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We study common fixed point theorems for a finite family of discontinuous and noncommutative
single-valued functions defined in complete metric spaces. We also study a common fixed point
theorem for two multivalued self-mappings and a stationary point theorem in complete metric
spaces. Throughout this paper, we establish common fixed point theorems without commuting
and continuity assumptions. In contrast, commuting or continuity assumptions are often assumed
in common fixed point theorems. We also give examples to show our results. Results in this paper
except those that generalized Banach contraction principle and those improve and generalize
recent results in fixed point theorem are original and different from any existence result in the
literature. The results in this paper will have some applications in nonlinear analysis and fixed
point theory.

1. Introduction and Preliminaries

Let (X, d) be a metric space and T : X � X be a multivalued map. We say that x ∈ X is
a stationary point of T if T(x) = {x}. The existence theorem of stationary point was first
considered by Dancs et al. [1]. If S is a self-mapping (multivalued or single valued) defined
on X, we denote F(S) the collection of all the fixed points of S. In this paper,we need the
following definitions.

Definition 1.1. A function f : X → X is called

(i) contraction if there exists r ∈ [0, 1) such that

d
(
f(x), f

(
y
)) ≤ rd

(
x, y

)
, ∀x, y ∈ X, (1.1)
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(ii) kannan if there exists α ∈ [0, 1/2) such that

d
(
f(x), f

(
y
)) ≤ αd

(
x, f(x)

)
+ αd

(
y, f

(
y
))
, ∀x, y ∈ X, (1.2)

(iii) quasicontractive if there is a constant r ∈ (0, 1) such that

d
(
f(x), f

(
y
)) ≤ rM

(
x, y

)
, ∀x, y ∈ X, (1.3)

where M(x, y) = max{d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))}.
(iv) weakly contractive if there exists a lower semicontinuous and nondecreasing function

ϕ : [0,∞) → [0,∞) with ϕ(t) = 0 if and only if t = 0 such that

d
(
f(x), f

(
y
)) ≤ d

(
x, y

) − ϕ
(
d
(
x, y

))
, ∀x, y ∈ X. (1.4)

It is known that every contraction and every Kannanmapping has a unique fixed point
in complete metric spaces Banach [2], Kannan [3] and every quasicontractive mapping has a
unique fixed point in Banach spaces Ćirić [4], Rhoades [5]. In 2001, Rhoades [6] proved that
every weakly contractive mapping has a unique fixed point in a complete metric space. Let
f and g be self-maps defined on X; the following inequality was considered in the study of
common fixed points theorems Rhoades [5], Chang [7]:

d
(
f(x), g

(
y
)) ≤ rM

(
x, y

)
(1.5)

for some constant r ∈ (0, 1) and function M : X ×X → [0,+∞).
If f and g satisfy the inequality (1.5)with

M
(
x, y

)
= max

{
d
(
x, y

)
, d

(
x, f(x)

)
, d

(
y, g

(
y
))
, d

(
x, g

(
y
))
, d

(
y, f(x)

)}
, (1.6)

then f and g are said to be a couple of quasicontractive mappings which is studied by
Rhoades [5]. Chang [7] prove that every couple of quasicontractive mappings has a unique
common fixed point in Banach spaces. Recently, Zhang and Song [8] proved a common fixed
point theorem in complete metric spaces under the following assumption:

d
(
f(x), g

(
y
)) ≤ M

(
x, y

) − ϕ
(
M

(
x, y

))
, (1.7)

where M(x, y) = max{d(x, y), d(x, f(x)), d(y, g(y)), (1/2)[d(y, f(x)) + d(x, g(y))]}.
The result of Zhang and Song [8] generalized the results in [2, 3, 5, 6]. Motivated by

Chang [7], Zhang and Song [8], it is natural to ask whether there is a common fixed point
of f and g in X satisfy inequality (1.5) with M(x, y) = d(x, f(y)). In this paper, we give a
positive answer to this question in complete metric spaces.

Let {Ti}mi=1 be a finite family of self-mappings on X. If there is a nondecreasing, lower
semicontinuous function ϕ : [0,+∞) → [0,+∞) with ϕ(x) = 0 if and only if x = 0 such that
for every x, y ∈ X,

d
(
Tix, Ti+1y

) ≤ Mi

(
x, y

)
, ∀i ∈ {1, 2, . . . , m}, (1.8)
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where Mi(x, y) = max{d(Ti−1x, Tiy), d(Ti−1x, Tix), d(Ti−1y, Tiy)}, for all i ∈ {1, 2, . . . , m − 1},
and

Mm

(
x, y

)
= max

{
d
(
Tm−1x, y

) − ϕ
(
d
(
Tm−1x, y

))
, d(Tm−1x, Tmx) − ϕ(d(Tm−1x, Tmx))

}
.
(1.9)

Here, T0 is the identity map defined on X and Tm+1 = T1. We show that {Ti}mi=1 have a unique
common fixed point if X is complete. As a special case of this result, we give a common fixed
point theorem in complete metric spaces under the assumption that inequality (1.5) holds
with M(x, y) = d(x, f(y)). One of our results generalized Banach contraction principle, an
example is given (Example 2.12) to show that the maps Ti (i = 1, 2, . . . , m) above need not
to be continuous. The assumption of continuity is often used in the existence theorems of
fixed points [6, 9–14]. We also give an example to show that the family {Ti}mi=1 above is not
necessary to be commuting, and in contrast that the commutativity assumption is often used
in the existence theorems of common fixed points [9, 10, 13, 15, 16]. Finally, we generalize
some of our results to the case of multivalued maps.

Let T, S : X � X be multivalued maps satisfy

H
(
Tx, Sy

) ≤ rd
(
x, Ty

)
, ∀x, y ∈ X. (1.10)

for some r ∈ [0, 1) (where H denotes the Hausdorff metric). In fact, under the hypothesis
that inequality (1.10) holds, we can show that F(T) = F(S)/= ∅ and Tx = Sx = F(T) for all
x ∈ F(T) if T and S have nonempty closed bounded values. Further we give a new stationary
point theorem in complete metric spaces and illustrate with examples (Examples 3.4 and 3.8).

2. Fixed Point Theorems

Throughout this paper, let (X, d) be a complete metric space and let N be the set of all positive
integers. In this section, all the self-maps on X are single valued. The following theorem is
the main result in this section.

Theorem 2.1. Let {Ti}mi=1 be a finite family of self-mappings on X. If there is a nondecreasing, lower
semicontinuous function ϕ : [0,+∞) → [0,+∞) with ϕ(x) = 0 if and only if x = 0 such that for
every x, y ∈ X,

d
(
Tix, Ti+1y

) ≤ Mi

(
x, y

)
, ∀i ∈ {1, 2, . . . , m}, (2.1)

where

Mi

(
x, y

)
= max

{
d
(
Ti−1x, Tiy

)
, d(Ti−1x, Tix), d

(
Ti−1y, Tiy

)}
(2.2)
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for all i ∈ {1, 2, . . . , m − 1}, and

Mm

(
x, y

)
= max

{
d
(
Tm−1x, y

) − ϕ
(
d
(
Tm−1x, y

))
, d(Tm−1x, Tmx) − ϕ(d(Tm−1x, Tmx))

}
,
(2.3)

T0 is the identity map defined on X and Tm+1 = T1.

Then, {Ti}mi=1 have a unique common fixed point.

Proof. For any fixed x ∈ X, take

x0 = x, x1 = T1x0, x2 = T2x0, . . . , xm = Tmx0,

xm+1 = T1xm, xm+2 = T2xm, . . . , x2m = Tmxm,

...

(2.4)

Continuing in this way, we obtain by induction a sequence {xn} in X such that xn = Tkxsm,
whenever n = k + sm with 1 ≤ k ≤ m and s ≥ 0. Then, if n = km, we have

d(xn, xn+1) = d
(
Tmx(k−1)m, T1xkm

)

≤ Mm

(
x(k−1)m, xkm

)

= d(xn−1, xn) − ϕ(d(xn−1, xn))

≤ d(xn−1, xn).

(2.5)

If n = k + sm for some 1 ≤ k ≤ m − 1, then

d(xn, xn+1) = d(Tkxsm, Tk+1xsm)

≤ Mk(xsm, xsm)

= d(Tk−1xsm, Tkxsm)

= d(xn−1, xn).

(2.6)

Therefore {d(xn, xn+1)} is a decreasing and bounded below sequence,and there exists r ≥ 0
such that d(xn, xn+1) → r. Since ϕ is lower semicontinuous, ϕ(r) ≤ lim infn→∞ϕ(d(xn, xn+1)).
Taking upper limits as k → ∞ on two sides of the following inequality

d(xkm, xkm+1) ≤ d(xkm−1, xkm) − ϕ(d(xkm−1, xkm)), (2.7)
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we have

r ≤ r − lim inf
n→∞

ϕ(d(xn, xn+1)) ≤ r − ϕ(r). (2.8)

Then, ϕ(r) = 0 and, hence, r = 0.
{xn} is a Cauchy sequence in (X, d). Indeed, let Cn = sup{d(xj , xk) : j, k ≥ n}. Then

{Cn} is a decreasing sequence. If limn→∞Cn = 0, we are done. Suppose that limn→∞Cn = C >
0, choose ε < C/(4m + 6) small enough and select N ∈ N such that

d(xn, xn+1) < ε, Cn < C + ε, ∀n ≥ N. (2.9)

By the definition of CN+1, there exist k, l ≥ N + 1 such that

d(xk, xl) > CN+1 − ε. (2.10)

Since d(xn, xn+1) < ε, for all n ≥ N. Replace k and l if necessary, we may assume that k =
m + sm, l = 1 + tm and

d(xk, xl) > CN+1 − ε − 2mε = CN+1 − (2m + 1)ε. (2.11)

Hence,

d(xk−1, xl−1) > C − (2m + 1)ε − 2ε = C − 2m + 3
4m + 6

C =
C

2
. (2.12)

Then,

CN+1 − (2m + 1)ε < d(xk, xl) = d(Tmxsm, T1xtm) ≤ Mm(xsm, xtm). (2.13)

We consider the following two cases:

(i) Mm(xsm, xtm) = d(Tm−1xsm, xtm) − ϕ(d(Tm−1xsm, xtm))

(ii) Mm(xsm, xtm) = d(Tm−1xsm, Tmxsm) − ϕ(d(Tm−1xsm, Tmxsm)).

IfMm(xsm, xtm) = d(Tm−1xsm, xtm) − ϕ(d(Tm−1xsm, xtm)), we have

CN+1 − (2m + 1)ε < d(Tm−1xsm, xtm) − ϕ(d(Tm−1xsm, xtm))

= d(xk−1, xl−1) − ϕ(d(xk−1, xl−1))

≤ d(xk−1, xl−1) − ϕ

(
C

2

)
≤ CN − ϕ

(
C

2

)

< C + ε − ϕ

(
C

2

)
.

(2.14)
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Then, CN+1 + ϕ(C/2) < C + (2m + 2)ε. Since ε is arbitrary small positive number, if we take
ε < ϕ(C/2)/(2m + 2). Then,

C + ϕ

(
C

2

)
≤ CN+1 + ϕ

(
C

2

)
< C + (2m + 2)ε < C + ϕ

(
C

2

)
. (2.15)

This yields a contradiction.
IfMm(xsm, xtm) = d(Tm−1xsm, Tmxsm) − ϕ(d(Tm−1xsm, Tmxsm)), we have

CN+1 − (2m + 1)ε < d(Tm−1xsm, Tmxsm) − ϕ(d(Tm−1xsm, Tmxsm))

= d(xk−1, xk) − ϕ(d(xk−1, xk)) ≤ ε.
(2.16)

Then CN+1 < (2m + 2)ε < C/2. This also yields a contradiction.
Therefore, C = 0 and {xn} is a Cauchy sequence in (X, d). Since (X, d) is complete,

{xn} converges to a point in X, say z.
In order to show that z is the unique common fixed point of {Ti}mi=1. We first claim that

Tiz = z, for all i = 1, 2, . . . , m.
Indeed, for each i ∈ {1, 2, . . . , m},

d(Tiz, z) = lim
k→∞

d(Tiz, xi−1+km) = lim
k→∞

d(Tiz, Ti−1xkm) ≤ lim
k→∞

Mi−1(xkm, z). (2.17)

We consider the following three cases:

(i) Mi−1(xkm, z) = d(Ti−2xkm, Ti−1xkm),

(ii) Mi−1(xkm, z) = d(Ti−2z, Ti−1z),

(iii) Mi−1(xkm, z) = d(Ti−2xkm, Ti−1z).

IfMi−1(xkm, z) = d(Ti−2xkm, Ti−1xkm), then

d(Tiz, z) ≤ lim
k→∞

d(Ti−2xkm, Ti−1xkm) = lim
k→∞

d(xkm+i−2, xkm+i−1) = 0. (2.18)

IfMi−1(xkm, z) = d(Ti−2z, Ti−1z), then

d(Tiz, z) ≤ d(Ti−2z, Ti−1z) ≤ Mi−2(z, z) = d(Ti−3z, Ti−2z)

...

≤ d(z, T1z) = lim
t→∞

d(T1z, xtm) = lim
t→∞

d
(
T1z, Tmx(t−1)m

)

≤ lim
t→∞

d
(
z, Tm−1x(t−1)m

) − ϕ
(
d
(
z, Tm−1x(t−1)m

))

= lim
t→∞

d(z, xtm−1) − ϕ(d(z, xtm−1)) ≤ d(z, z) = 0.

(2.19)
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IfMi−1(xkm, z) = d(Ti−2xkm, Ti−1z), then

d(Tiz, z) ≤ lim
k→∞

d(Ti−2xkm, Ti−1z) = lim
k→∞

d(Ti−1z, xkm+i−2). (2.20)

Continuing in this process, we show that d(Tiz, z) ≤ limk→∞d(T1z, xkm). By the same
argument as in the case above, we see that d(Tiz, z) = 0.

Then, we see that Tiz = z, for all i = 1, 2, . . . , m. Next, we claim that z is the unique
fixed point of T1. Indeed, for any x ∈ F(T1), we have

d(x, z) = d(T1x, z) = d(T1x, Tmz)

≤ d(x, Tm−1z) − ϕ(d(x, Tm−1z)) = d(x, z) − ϕ(d(x, z)).
(2.21)

Then, d(x, z) = 0 and y = z. Therefore, z is the unique fixed point of T1 and we
complete the proof.

Remark 2.2. (a) The sequence {xn} approaching to the unique common fixed point in
Theorem 2.1 is different from those in [8, 11, 12, 16–19].

(b) The finite family {Ti}mi=1 of self-mappings in Theorem 2.1 is neither commuting nor
continuous, which are often assumed in common fixed point theorems, see [6, 9–16]. In fact,
the commuting and continuity assumptions are not needed throughout this paper and we
will give examples (Examples 2.12–2.15) to show this fact.

As special cases of Theorem 2.1, we have the following theorems and corollaries.

Theorem 2.3. Let S, T : X → X, be self-mappings on X. If there is a nondecreasing, lower
semicontinuous function ϕ : [0,+∞) → [0,+∞) with ϕ(x) = 0 if and only if x = 0 such that

d
(
Tx, Sy

) ≤ max
{
d
(
x, Ty

) − ϕ
(
d
(
x, Ty

))
, d

(
Ty, Sy

) − ϕ
(
d
(
Ty, Sy

))}
,

d
(
Tx, Sy

) ≤ max
{
d
(
x, Ty

)
, d(x, Tx), d

(
y, Ty

)}
,

(2.22)

for all x, y ∈ X. Then S and T have a unique common fixed point.

Proof. Take m = 2, T1 = T and T2 = S in Theorem 2.1, then Theorem 2.3 follows from
Theorem 2.1.

Corollary 2.4. Let S, T be self-mappings on X. If there is a nondecreasing, lower semicontinuous
function ϕ : [0,+∞) → [0,+∞) with ϕ(x) = 0 if and only if x = 0 such that

d
(
Tx, Sy

) ≤ d
(
x, Ty

) − ϕ
(
d
(
x, Ty

)) ∀x, y ∈ X. (2.23)

Then S and T have a unique common fixed point.
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Corollary 2.5. Let T be a self-mapping on X. If there is a nondecreasing, lower semicontinuous
function ϕ : [0,+∞) → [0,+∞) with ϕ(x) = 0 if and only if x = 0 such that

d
(
Tx, T2y

)
≤ d

(
x, Ty

) − ϕ
(
d
(
x, Ty

)) ∀x, y ∈ X. (2.24)

Then T has a unique fixed point.

Proof. Take S = T2 in Theorem 2.3, then Corollary 2.4 follows from Corollary 2.4.

Remark 2.6. (a) Since d(Tx, Ty) ≤ d(x, y) − ϕ(d(x, y)) for all x, y ∈ X implies

d
(
Tx, T2y

)
≤ d

(
x, Ty

) − ϕ
(
d
(
x, Ty

))
, ∀x, y ∈ X. (2.25)

Corollary 2.5 generalizes Theorem 1 in Rhoades [6].
(b) Corollary 2.4 is equivalent to Corollary 2.5.

Proof. It suffices to show that S = T2 in Corollary 2.4. Indeed, for each y ∈ X, there exists
x ∈ X such that x = T(y). By the hypothesis in Corollary 2.4, d(T2y, Sy) = d(Tx, Sy) ≤
d(x, Ty) = 0 and we complete the proof.

(c) In Theorem 2.3, the map S is not necessary equal T2, see Example 2.14. In fact, the
maps S and T in Theorem 2.3 are not necessary to be commuting, see Example 2.15.

Theorem 2.7. Let {Ti}mi=1 be a finite family of self-mappings on X. If there exists r ∈ [0, 1) such that
for every x, y ∈ X

d
(
Tix, Ti+1y

) ≤ Mi

(
x, y

)
, ∀i ∈ {1, 2, . . . , m}, (2.26)

where

Mi

(
x, y

)
=

⎧
⎨

⎩

max
{
d
(
Ti−1x, Tiy

)
, d(Ti−1x, Tix), d

(
Ti−1y, Tiy

)}
, if i ∈ {1, 2, . . . , m − 1},

rmax
{
d
(
Tm−1x, y

)
, d(Tm−1x, Tmx)

}
, if i = m,

(2.27)

and T0 is the identity map defined on X and Tm+1 = T1.

Then {Ti}mi=1 have a unique common fixed point.

Proof. Take ϕ(t) = (1 − r)t for all t ∈ [0,∞), then Theorem 2.7 follows from Theorem 2.1.

Theorem 2.8. Let S, T be self-mappings on X. If there exists r ∈ [0, 1) such that

d
(
Tx, Sy

) ≤ rmax
{
d
(
x, Ty

)
, d

(
Ty, Sy

)}
,

d
(
Tx, Sy

) ≤ max
{
d
(
x, Ty

)
, d(x, Tx), d

(
y, Ty

)}
,

(2.28)

for all x, y ∈ X. Then S and T have unique common fixed point.
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Proof. Take, m = 2, T1 = T and T2 = S in Theorem 2.7, then Theorem 2.8 follows from
Theorem 2.7.

Corollary 2.9. Let S, T be self-mappings on X and if there exists r ∈ [0, 1) such that

d
(
Tx, Sy

) ≤ rd
(
x, Ty

)
, ∀x, y ∈ X. (2.29)

Then, S and T have a unique common fixed point.

Corollary 2.10. Let T be a self-map on X and if there exists r ∈ [0, 1) such that

d
(
Tx, T2y

)
≤ rd

(
x, Ty

)
, ∀x, y ∈ X. (2.30)

Then T has a unique fixed point.

Proof. Take S = T2 in Corollary 2.9, then Corollary 2.10 follows from Corollary 2.9.

Remark 2.11. (i) If T is contractive, then there exists r ∈ [0, 1) such that d(Tx, T2y) ≤ rd(x, Ty)
for all x, y ∈ X, but the converse is not true. It is obvious that Corollary 2.9 is a special case
of Corollaries 2.4 and 2.10 is a generalization of Banach contraction principle. Further we see
that Corollary 2.9 is equivalent to Corollary 2.10 by the same argument as in Remark 2.6.

(ii) A map T satisfies d(Tx, T2y) ≤ rd(x, Ty) for all x, y ∈ X and for some r ∈ [0, 1) is
neither continuous nor nonexpansive. We give an example (Example 2.12) to show this fact.

Example 2.12. Let T : [0, 1/2] → [0, 1/2] be defined by

T(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x2, if x ∈
[
0,

1
4

)
,

0, if x ∈
[
1
4
,
1
2

]
.

(2.31)

Then, d(Tx, T2y) ≤ (1/2)d(x, Ty) for all x, y ∈ [0, 1/2] and T is not continuous.

Proof. We consider the following three cases:

(i) x ∈ [0, 1/4), y ∈ [0, 1/2],

(ii) x ∈ [1/4, 1/2], y ∈ [1/4, 1/2],

(iii) x ∈ [1/4, 1/2], y ∈ [0, 1/4).

If x ∈ [0, 1/4), y ∈ [0, 1/2], then

d
(
Tx, T2y

)
= d

(
x2,

(
Ty

)2) =
∣∣∣x2 − (

Ty
)2∣∣∣

=
∣∣x − Ty

∣∣∣∣x + Ty
∣∣ ≤ 1

2
∣∣x − Ty

∣∣ =
1
2
d
(
x, Ty

)
.

(2.32)
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If x ∈ [1/4, 1/2], y ∈ [1/4, 1/2], then

d
(
Tx, T2y

)
= d(0, 0) = 0 and hence d

(
Tx, T2y

)
≤ 1

2
d
(
x, Ty

)
. (2.33)

If x ∈ [1/4, 1/2], y ∈ [0, 1/4), then

d
(
Tx, T2y

)
= d

(
0, y4

)
= y4 <

1
256

,

d
(
x, Ty

)
= d

(
x, y2

)
= x − y2 ≥ 1

4
−
(
1
4

)2

=
3
16

(2.34)

and, hence d(Tx, T2y) ≤ (1/2)d(x, Ty). It is obvious that T is not continuous at x = 1/4 but
d(Tx, T2y) ≤ (1/2)d(x, Ty) for all x, y ∈ [0, 1/2].

Example 2.13. Let T be the same as in Example 2.12. and take Ti = Ti for all i ∈ N. Since
F(T1) ⊆ F(Ti) for all i ∈ N. By Example 2.12 and Corollary 2.10, we see that {Ti}i∈N has a
unique common fixed point. But for each i ∈ N, Ti is not continuous, the results in [13, 16] do
not work in this example. Further it is obvious that the family {Ti}i∈N have a unique common
fixed point 0.

Example 2.14. Let X = {±1/8k}∞k=0 ∪ {0} and define maps T, S : X → X by T(x) = x/8 and
S(x) = −x/8. Then S/= T2 and we see that T and S have a unique common fixed point.

Proof. It suffices to show that there exists r ∈ [0, 1) such that

d
(
Tx, Sy

) ≤ rmax
{
d
(
x, Ty

)
, d

(
Ty, Sy

)}
,

d
(
Tx, Sy

) ≤ max
{
d
(
x, Ty

)
, d(x, Tx), d

(
y, Ty

)}
,

(2.35)

for all x, y ∈ X.
We have to consider the following two cases:

(i) |x| ≥ |y|,

(ii) |x| < |y|.

If |x| ≥ |y|, then

d
(
Tx, Sy

)
= d

(
x

8
,
−y
8

)
=
∣∣∣∣
x

8
+
y

8

∣∣∣∣ ≤
∣∣∣∣
x

8

∣∣∣∣ +
∣∣∣∣
y

8

∣∣∣∣ ≤
∣∣∣
x

4

∣∣∣,

d
(
x, Ty

)
= d

(
x,

−y
8

)
=
∣∣∣∣x +

y

8

∣∣∣∣ ≥ |x| −
∣∣∣∣
y

8

∣∣∣∣ ≥ |x| −
∣∣∣∣
x

8

∣∣∣∣ =
∣∣∣∣
7x
8

∣∣∣∣.

(2.36)
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If |x| < |y|, then

d
(
Tx, Sy

)
= d

(
x

8
,
−y
8

)
=
∣
∣
∣
∣
x

8
+
y

8

∣
∣
∣
∣ ≤

∣
∣
∣
∣
x

8

∣
∣
∣
∣ +

∣
∣
∣
∣
y

8

∣
∣
∣
∣ ≤

∣
∣
∣
∣
y

64

∣
∣
∣
∣ +

∣
∣
∣
∣
y

8

∣
∣
∣
∣ =

∣
∣
∣
∣
9y
64

∣
∣
∣
∣,

d
(
Ty, Sy

)
= d

(
y

8
,
−y
8

)
=
∣
∣
∣
∣
y

8
+
y

8

∣
∣
∣
∣ =

∣
∣
∣
y

4

∣
∣
∣,

d
(
y, Ty

)
= d

(
y,

y

8

)
=
∣∣
∣
∣y − y

8

∣∣
∣
∣ =

∣∣
∣
∣
7y
8

∣∣
∣
∣.

(2.37)

If we take r = 9/16, then by Theorem 2.8, we see that S and T have a unique common fixed
point. In fact, 0 is the unique common fixed point of S and T .

By the same argument as in Example 2.14, we give the following example to show that
the maps T and S in Theorem 2.8 are not necessary to be commuting.

Example 2.15. Let X = {±1/82k}∞k=0 ∪ {0} and define maps T, S : X → X by T(x) = x2 and
S(x) = −x2. Then S and T are not commuting and we see that T and S have a unique common
fixed point.

Proof. It suffices to show that there exists r ∈ [0, 1) such that

d
(
Tx, Sy

) ≤ rmax
{
d
(
x, Ty

)
, d

(
Ty, Sy

)}
,

d
(
Tx, Sy

) ≤ max
{
d
(
x, Ty

)
, d(x, Tx), d

(
y, Ty

)}
,

(2.38)

for all x, y ∈ X.
We have to consider the following two cases:

(i) |x| ≥ |y|,
(ii) |x| < |y|.

If |x| ≥ |y|, then

d
(
Tx, Sy

)
= d

(
x2,−y2

)
=
∣∣∣x2 + y2

∣∣∣ = x2 + y2 ≤ 2x2,

d
(
x, Ty

)
= d

(
x, y2

)
=
∣∣∣x − y2

∣∣∣ ≥ |x| − y2 ≥ 8x2 − y2 ≥ 7x2.

(2.39)

If |x| < |y|, then

d
(
Tx, Sy

)
= d

(
x2,−y2

)
=
∣∣∣x2 + y2

∣∣∣ ≤ y2

64
+ y2 =

65
64

y2,

d
(
Ty, Sy

)
= d

(
y2,−y2

)
= 2y2,

d
(
y, Ty

)
= d

(
y,−y2

)
=
∣∣∣y + y2

∣∣∣ ≥
∣∣y

∣∣ − y2 ≥ 8y2 − y2 = 7y2.

(2.40)
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If we take r = 65/128, then by Theorem 2.8, we see S and T have a unique common fixed
point. In fact, 0 is the unique common fixed point of S and T .

3. A Common Fixed Point Theorem of Set-Valued Maps
and a Stationary Point Theorem

In this section, we study a fixed point theorem and a stationary point theorem which
generalize a fixed point theorem in Section 2.

In this section, let CB(X) be the class of all nonempty bounded closed subsets of X
and for A,B ∈ CB(X), let H(A,B) be the Hausdorff metric of A and B and let d(x, B) =
infb∈Bd(x, b) for all x ∈ X.

Lemma 3.1 (see [20]). For all A,B ∈ CB(X), ε > 0 and a ∈ A, there exists b ∈ B such that
d(a, b) ≤ H(A,B) + ε.

Theorem 3.2. Let S, T : X → CB(X) be multivalued maps. If there exists r ∈ [0, 1) such that

H
(
Tx, Sy

) ≤ rd
(
x, Ty

)
, ∀x, y ∈ X. (3.1)

Then F(T) = F(S)/= ∅ and Tx = Sx = F(T) for all x ∈ F(T).

Proof. For any fixed x ∈ X and 0 < ε < 1. Take x0 = x, and let x1 ∈ Tx0. By Lemma 3.1, we
may choose x2 ∈ Sx0 such that d(x1, x2) ≤ H(Tx0, Sx0) + ε, x3 ∈ Tx2 such that d(x2, x3) ≤
H(Sx0, Tx2) + ε2, x4 ∈ Sx2 such that d(x3, x4) ≤ H(Tx2, Sx2) + ε3, . . .. Continuing in this
process, we obtain by induction a sequence {xn}n∈N such that

x2n ∈ Sx2n−2, x2n+1 ∈ Tx2n,

d(x2n+1, x2n+2) ≤ H(Tx2n, Sx2n) + ε2n+1,

d(x2n, x2n+1) ≤ H(Sx2n−2, Tx2n) + ε2n.

(3.2)

Therefore,

d(x2n, x2n+1) ≤ H(Sx2n−2, Tx2n) + ε2n

≤ rd(x2n, Tx2n−2) + ε2n ≤ rd(x2n, x2n−1) + ε2n,

d(x2n+1, x2n+2) ≤ H(Tx2n, Sx2n) + ε2n+1

≤ rd(x2n, Tx2n) + ε2n+1 ≤ rd(x2n, x2n+1) + ε2n+1.

(3.3)
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Therefore, d(xn, xn+1) ≤ rd(xn−1, xn) + εn for all n ∈ N and

d(xn, xn+1) ≤ rd(xn−1, xn) + εn

≤ r
(
rd(xn−2, xn−1) + εn−1

)
+ εn

= r2d(xn−2, xn−1) + rεn−1 + εn

≤ r2
(
rd(xn−3, xn−2) + εn−2

)
+ rεn−1 + εn

= r3d(xn−3, xn−2) + r2εn−2 + rεn−1 + εn

...

≤ rnd(x0, x1) +
n∑

k=1

rn−kεk.

(3.4)

This shows that

∞∑

n=1

d(xn, xn+1) ≤
∞∑

n=1

rnd(x0, x1) +
∞∑

n=1

[

εn
( ∞∑

k=0

rk
)]

=
1

1 − r

[
rd(x0, x1) +

ε

1 − ε

]
< ∞

(3.5)

and {xn} is a Cauchy sequence. Since (X, d) is complete, there exists z ∈ X such that xn → z.
Since

d(Tz, z) = lim
n→∞

d(Tz, x2n+2) ≤ lim
n→∞

H(Tz, Sx2n)

≤ r lim
n→∞

d(z, Tx2n) ≤ r lim
n→∞

d(z, x2n+1) = rd(z, z) = 0
(3.6)

and H(Tz, Sz) ≤ rd(z, Tz) = 0, z ∈ Tz = Sz. Therefore z ∈ F(T)/= ∅ and z ∈ F(S)/= ∅.
To complete the proof, it suffices to show the following four cases:

(i) F(T) ⊆ Tz and Sx = Tx for all x ∈ F(T),

(ii) Tz ⊆ F(T),

(iii) Tx = Tz for all x ∈ F(T),

(iv) F(S) ⊆ Tz.

For any x ∈ F(T),

d(x, Tz) ≤ H(Tx, Sz) ≤ rd(x, Tz). (3.7)
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This shows that d(x, Tz) = 0 and x ∈ Tz. Further

H(Sx, Tx) ≤ rd(x, Tx) = 0 (3.8)

and x ∈ Sx = Tx.
For any x ∈ Tz,

d(x, Tx) ≤ H(Sz, Tx) ≤ rd(Tz, x) = 0. (3.9)

This shows that x ∈ Tx. Till now, we see that Tz = F(T) ⊆ F(S) and Sx = Tx for all x ∈ F(T).
For any x ∈ F(T),

H(Tx, Sz) ≤ rd(x, Tz) = rd(x, F(T)) = 0. (3.10)

Hence Tx = Sz = Tz.
It remains to show that F(S) ⊆ Tz = F(T).
Indeed, for any x ∈ F(S),

d(x, Tz) ≤ H(Sx, Tz)

≤ rd(Tx, z) ≤ rH(Tx, Sz) ≤ r2d(x, Tz)
(3.11)

and d(x, Tz) = 0. Then x ∈ Tz and F(S) ⊆ Tz.

Remark 3.3. (a) If one of S and T in Theorem 3.2 is single valued, then the set F(T) = F(S)
is singleton and the maps S and T have a unique common fixed point in X. Therefore,
Theorem 3.2 is a generalization of Corollary 2.9, but Theorem 3.2 is not a generalization of
Theorem 5 Nadler [20].

(b) The sequence {xn} approaches to the common fixed point z of S and T in
Theorem 3.2 is different from those in [20–25].

(c) By Example 2.12, we see that both T and S in Theorem 3.2 are neither to be upper
semicontinuous nor to be lower semicontinuous (multivalued maps). Further the maps T
and S are not necessary to be commuting. We give an example below.

Example 3.4. Let X = {±1/8k}∞k=1 ∪ {0} and let maps T, S : X → X be defined by T(x) =
{±x/8k}∞k=1 ∪ {0} and S(x) = {|x|/8k+1}∞k=1 ∪ {0}. Then we see that T and S have a unique
common fixed point.

Proof. It suffices to show that there exists r ∈ [0, 1) such that

H
(
Tx, Sy

) ≤ rd
(
x, Ty

)
, ∀x, y ∈ X. (3.12)

We have to consider the following two cases:

(i) |x| ≥ |y|
(ii) |x| < |y|
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If |x| ≥ |y|, we have

H
(
Tx, Sy

)
=

|x|
8
, H

(
x, Ty

) ≥ |x| − |x|
8

=
7
8
|x|. (3.13)

If |x| < |y|, we have

H
(
Tx, Sy

) ≤
∣
∣y

∣
∣

64
, H

(
x, Ty

)
= |x| +

∣
∣y

∣
∣

8
≥ 1

8
∣
∣y

∣
∣. (3.14)

If we take r = 1/7, then by Theorem 3.2, we see S and T have a unique common fixed point.
In fact, 0 is the unique common fixed point of S and T .

Corollary 3.5. Let T : X � X be a multivalued map with nonempty compact values and r ∈ [0, 1)
such that

H
(
Tx, T2y

)
≤ rd

(
x, Ty

)
, ∀x, y ∈ X. (3.15)

Then F(T)/= ∅ and Tx = F(T) for all x ∈ F(T).

Similarly, we have the following existence theorem of stationary points.

Theorem 3.6. Let T : X → CB(X) be a multivalued map, S : X → X be a single valued function.
If ϕ : [0,∞) → [0,∞) is a nondecreasing, lower semicontinuous function with ϕ(a) − ϕ(b) ≤ a − b
for all a ≥ b ≥ 0 and ϕ(x) = 0 if and only if x = 0. Suppose that

H
(
Tx, Sy

) ≤ d
(
x, Ty

) − ϕ
(
d
(
x, Ty

))
, ∀x, y ∈ X. (3.16)

Then T has a unique stationary point, say z ∈ X. In fact, F(T) = F(S) = {z} and Tz = {Sz} = {z}.

Proof. For any fixed x0 ∈ X, let x1 ∈ Tx0, x2 = Sx0, x3 ∈ Tx2, x4 = Sx2, . . .. Continuing in
this process, we obtain by induction a sequence {xn} such that x2n+1 ∈ Tx2n and x2n+2 = Sx2n.
Since

d(x2n, x2n+1) ≤ H(x2n, Tx2n)

= H(Sx2n−2, Tx2n) ≤ d(x2n, Tx2n−2) − ϕ(d(x2n, Tx2n−2))

≤ d(x2n, x2n−1) − ϕ(d(x2n, x2n−1)) ≤ d(x2n−1, x2n),

d(x2n+1, x2n+2) ≤ H(Tx2n, x2n+2)

= H(Tx2n, Sx2n) ≤ d(x2n, Tx2n) − ϕ(d(x2n, Tx2n))

≤ d(x2n, x2n+1) − ϕ(d(x2n, x2n+1)) ≤ d(x2n, x2n+1).

(3.17)
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Then, d(xn, xn+1) is a decreasing and bounded below sequence, and hence there exist r ≥ 0
such that d(xn, xn+1) → r. Since ϕ is lower semicontinuous, ϕ(r) ≤ lim infn→∞ϕ(d(xn, xn+1)).
Taking upper limits as n → ∞ on two sides of the following inequality

d(xn, xn+1) ≤ d(xn−1, xn) − ϕ(d(xn−1, xn)), (3.18)

we have

r ≤ r − lim inf
n→∞

ϕ(d(xn, xn+1)) ≤ r − ϕ(r). (3.19)

Then, ϕ(r) = 0 and hence r = 0.
{xn} is a Cauchy sequence in (X, d). Indeed, let Cn = sup{d(xj , xk) : j, k ≥ n}. Then

{Cn} is a decreasing sequence. If limn→∞Cn = 0, we are done. Suppose that limn→∞Cn = C >
0, choose ε < C/10 small enough and select N ∈ N such that

d(xn, xn+1) < ε, Cn < C + ε, ∀n ≥ N. (3.20)

By the definition of CN+1, there exists k, l ≥ N + 1 such that

d(xk, xl) > CN+1 − ε. (3.21)

Since d(xn, xn+1) < ε, for all n ≥ N. Replace k and l if necessary, we may assume that k = 2s,
l = 1 + 2t and

d(xk, xl) > CN+1 − ε − 2ε = CN+1 − 3ε. (3.22)

Hence,

d(xk−1, xl−1) > C − 3ε − 2ε > C − 5
10

C =
C

2
. (3.23)

Then,

CN+1 − 3ε < d(xk, xl)

= d(Sx2s−2, x2t+1) ≤ H(Sx2s−2, Tx2t)

≤ d(x2t, Tx2s−2) − ϕ(d(x2t, Tx2s−2))

≤ d(x2t, x2s−1) − ϕ(d(x2t, x2s−1))

= d(xl−1, xk−1) − ϕ(d(xl−1, xk−1))

≤ CN − ϕ

(
C

2

)
< C + ε − ϕ

(
C

2

)
,

(3.24)
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andCN+1+ϕ(C/2) < C+4ε. Since ε is arbitrary small positive number, if we take ε < ϕ(C/2)/4.
Then

C + ϕ

(
C

2

)
≤ CN+1 + ϕ

(
C

2

)
< C + 4ε < C + ϕ

(
C

2

)
. (3.25)

This yields a contradiction. Therefore C = 0 and {xn} is a Cauchy sequence in (X, d). By the
completeness of (X, d), {xn} converges to a point in X, say z.

Since,

d(Tz, z) = lim
k→∞

d(Tz, x2k+2) ≤ lim
k→∞

H(Tz, Sx2k)

≤ lim
k→∞

[
d(z, Tx2k) − ϕ(d(z, Tx2k))

]

≤ lim
k→∞

d(z, Tx2k) ≤ lim
k→∞

d(z, x2k+1) = 0

H(Sz, Tz) ≤ d(z, Tz) − ϕ(d(z, Tz)) ≤ 0.

(3.26)

It follows that Tz = {Sz} = {z}.
Further for all x ∈ F(S),

d(x, z) ≤ H(Sx, Tz) ≤ d(Tx, z) − ϕ(d(Tx, z))

≤ H(Tx, z) = H(Tx, Sz) ≤ d(x, Tz) − ϕ(d(x, Tz))

= d(x, z) − ϕ(d(x, z)).

(3.27)

Then, d(x, z) = 0 and x = z.
For all x ∈ F(T),

d(x, z) ≤ H(Tx, z) = H(Tx, Sz)

≤ d(x, Tz) − ϕ(d(x, Tz)) = d(x, z) − ϕ(d(x, z)).
(3.28)

Then, d(x, z) = 0 and hence x = z.

Remark 3.7. (a) The single valued map S in Theorem 3.6 is not necessary to be continuous
(see Example 2.12), but the continuity assumption is used in Theorem 3.2 [21, 22, 25] and
Theorem 2.1 Ćirić and Ume [23]. We give an example to show that T and S in Theorem 3.6
are not necessary to be commuting.

(b) Theorems 3.2 and 3.6 are different and Theorem 3.6 is also a generalization of
Corollary 2.9.

Example 3.8. Let X = {±1/8k}∞k=1 ∪ {0} and let maps T : X � X and S : X → X be defined by
T(x) = {±x/8k}∞k=1 ∪ {0} and S(x) = |x|/64. Then we see that T has a unique stationary point.
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Proof. It suffices to show that there exists r ∈ [0, 1) such that

H
(
Tx, Sy

) ≤ rd
(
x, Ty

)
, ∀x, y ∈ X. (3.29)

We have to consider the following two cases:

(i) |x| ≥ |y|,
(ii) |x| < |y|.
If |x| ≥ |y|, we have

H
(
Tx, Sy

)
=

|x|
8

+

∣
∣y

∣
∣

64
≤ 9

64
|x|, H

(
x, Ty

)
= |x| +

∣
∣y

∣
∣

8
≥ |x|. (3.30)

If |x| < |y|, we have

H
(
Tx, Sy

)
=

|x|
8

+

∣∣y
∣∣

64
≤

∣∣y
∣∣

32
, H

(
x, Ty

)
= |x| +

∣∣y
∣∣

8
≥ 1

8
∣∣y

∣∣. (3.31)

If we take r = 1/4. Then by Theorem 3.6, we see T has a unique stationary point. In fact, 0 is
the unique stationary point of T .
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