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The purpose of this paper is (1) a general nonlinear mixed set-valued inclusion framework for
the over-relaxedA-proximal point algorithm based on the (A, η)-accretive mapping is introduced,
and (2) it is applied to the approximation solvability of a general class of inclusions problems
using the generalized resolvent operator technique due to Lan-Cho-Verma, and the convergence of
iterative sequences generated by the algorithm is discussed in q-uniformly smooth Banach spaces.
The results presented in the paper improve and extend some known results in the literature.

1. Introduction

In recent years, various set-valued variational inclusion frameworks, which have wide
applications to many fields including, for example, mechanics, physics, optimization and
control, nonlinear programming, economics, and engineering sciences have been intensively
studied by Ding and Luo [1], Verma [2], Huang [3], Fang and Huang [4], Fang et al. [5],
Lan et al. [6], Zhang et al. [7], respectively. Recently, Verma [8] has intended to develop
a general inclusion framework for the over-relaxed A-proximal point algorithm [9] based
on the A-maximal monotonicity. In 2007-2008, Li [10, 11] has studied the algorithm for a
new class of generalized nonlinear fuzzy set-valued variational inclusions involving (H,η)-
monotone mappings and an existence theorem of solutions for the variational inclusions,
and a new iterative algorithm [12] for a new class of general nonlinear fuzzy mulitvalued
quasivariational inclusions involving (G, η)-monotone mappings in Hilbert spaces, and
discussed a new perturbed Ishikawa iterative algorithm for nonlinear mixed set-valued
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quasivariational inclusions involving (A, η)-accretive mappings, the stability [13] and the
convergence of the iterative sequences in q-uniformly smooth Banach spaces by using the
resolvent operator technique due to Lan et al. [6].

Inspired and motivated by recent research work in this field, in this paper, a general
nonlinear mixed set-valued inclusion framework for the over-relaxed A-proximal point
algorithm based on the (A, η)-accretive mapping is introduced, which is applied to the
approximation solvability of a general class of inclusions problems by the generalized
resolvent operator technique, and the convergence of iterative sequences generated by
the algorithm is discussed in q-uniformly smooth Banach spaces. For more literature, we
recommend to the reader [1–17].

2. Preliminaries

Let X be a real Banach space with dual space X∗, and let 〈·, ·〉 be the dual pair between X
and X∗, let 2X denote the family of all the nonempty subsets of X, and let CB(X) denote
the family of all nonempty closed bounded subsets of X. The generalized duality mapping
Jq : X → 2X

∗
is single-valued if X∗ is strictly convex [14], or X is uniformly smooth space. In

what follows we always denote the single-valued generalized duality mapping by Jq in real
uniformly smooth Banach spaceX unless otherwise stated. We consider the following general
nonlinear mixed set-valued inclusion problem with (A, η)-accretive mappings (GNMSVIP).

Finding x ∈ X such that

0 ∈ F(A(x)) +M(x), (2.1)

where A,F : X → X, η : X × X → X be single-valued mappings; M : X → 2X be an
(A, η)-accretive set-valued mapping. A special case of problem (2.1) is the following:

if X = X∗ is a Hilbert space, F = 0 is the zero operator in X, and η(x, y) = x − y,
then problem (2.1) becomes the inclusion problem 0 ∈ M(x) with a A-maximal
monotone mapping M, which was studied by Verma [8].

Definition 2.1. Let X be a real Banach space with dual space X∗, and let 〈·, ·〉 be the dual pair
between X and X∗. Let A : X → X and η : X × X → X be single-valued mappings. A
set-valued mapping M : X → 2X is said to be

(i) r−strongly η-accretive, if there exists a constant r > 0 such that
〈
y1 − y2, Jq

(
η(x1, x2)

)〉 ≥ r‖x1 − x2‖q, ∀yi ∈ M(xi), i = 1, 2; (2.2)

(ii) m-relaxed η-accretive, if there exists a constant m > 0 such that
〈
y1 − y2, Jq

(
η(x1, x2)

)〉 ≥ −m‖x1 − x2‖q, ∀x1, x2 ∈ X, yi ∈ M(xi), (i = 1, 2); (2.3)

(iii) c-cocoercive, if there exists a constant c such that
〈
y1 − y2, Jq

(
η(x1, x2)

)〉 ≥ c
∥∥y1 − y2

∥∥q
, ∀x1, x2 ∈ X, yi ∈ M(xi), (i = 1, 2); (2.4)

(iv) (A, η)-accretive, if M is m-relaxed η-accretive and R(A + ρM)(X) = X for every
ρ > 0.
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Based on the literature [6], we can define the resolvent operator RA,η

ρ,M as follows.

Definition 2.2. Let η : X × X → X be a single-valued mapping, A : X → X be a strictly
η-accretive single-valued mapping and M : X → 2X be an (A, η)-accretive set-valued
mapping. The resolvent operator RA,η

ρ,M : X → X is defined by

R
A,η

ρ,M(x) =
(
A + ρM

)−1(x) (∀x ∈ X), (2.5)

where ρ > 0 is a constant.

Remark 2.3. The (A, η)-accretive mappings are more general than (H,η)-monotone mappings
and m-accretive mappings in Banach space or Hilbert space, and the resolvent operators
associated with (A, η)-accretive mappings include as special cases the corresponding
resolvent operators associated with (H,η)-monotone operators, m-accretive mappings, A-
monotone operators, η-subdifferential operators [1–7, 11–13].

Lemma 2.4 (see [6]). Let η : X × X → X be τ-Lipschtiz continuous mapping, A : X → X be an
r-strongly η-accretive mapping, and M : X → 2X be an (A, η)-accretive set-valued mapping. Then
the generalized resolvent operator RA,η

ρ,M : X → X is τq−1/(r −mρ)-Lipschitz continuous, that is,

∥∥∥R
A,η

ρ,M(x) − R
A,η

ρ,M

(
y
)∥∥∥ ≤ τq−1

r −mρ

∥∥x − y
∥∥ (∀x, y ∈ X

)
, (2.6)

where ρ ∈ (0, r/m).

In the study of characteristic inequalities in q-uniformly smooth Banach spaces, Xu
[14] proved the following result.

Lemma 2.5. Let X be a real uniformly smooth Banach space. Then X is q-uniformly smooth if and
only if there exists a constant cq > 0 such that for all x, y ∈ X,

∥∥x + y
∥∥q ≤ ‖x‖q + q

〈
y, Jq(x)

〉
+ cq

∥∥y
∥∥q

. (2.7)

3. The Over-Relaxed A-Proximal Point Algorithm

This section deals with an introduction of a generalized version of the over-relaxed proximal
point algorithm and its applications to approximation solvability of the inclusion problem of
the form (2.1) based on the (A, η)-accretive set-valued mapping.

Let M : X → 2X be a set-valued mapping, the set {(x, y) : y ∈ M(x)} be the graph
of M, which is denoted by M for simplicity, This is equivalent to stating that a mapping is
any subsetM of X ×X, andM(x) = {y : (x, y) ∈ M}. IfM is single-valued, we shall still use
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M(x) to represent the unique y such that (x, y) ∈ M rather than the singleton set {y}. This
interpretation will depend greatly on the context. The inverse M−1 of M is {(y, x) : (x, y) ∈
M}.

Definition 3.1. Let M : X → 2X be a set-valued mapping. The map M−1, the inverse of
M : X → 2X , is said to be general (u, t)-Lipschitz continuous at 0 if, and only if there exist
two constants u, t ≥ 0 for any w ∈ Bt = {w : ‖w‖ ≤ t,w ∈ X}, a solution x∗ of the inclusion
0 ∈ M(x)(x∗ ∈ M−1(0)) exist and the x∗ such that

‖x − x∗‖ ≤ u‖w‖
(
∀x ∈ M−1(w)

)
, (3.1)

holds.

Lemma 3.2. Let X be a q-uniformly smooth Banach space, η : X × X → X be a τ-Lipschtiz
continuous mapping, A : X → X be an r-strongly η-accretive mapping, F : X → X be a ξ-
Lipschtiz continuous mapping, and M : X → 2X be an (A, η)-accretive set-valued mapping. If
Ik = A −AR

A,η

ρ,M(A − ρFA), and for all x1, x2 ∈ X, ρ > 0 and qγ > 1

〈
A(x1) −A(x2), Jq

(
A
(
R

A,η

ρ,M

(
A(x1) − ρF(A(x1))

)) −A
(
R

A,η

ρ,M

(
A(x2) − ρF(A(x2))

)))〉

≥ γ
∥∥∥A

(
R

A,η

ρ,M

(
A(x1) − ρF(A(x1))

)) −A
(
R

A,η

ρ,M

(
A(x2) − ρF(A(x2))

))∥∥∥
q
,

(3.2)

then

(
qγ − 1

)∥∥∥A
(
R

A,η

ρ,M

(
A(x1) − ρF(A(x1))

)) −A
(
R

A,η

ρ,M

(
A(x2) − ρF(A(x2))

))∥∥∥
q

+ ‖Ik(x1) − Ik(x2)‖q ≤ cq‖A(x1) −A(x2)‖q.
(3.3)

Proof. Let X be a q-uniformly smooth Banach space, η : X × X → X be a τ-Lipschtiz
continuous mapping, A : X → X be an r-strongly η-accretive mapping, and M : X → 2X

be an (A, η)-accretive set-valued mapping. Let us set Ik = A − AR
A,η

ρ,M(A − ρFA) and
si = A(xi) − ρF(A(xi))(xi ∈ X, i = 1, 2), then by using Definition 2.2, Lemmas 2.4, 2.5, and
(3.2), we can have

‖Ik(x1) − Ik(x2)‖q

=
∥∥∥A(x1) −A

(
R

A,η

ρ,M(s1)
)
−
[
A(x2) −A

(
R

A,η

ρ,M(s2)
)]∥∥∥

q
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≤ cq‖A(x1) −A(x2)‖q − q
〈
A(x1) −A(x2), Jq

(
A
(
R

A,η

ρ,M(s1)
)
−A

(
R

A,η

ρ,M(s2)
))〉

+
∥
∥
∥A

(
R

A,η

ρ,M

(
A(x1) − ρF(A(x1))

)) −A
(
R

A,η

ρ,M

(
A(x2) − ρF(A(x2))

))∥∥
∥
q

≤ cq‖A(x1) −A(x2)‖q

− qγ
∥
∥
∥A

(
R

A,η

ρ,M

(
A(x1) − ρF(A(x1))

)) −A
(
R

A,η

ρ,M

(
A(x2) − ρF(A(x2))

))∥∥
∥
q

+
∥
∥
∥A

(
R

A,η

ρ,M

(
A(x1) − ρF(A(x1))

)) −A
(
R

A,η

ρ,M

(
A(x2) − ρF(A(x2))

))∥∥
∥
q

≤ cq‖A(x1) −A(x2)‖q

− (
qγ − 1

)∥∥
∥A

(
R

A,η

ρ,M

(
A(x1) − ρF(A(x1))

)) −A
(
R

A,η

ρ,M

(
A(x2) − ρF(A(x2))

))∥∥
∥
q
.

(3.4)

Therefore, (3.3) holds.

Lemma 3.3. Let X be a q-uniformly smooth Banach space, η : X × X → X be a τ-Lipschtiz
continuous mapping, A : X → X be an r-strongly η-accretive and nonexpansive mapping,
F : X → X be an ξ-Lipschtiz continuous mapping, and Ik = A − AR

A,η

ρ,M(A − ρFA), and
M : X → 2X be an (A, η)-accretive set-valued mapping. Then the following statements are mutually
equivalent.

(i) An element x∗ ∈ X is a solution of problem (2.1).

(ii) For a x∗ ∈ X, such that

x∗ = R
A,η

ρ,M

(
A(x∗) − ρF(A(x∗))

)
. (3.5)

(iii) For a x∗ ∈ X, holds

Ik(x∗) = A(x∗) −A
(
R

A,η

ρ,M

(
A(x∗) − ρF(A(x∗))

))
= 0, (3.6)

where ρ > 0 is a constant.

Proof. This directly follows from definitions of RA,η

ρ,M(x) and Ik.

Lemma 3.4. Let X be a q-uniformly smooth Banach space, η : X × X → X be a τ-Lipschtiz
continuous mapping, A : X → X be an r-strongly η-accretive and nonexpansive mapping, F : X →
X be an ξ-Lipschtiz continuous and β-strongly η-accretive mapping, and Ik = A−AR

A,η

ρ,M(A−ρFA),
and M : X → 2X be an (A, η)-accretive set-valued mapping. If the following conditions holds

τq q

√
1 + cqρqξq − qρβ < τ

(
r −mρ

) (
1 + cqρ

qξq > qρβ
)
, (3.7)
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where cq > 0 is the same as in Lemma 2.5, and ρ ∈ (0, r/m). Then the problem (2.1) has a solution
x∗ ∈ X.

Proof. Define N : X → X as follows:

N(x) = R
A,η

ρ,M

(
A(x) − ρF(A(x))

)
, ∀x ∈ X. (3.8)

For elements x1, x2 ∈ X, if letting

si = A(xi) − ρF(A(xi)) (i = 1, 2), (3.9)

then by (3.1) and (3.3), we have

‖N(x1) −N(x2)‖ =
∥∥∥R

A,η

ρ,M(s1) − R
A,η

ρ,M(s2)
∥∥∥

≤ τq−1

r −mρ

(∥∥A(x1) −A(x2) − ρ(F(A(x1)) − F(A(x2)))
∥∥).

(3.10)

By using r-strongly η-accretive of A, β-strongly η-accretive of F, and Lemma 2.5, we obtain

∥∥A(x1) −A(x2) − ρ(F(A(x1)) − F(A(x2)))
∥∥q

≤ ‖A(x1) −A(x2)‖q + cqρ
q‖F(A(x1)) − F(A(x2))‖q

− qρ
〈
F(A(x1)) − F(A(x2)), Jq(A(x1) −A(x2))

〉

≤ (
1 + cqρ

qξq − qρβ
)‖A(x1) −A(x2)‖q.

(3.11)

Combining (3.10)-(3.11), by using nonexpansivity of A, we have

‖N(x1) −N(x2)‖ ≤ θ∗‖x1 − x2‖, (3.12)

where

θ∗ =
τq−1

r −mρ
q

√
1 + cqρqξq − qρβ

(
1 + cqρ

qξq > qρβ
)
.

(3.13)

It follows from (3.7)–(3.12) that N has a fixed point in X, that is, there exist a point x∗ ∈ X
such that x∗ = N(x∗), and

x∗ = N(x∗) = R
A,η

ρ,M

(
A(x∗) − ρF(A(x∗))

)
. (3.14)

This completes the proof.
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Based on Lemma 3.3, we can develop a general over-relaxed (A, η)-proximal point
algorithm to approximating solution of problem (2.1) as follows.

Algorithm 3.5. Let X be a q-uniformly smooth Banach space, η : X ×X → X be a τ-Lipschtiz
continuous mapping, A : X → X be an r-strongly η-accretive and nonexpansive mapping,
F : X → X be an β-strongly η-accretive mapping and ξ-Lipschitz continuous, and Ik =
A − AR

A,η

ρ,M(A − ρFA), and M : X → 2X be an (A, η)-accretive set-valued mapping. Let
{an}∞n=0(an ≥ 1), {bn}∞n=0 and {ρn}∞n=0 be three nonnegative sequences such that

∞∑

n=1

bn < ∞, a = lim sup
n→∞

an ≥ 1, ρn ↑ ρ ≤ ∞, (3.15)

where ρn, ρ ∈ (0, r/m)(n = 0, 1, 2, ·, ·, ·) and each satisfies condition (3.7).

Step 1. For an arbitrarily chosen initial point x0 ∈ X, set

A(x1) = (1 − a0)A(x0) + a0y0, (3.16)

where the y0 satisfies

∥∥∥y0 −A
(
R

A,η

ρ0,M

(
A(x0) − ρ0F(A(x0))

))∥∥∥ ≤ b0
∥∥y0 −A(x0)

∥∥. (3.17)

Step 2. The sequence {xn} is generated by an iterative procedure

A(xn+1) = (1 − an)A(xn) + anyn, (3.18)

and yn satisfies

∥∥∥yn −A
(
R

A,η

ρn,M

(
A(xn) − ρnF(A(xn))

))∥∥∥ ≤ bn
∥∥yn −A(xn)

∥∥, (3.19)

where n = 1, 2, ·, ·, ·.

Remark 3.6. For a suitable choice of the mappings A, η, F, M, Ik, and space X, then the
Algorithm 3.5 can be degenerated to the hybrid proximal point algorithm [16, 17] and the
over-relaxed A-proximal point algorithm [8].

Theorem 3.7. LetX be a q-uniformly smooth Banach space. LetA,F : X → X and η : X ×X → X
be single-valued mappings, and let M : X × X → 2X be a set-valued mapping and (FA +M)−1 be
the inverse mapping of the mapping (FA +M) : X → 2X satisfying the following conditions:

(i) η : X ×X → X is τ-Lipschtiz continuous;

(ii) A : X → X be an r-strongly η-accretive mapping and nonexpansive;

(iii) F : X → X be an ξ-Lipschtiz continuous and β-strongly η-accretive mapping;

(iv) M : X → 2X be an (A, η)-accretive set-valued mapping;
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(v) the (FA +M)−1 be (u, t)-Lipschitz continuous at 0(u ≥ 0);

(vi) {an}∞n=0(an ≥ 1), {bn}∞n=0 and {ρn}∞n=0 be three nonnegative sequences such that

∞∑

n=1

bn < ∞, a = lim sup
n→∞

an ≥ 1, ρn ↑ ρ ≤ ∞, (3.20)

where ρn, ρ ∈ (0, r/m)(n = 0, 1, 2, ·, ·, ·) and each satisfies condition (3.7),

(vii) let the sequence {xn} generated by the general over-relaxed A-proximal point algorithm
(3.6) be bounded and x∗ be a solution of problem (2.1), and the condition

〈
A(xn) −A(x∗), Jq

(
A
(
R

A,η

ρ,M

(
A(xn) − ρF(A(xn))

)) −A
(
R

A,η

ρ,M

(
A(x∗) − ρF(A(x∗))

)))〉

≥ γ
∥∥∥A

(
R

A,η

ρ,M

(
A(xn) − ρF(A(xn))

)) −A
(
R

A,η

ρ,M

(
A(x∗) − ρF(A(x∗))

))∥∥∥
q
,

(3.21)

0 < cq(a − 1)q +
(
aq − q(a − 1)aγ

)
dq < 1, (3.22)

hold. Then the sequence {xn} converges linearly to a solution x∗ of problem (2.1) with
convergence rate ϑ, where

ϑ = q

√
cq(a − 1)q +

(
aq + q(1 − a)aγ

)
dq,

a = lim sup
n→∞

an, d = lim sup
n→∞

dn = lim sup
n→∞

q

√√√
√ cqu

q

(
qγ − 1

)
rquq + ρ

q
n

,
∞∑

n=1

bn < ∞.

(3.23)

Proof. Let the x∗ be a solution of the Framework (2.1) for the conditions (i)–(iv) and
Lemma 3.4. Suppose that the sequence {xn} which generated by the hybrid proximal point
Algorithm 3.5 is bounded, from Lemma 3.4, we have

A(x∗) = (1 − an)A(x∗) + anA
(
R

A,η

ρn,M

(
A(x∗) − ρnF(A(x∗))

))
. (3.24)

We infer from Lemma 3.3 that any solution to (2.1) is a fixed point of RA,η

ρn,M
(A − ρnFA). First,

in the light of Lemma 3.2, we show

∥∥∥R
A,η

ρn,M

(
A(xn) − ρnF(A(xn))

) − x∗
∥∥∥ ≤ dn‖A(xn) −A(x∗)‖, (3.25)

where dn = q

√
cquq/((2γ − 1)rquq + ρ

q
n) < 1 and R

A,η

ρn,M
(A(x∗) − ρnF(A(x∗))) = x∗.
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For Ik = A − AR
A,η

ρ,M(A − ρnFA), and under the assumptions (including the condition

(vii) (3.21)), then Ik(xn) → 0(n → ∞) since the (FA+M)−1 is (u, t)-Lipschitz continuous at 0.
Indeed, it follows that RA,η

ρn,M
(A(xn) − ρnF(A(xn))) ∈ (FA +M)−1(ρ−1n Ik(xn)) from ρ−1n Ik(xn) ∈

(FA+M)(RA,η

ρn,M
(A(xn)−ρnF(A(xn)))). Next, by using the condition (iv) and (3.1), and setting

w = ρ−1n Ik(xn) and z = R
A,η

ρn,M
(A(xn) − ρnF(A(xn))), we have

∥
∥
∥R

A,η

ρn,M

(
A(xn) − ρnF(A(xn))

) − x∗
∥
∥
∥ ≤ u

∥
∥
∥ρ−1n Ik(xn)

∥
∥
∥, ∀n > n′. (3.26)

Now applying Lemma 3.3, we get

∥∥∥R
A,η

ρn,M

(
A(xn) − ρnF(A(xn))

) − x∗
∥∥∥
q

≤
∥∥∥R

A,η

ρn,M

(
A(xn) − ρnF(A(xn))

) − R
A,η

ρn,M

(
A(x∗) − ρnF(A(x∗))

)∥∥∥
q

≤ uq
∥∥∥ρ−1n Ik(xn) − ρ−1n Ik(x∗)

∥∥∥
q

≤
(

u

ρn

)q

‖Ik(xn) − Ik(x∗)‖q

≤
(

u

ρn

)q[
−(qγ − 1

)
rq
∥∥∥R

A,η

ρn,M

(
A(xn) − ρnF(A(xn))

) − R
A,η

ρn,M

(
A(x∗) − ρnF(A(x∗))

)∥∥∥
q

+cq‖A(xn) −A(x∗)‖q
]
.

(3.27)

Therefore,

∥∥∥R
A,η

ρn,M

(
A(xn) − ρnF(A(xn))

) − x∗
∥∥∥ ≤ dn‖A(xn) −A(x∗)‖, (3.28)

where dn = q

√
cquq/((2γ − 1)rquq + ρ

q
n) < 1 and R

A,η

ρn,M
(A(x∗) − ρnF(A(x∗))) = x∗.

Next we start the main part of the proof by using the expression

A(zn+1) = (1 − an)A(xn) + anA
(
R

A,η

ρn,M

(
A(xn) − ρnF(A(xn))

))
, ∀n ≥ 0. (3.29)
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Let us set sn = A(xn) − ρnF(A(xn)) and s∗ = A(x∗) − ρnF(A(x∗)) for simple. We begin with
estimating (for an ≥ 1) and later using (3.2), the nonexpansivity of A, (3.21) and (3.28) as
follows:

‖A(zn+1) −A(x∗)‖q ≤
∥
∥
∥(1 − an)A(xn) + anA

(
R

A,η

ρn,M
(sn)

)

−
[
(1 − an)A(x∗) + anA

(
R

A,η

ρn,M
(s∗)

)]∥∥
∥
q

≤
∥
∥
∥(1 − an)(A(xn) −A(x∗)) + an

[
A
(
R

A,η

ρn,M
(sn)

)
−A

(
R

A,η

ρn,M
(s∗)

)]∥∥
∥
q

≤ cq‖(1 − an)(A(xn) −A(x∗))‖q +
∥
∥
∥an

[
A
(
R

A,η

ρn,M
(sn)

)
−A

(
R

A,η

ρn,M
(s∗)

)]∥∥
∥
q

+ q(1 − an)an

〈
A(xn) −A(x∗), Jq

(
A
(
R

A,η

ρn,M
(sn)

)
−A

(
R

A,η

ρn,M
(s∗)

))〉

≤ cq(an − 1)q‖A(xn) −A(x∗)‖q + a
q
n

∥∥∥(R
A,η

ρn,M
(sn) − R

A,η

ρn,M
(s∗)

∥∥∥
q

+ q(1 − an)anγ
∥∥∥(R

A,η

ρn,M
(sn) − R

A,η

ρn,M
(s∗)

∥∥∥
q

≤ cq(an − 1)q‖A(xn) −A(x∗)‖q

+
[
a
q
n − q(1 − an)anγ

]∥∥∥(R
A,η

ρn,M

(
A(xn) − ρnF(A(xn))

) − x∗
∥∥∥
q

≤
[
cq(an − 1)q +

(
a
q
n + q(1 − an)anγ

)
d
q
n

]
‖A(xn) −A(x∗)‖q.

(3.30)

Thus, we have

‖A(zn+1) −A(x∗)‖q ≤ θn‖A(xn) −A(x∗)‖q, (3.31)

where

θn = q

√

cq(an − 1)q +
(
a
q
n + q(1 − an)anγ

)
d
q
n < 1, (3.32)

and a
q
n + q(1 − an)anγ > 0, an ≥ 1,

∑∞
n=1 bn < ∞, and dn = q

√
cquq/((2γ − 1)rquq + ρ

q
n) < 1.

Since A(xn+1) = (1 − an)A(xn) + anyn, we have A(xn+1) − A(xn) = an(yn − A(xn)). It
follows that

‖A(xn+1) −A(zn+1)‖

≤
∥∥∥(1 − an)A(xn) + anyn −

[
(1 − an)A(xn) + anR

A,η

ρn,M

(
A(xn) − ρnF(A(xn))

)]∥∥∥

≤ an

∥∥∥yn − R
A,η

ρn,M

(
A(xn) − ρnF(A(xn))

)∥∥∥

≤ anbn
∥∥yn −A(xn)

∥∥.

(3.33)
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Next, we can obtain

‖A(xn+1) −A(x∗)‖ ≤ ‖A(zn+1) −A(x∗)‖ + ‖A(xn+1) −A(zn+1)‖
≤ ‖A(zn+1) −A(x∗)‖ + anbn

∥
∥yn −A(xn)

∥
∥

≤ ‖A(zn+1) −A(x∗)‖ + bn‖A(xn+1) −A(xn)‖
≤ ‖A(zn+1) −A(x∗)‖ + bn‖A(xn+1) −A(x∗)‖ + bn‖A(x∗) −A(xn)‖.

(3.34)

This implies from (3.38) and (3.39) that

‖A(xn+1) −A(x∗)‖ ≤ θn + bn
1 − bn

‖A(xn) −A(x∗)‖. (3.35)

Since A is an r-strongly η-accretive mapping (and hence, ‖A(x) − A(y)‖ ≥ r‖x − y‖), this
implies from (3.35) that the sequence {xn} converges strongly to x∗ for

θn = q

√

cq(an − 1)q +
(
a
q
n + q(1 − an)anγ

)
d
q
n < 1, (3.36)

where an ≥ 1,
∑∞

n=1 bn < ∞, and dn = q

√
cquq/((2γ − 1)rquq + ρ

q
n) < 1.

Hence, we have

ϑ = lim sup
n→∞

θn + bn
1 − bn

= lim sup
n→∞

θn

= q

√
cq(a − 1)q +

(
aq + q(1 − a)aγ

)
dq.

(3.37)

By (3.22), it follows that 0 < ϑ < 1 from the condition (vi), and the sequence {xn} generated
by the hybrid proximal point Algorithm 3.5 converges linearly to a solution x∗ of problem
(2.1) with convergence rate ϑ. This completes the proof.

Corollary 3.8. Let X be a Hilbert space (q = 2, cq = 1), A : X → X be an r-strongly monotone
and nonexpansive mapping (α = 1), F = 0 is a zero operator, M : X → 2X be an A-maximal set-
valued monotone. Ik = A−AR

A,η

ρ,M(A−ρnFA), and the condition (3.21) hold, theM−1 be u-Lipschitz
continuous at 0 (u ≥ 0). Let {an}∞n=0, {bn}∞n=0 and {ρn}∞n=0 be the same as in Algorithm 3.5. If

0 < 1 − a
[
2
(
1 − γd2

)
− a

(
1 − (

2γ − 1
)
d2

)]
< 1, (3.38)

then the bounded sequence {xn} generated by the general over-relaxed A-proximal point algorithm
converges linearly to a solution x∗ of problem (2.1) with convergence rate ϑ, where

ϑ =
√
1 − a

[
2
(
1 − γd2

) − a
(
1 − (

2γ − 1
)
d2

)]
, (3.39)
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and d = lim supn→∞dn = lim supn→∞
√
u2/((2γ − 1)r2u2 + ρ2n) =

√
u2/((2γ − 1)r2u2 + ρ2), a =

lim supn→∞an,
∑∞

n=1 bn < ∞.

This is Theorem 3.2 in [8], and if, in addition, γ = 1, A = I then we can have the
Proposition 2 in [9].
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