for all x ∈ C. Therefore, by Theorem 4.2, {xn}
converges strongly to a unique solution x∗ of VIP(F, C) over A−10.

Corollary 5.5. Let X be a reflexive Banach space with a uniformly Gâteaux-differentiable norm and
C a nonempty closed convex subset of X which has the fixed-point property for nonexpansive self-
mappings. LetA ⊂ X×X be an accretive operator such thatA−10/= ∅ andD(A) ⊂ C ⊂ ⋂

t>0 R(I+tA).
Let F : C → C be both κ-strongly pseudocontractive and λ-strictly pseudocontractive with λ > κ.
For a given x1 ∈ C, let {xn} be a prox-Tikhonov regularized hybrid steepest-descent iterative sequence
in C generated by

xn+1 = JArn[(1 − αn)xn + αnF(xn)] ∀n ∈ N, (5.6)

where {αn} is a sequence in (0, 1] satisfying condition (C1) and {rn} is a regularization sequence in
(0,∞) such that infn∈Nrn > 0 and

∑∞
n=1 |rn+1 − rn| < ∞. Then {xn} converges strongly to a unique

solution x∗ of VIP(I − F, C) over A−10.

6. Numerical Results

In order to demonstrate the effectiveness, performance, and convergence of the proposed
algorithm, we discuss the following.

Example 6.1. Let H = R and C = [0, 1]. Let T,F : C → H be two mappings defined by
Tx = 1 − x for all x ∈ C and Fx = x − 1 for all x ∈ C. For each τ ∈ (0, 1), we have (I − τF)x =
x − τ(x − 1) = (1 − τ)x + τ for all x ∈ C. Define {αn} in [0, 1] by αn = 1/(n + 1)a for all n ∈ N,
where a ∈ (0, 1]. The sequence {xn} defined by (4.22) is given by the relation

xn+1 = (1 − αn)(1 − xn) ∀n ∈ N. (6.1)
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For x1 = 0 and a = 1, the sequence {xn} defined by (6.1) can be explicitly written as

xn =

⎧
⎪⎨

⎪⎩

1
2
, n = 2, 4, . . . ;

n − 1
2n

, n = 3, 5, . . . .
(6.2)

Observe that

(1) T is nonexpansive,

(2) F is both 1-strongly accretive and λ-strictly pseudocontractive over C for each λ > 0,

(3) R(I − τF) ⊆ C for each τ ∈ (0, 1), and

(4) limn→∞αn = 0,
∑∞

n=1 αn = ∞ and limn→∞|1 − αn/αn+1| = 0.

Thus, all the assumptions of Theorem 4.4 are satisfied. Therefore, the conclusion of
Theorem 4.4 holds, that is, xn → 1/2 ∈ F[T].

It is seen from Figure 1 that if a = 1, a = 0.75, and a = 0.5, then the corresponding
iterations of sequence {xn} with x1 = 0 defined by (6.1) are convergent to 1/2.

Example 6.2. Let H, C, T , and F be as in Example 6.1. Clearly T is nonexpansive and F is
both 1-strongly accretive and λ-strictly pseudocontractive over C for each λ > 0. Assume that
{an} is a sequence in [0, 1] such that

∑∞
n=1 |an − an+1| < ∞. Without loss of generality we may

assume that an = 1/n3/2 for all n ∈ N. For each n ∈ N, define Tn : C → C by

Tnx =

⎧
⎨

⎩

1 − x, if x ∈ [0, 1),

an, if x = 1.
(6.3)

Define a sequence {αn} in [0, 1] by αn = 1/n for all n ∈ N.
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We now show that, under the assumptions of Theorem 4.2, the sequence {xn}
generated by the proposed Algorithm 4.1 converges to a unique solution 1/2 of VIP(F, C)
over

⋂
n∈N F[Tn]. We proceed with the following steps.

Step 1. {Tn} is a sequence of nearly nonexpansive mappings from C into itself such that⋂
n∈N F[Tn]/= ∅.

For x, y ∈ [0, 1), we have

‖Tnx − Tny‖ ≤ ‖x − y‖ ∀n ∈ N. (6.4)

Moreover, for x ∈ [0, 1) and y = 1, we have

‖Tnx − Tn1‖ = ‖1 − x − an‖ ≤ ‖x − 1‖ + an ∀n ∈ N. (6.5)

Thus,

‖Tnx − Tny‖ ≤ ‖x − y‖ + an ∀x, y ∈ C, n ∈ N, (6.6)

that is, {Tn} is a sequence of nearly nonexpansive mappings from C into itself such that⋂
n∈N F[Tn] = {1/2}.

Step 2. limn→∞Tnz = Tz for all z ∈ C.

For each n ∈ N, we have

Tnx − Tn+1x =

⎧
⎨

⎩

0, if x ∈ [0, 1),

an − an+1, if x = 1,
(6.7)

and hence sup{‖Tnx − Tn+1x‖ : x ∈ C} = |an − an+1|. One can easily see that

∞∑

n=1

DC(Tn, Tn+1) =
∞∑

n=1

sup{‖Tnx − Tn+1x‖ : x ∈ C} =
∞∑

n=1

|an − an+1| < ∞. (6.8)

Since {Tn} is a sequence of nearly nonexpansive self-mappings of C with sequence {an}
such that

∑∞
n=1 DC(Tn, Tn+1) < ∞, it follows from Proposition 2.4 that for each x ∈ C, {Tnx}

converges to some point of C. It can be readily seen that limn→∞Tnz = Tz for all z ∈ C.

Step 3. The sequence {xn} defined Algorithm 4.1 converges to 1/2 ∈ F[T].



26 Fixed Point Theory and Applications

For an arbitrary x1 ∈ C, the sequence {xn} defined by (4.1) can be explicitly written as

xn =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, n = 2;

1
n − 1

[
n − 3

2
+ 2a2

]
, n = 3, 5 . . . ;

1
n − 1

[n
2
− 2a2

]
, n = 4, 6 . . . .

(6.9)

As in Example 6.1, we have λ + δ > 1 and R(I − τF) ⊆ C for each τ ∈ (0, 1). Observe that

(1) limn→∞αn = 0,
∑∞

n=1 αn = ∞ and limn→∞|1 − αn/αn+1| = 0;

(2)
∑∞

n=1 DC(Tn, Tn+1) < ∞;

(3) limn→∞an/αn = 0.

Noticing that conditions (C1)∼(C3) are satisfied, limn→∞Tnz = Tz for all z ∈ C and T is a
nonexpansive mapping. Thus, all the assumptions of Theorem 4.2 are satisfied. Therefore,
the conclusion of Theorem 4.2 holds. Indeed, the sequence {xn} defined by (6.9) converges to
1/2 ∈ ⋂

n∈N F[Tn].

7. Concluding Remarks

(I) Theorems 3.3, 4.2, and 5.4 apply to all uniformly convex and uniformly smooth
Banach spaces and in particular, to all Lp spaces, 1 < p < ∞.

(II) Theorem 4.2 appears to be a new result for solving Problem 1.1. In particular,
Theorem 4.2 improves Yamada [6] in the framework of Banach space.

(III) The prox-Tikhonov algorithm (1.11) studied in Lehdili and Moudafi [19] deals
essentially with a special case of the algorithm (5.6) in the framework of Hilbert
space. In fact, if we set Fx = 0 for all x ∈ H, then (5.6) becomes

xn+1 = JAcn((1 − αn)xn) ∀n ∈ N. (7.1)

Setting λn := cn/(1 − αn) and μn := αn/cn, (7.1) can be written as

xn+1 = JAn

λn
xn ∀n ∈ N, (7.2)

where An = μnI + A. Thus, (7.2) is the prox-Tikhonov algorithm (1.11) considered
in Lehdili and Moudafi [19]. The argument given in [19] depends heavily on the
concept of the variational distance (see [35]) between two maximal monotone
operators. Our argument is simple and more straightforward in the Banach space
setting. Therefore, Corollary 5.5 improves and extends the convergence result
presented in Lehdili and Moudafi [19] in the Banach space setting.

(IV) Our approach is simple and different from new iterative methods for finding
solutions of Problem 1.1 and zero of m-accretive operators proposed in Ceng et al.
[20] and Ceng et al. [21].
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