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This paper investigates the global stability and the global asymptotic stability independent of the
sizes of the delays of linear time-varying Caputo fractional dynamic systems of real fractional
order possessing internal point delays. The investigation is performed via fixed point theory
in a complete metric space by defining appropriate nonexpansive or contractive self-mappings
from initial conditions to points of the state-trajectory solution. The existence of a unique fixed
point leading to a globally asymptotically stable equilibrium point is investigated, in particular,
under easily testable sufficiency-type stability conditions. The study is performed for both the
uncontrolled case and the controlled case under a wide class of state feedback laws.

1. Introduction

Fractional calculus is concerned with the calculus of integrals and derivatives of any arbitrary
real or complex orders. In this sense, it may be considered as a generalization of classical
calculus which is included in the theory as a particular case. There is a good compendium
of related results with examples and case studies in [1]. Also, there is an existing collection
of results in the background literature concerning the exact and approximate solutions of
fractional differential equations of Riemann-Liouville and Caputo types [1–4], fractional
derivatives involving products of polynomials [5, 6], fractional derivatives and fractional
powers of operators [7–9], boundary value problems concerning fractional calculus (see
for instance [1, 10]) and so forth. On the other hand, there is also an increasing interest in
the recent mathematical related to dynamic fractional differential systems oriented towards
several fields of science like physics, chemistry or control theory. Perhaps the reason of
interest in fractional calculus is that the numerical value of the fraction parameter allows
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a closer characterization of eventual uncertainties present in the dynamic model. We can
also find, in particular, abundant literature concerned with the development of Lagrangian
and Hamiltonian formulations where the motion integrals are calculated though fractional
calculus and also in related investigations concerned dynamic and damped and diffusive
systems [11–17] as well as the characterization of impulsive responses or its use in applied
optics related, for instance, to the formalism of fractional derivative Fourier plane filters (see,
for instance, [16–18]), and Finance [19]. Fractional calculus is also of interest in control theory
concerning for instance, heat transfer, lossless transmission lines, the use of discretizing
devices supported by fractional calculus, and so forth (see, for instance [20–22]). In particular,
there are several recent applications of fractional calculus in the fields of filter design, circuit
theory and robotics [21, 22], and signal processing [17]. Fortunately, there is an increasing
mathematical literature currently available on fractional differ-integral calculus which can
formally support successfully the investigations in other related disciplines.

This paper is concerned with the investigation of the solutions of time-invariant
fractional differential dynamic systems [23, 24], involving point delays which leads to
a formalism of a class of functional differential equations, [25–31]. Functional equations
involving point delays are a crucial mathematical tool to investigate real process where delays
appear in a natural way like, for instance, transportation problems, war and peace problems,
or biological and medical processes. The main interest of this paper is concerned with the
positivity and stability of solutions independent of the sizes of the delays and also being
independent of eventual coincidence of some values of delays if those ones are, in particular,
multiple related to the associate matrices of dynamics. Most of the results are centred in
characterizations via Caputo fractional differentiation although some extensions presented
are concerned with the classical Riemann-Liouville differ-integration. It is proved that the
existence nonnegative solutions independent of the sizes of the delays and the stability
properties of linear time-invariant fractional dynamic differential systems subject to point
delays may be characterized with sets of precise mathematical results.

On the other hand, fixed point theory is a very powerful mathematical tool to be
used in many applications where stability knowledge is needed. For instance, the concepts of
contractive, weak contractive, asymptotic contractive and nonexpansive mappings have been
investigated in detail in many papers from several decades ago (see, for instance, [32–34]
and references therein). It has been found, for instance, that contractivity, weak contractivity
and asymptotic contractivity ensure the existence of a unique fixed pointing complete metric
or Banach spaces. Some theory and applications of some types of functional equations in
the context of fixed point theory have been investigated in [35, 36]. Fixed point theory has
also been employed successfully in stability problems of dynamic systems such as time-delay
and continuous-time/digital hybrid systems and in those involving switches among different
parameterizations. This paper is concerned with the investigation of fixed points in Caputo
linear fractional dynamic systems of real order α which involved delayed dynamics subject
to a finite set of bounded point delays which can be of arbitrary sizes. The self-mapping
defined in the state space from initial conditions to points of the state—trajectory solution
are characterized either as nonexpansive or as contractive. The first case allows to establish
global stability results while the second one characterizes global asymptotic stability.

1.1. Notation

C , R, and Z are the sets of complex, real, and integer numbers, respectively.



Fixed Point Theory and Applications 3

R+ and Z+ are the sets of positive real and integer numbers, respectively, C+ is the set
of complex numbers with positive real part.

C0+ := C+ ∪ {iω : ω ∈ R}, where i is the complex unity, R0+ := R+ ∪ {0} and Z 0+ :=
Z+ ∪ {0}.

R− and Z− are the sets of negative real and integer numbers, respectively; and C− is the
set of complex numbers with negative real part.

C0− := C−∪{iω : ω ∈ R}, where i is the complex unity,R0 := R−∪{0} andZ0− := Z−∪{0}.
N := {1, 2, . . . ,N} ⊂ Z0+, “∨” is the logic disjunction, and “∧” is the logic conjunction.

[t/h] is the integer part of the rational quotient t/h.
σ(M) denotes the spectrum of the real or complex square matrix M (i.e., its set of

distinct eigenvalues).
‖ ‖ denotes any vector or induced matrix norm. Also, ‖m‖p and ‖M‖p are the

�p-norms of the vector m or (induced) real or complex matrix M, and μp(M) denote
the �p measure of the square matrix M, [20]. The matrix measure μp(M) is defined
as the existing limit μp(M) := limε→ 0+(‖ In + ε X ‖p − ε)/ε which has the property
max(−‖M‖p,maxi∈nreλi(M)) ≤ μp(M) ≤ ‖M‖p for any square n-matrix M of spectrum

σ(M) = {λ i(M) ∈ C : 1 ≤ i ≤ n}. An important property for the investigation of this
paper is that μ2(M) < 0 if M is a stability matrix: that is, if re λ i(M) < 0; 1 ≤ i ≤ n.

‖ ‖∞ denotes the supremum norm on R0+, or its induced supremum metric, for
functions or vector and matrix functions without specification of any pointwise particular
vector or matrix norm for each t ∈ R0+. If pointwise vector or matrix norms are specified, the
corresponding particular supremum norms are defined by using an extra subscript. Thus,
‖m‖ p∞ := supt∈R0+

‖m(t)‖p and ‖M‖ p∞ := supt∈R0+
‖M(t)‖p are, respectively, the supremum

norms onR0+ for vector andmatrix functions of domains inR0+×Rn, respectively, inR0+×Rn×m

defined from their �p pointwise respective norms for each t ∈ R0+.
In is the nth identity matrix.
Kp(M) is the condition number of the matrix M with respect to the �p-norm;

k := {1, 2, . . . , k}. (1.1)

The sets BPC(i)(dom, codom) and PC(i)(dom, codom) are the sets of functions of a certain
domain and codomain which are of class C(i−1) (dom, codom) and with the ith derivative is
bounded piecewise continuous, respectively, piecewise continuous in the definition domain.

2. Caputo Fractional Linear Dynamic Systems with Point Constant
Delays and the Contraction Mapping Theorem

Consider the linear functional Caputo fractional dynamic system of order α with r delays:

(
Dα

0+x
)
(t) :=

1
Γ(k − α)

∫ t

0

x(k)(τ)
(t − τ)α+1−k

dτ

=
r∑

i =0

Âi(t)x(t − ri) + B(t)u(t)

=
r∑

i =0

Aix(t − ri) +
r∑

i =0

Ãi(t)x(t − ri) + B(t)u(t),

(2.1)
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with k − 1 < α(∈ R+) ≤ k; k ∈ Z+, 0 = r0 < r1 < r2 < · · · < rr = h < ∞ being distinct constant
delays, where ri(i ∈ r) are the r (in general incommensurate delays) 0 = r0 < ri (i ∈ r)
subject to the system piecewise continuous bounded matrix functions of delayed dynamics
Âi : R0+ → Rn×n (i ∈ r ∪ {0}) which are decomposable as a (nonunique) sum of a constant
matrix plus a bounded matrix function of time, that is, Âi(t) = Ai + Ãi(t), for all t ∈ R0+, and
B : R0+ → Rn×m is the piecewise continuous bounded control matrix. The initial condition
is given by k n-real vector functions ϕj : [−h, 0] → Rn, with j ∈ k − 1 ∪ {0}, which are
absolutely continuous except eventually in a set of zero measure of [−h, 0] ⊂ R of bounded
discontinuities with ϕj(0) = xj(0) = x(j)(0) = xj0, j ∈ k − 1 ∪ {0}. The function vector
u : R0+ → Rm is any given bounded piecewise continuous control function. The following
result is concerned with the unique solution on R0+ of the above differential fractional system
(3.1). The proof, which is based on Picard-Lindelöf theorem, follows directly from a parallel
existing result from the background literature on fractional differential systems by grouping
all the additive forcing terms of (2.1) in a unique one (see for instance [1, (1.8.17), (3.1.34)–
(3.1.49)], with f(t) ≡∑r

i= 1 Aix(t−hi)+Bu(t)). For the sake of simplicity, the domains of initial
conditions and controls are all extended to [−h, 0) ∪ R0+ by zeroing them on the irrelevant
intervals of [−h, 0) so that any solution for t ∈ R0+ of (2.1) is identical to the corresponding
one under the above given definition domains of vector functions of initial conditions and
controls.

Theorem 2.1. The linear and time- invariant differential functional fractional dynamic system (2.1)
of any order α ∈ C0+ has a unique continuous solution on [−h, 0] ∪ R0+ satisfying

(a) x ≡ ϕ ≡ ∑k−1
j=0 ϕj on R0+ with ϕj(0) = xj(0) = x(j)(0) = xj0; j ∈ k − 1 ∪ {0}; for all t ∈

[−h, 0) for each given set of initial functions and ϕj : [−h, 0] → Rn, j ∈ k − 1 ∪ {0} being bounded
piecewise continuous with eventual discontinuities in a set of zero measure of [−h, 0] ⊂ R of bounded
discontinuities, that is, ϕj ∈ BPC(0)([−h, 0]),Rn); j ∈ k − 1 ∪ {0} and each given bounded piecewise
continuous control u : R0+ → Rm , with u(t) = 0 for t ∈ [−h, 0), being a bounded piecewise
continuous control function, and

(b)

xα(t) =
k−1∑

j=0

(

Φαj(t)xj0 +
r∑

i =1

∫ ri

0
Φα(t − τ)Aiϕj(τ − ri)dτ

+
r∑

i =1

∫ ri

0
Φα(t − τ)Ãi(τ)ϕj(τ − ri)dτ

)

+
r∑

i =1

∫ t

ri

Φα(t − τ)Ai(τ)xα(τ − ri)dτ +
r∑

i =0

∫ t

ri

Φα(t − τ)Ãi(τ)xα(τ − ri)dτ

+
∫ t

0
Φα(t − τ)B(τ)u(τ)dτ, t ∈ R0+,

(2.2)

which is time-differentiable satisfying (2.1) in R+ with k = [Reα] + 1 if α /∈ Z+ and k = α if α ∈ Z+,
and

Φαj(t) := tjEα,j+1(A0t
α), Φα(t) := tα− 1Eαα(A0t

α),

Eαj(A0t
α) :=

∞∑

�=0

(A0t
α)�

Γ
(
α� + j

) , j ∈ k − 1 ∪ {0, α},
(2.3)

for t ∈ R 0+ and Φα0(t) = Φα (t) = 0 for t < 0, where Eα,j(A0t
α) are the Mittag-Leffler functions.
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A technical result about norm upper-bounding functions of the matrix functions (2.3)-
(2.4) follows

Lemma 2.2. The following properties hold.
(i) There exist finite real constants KEαj ≥ 1, KΦαj ≥ 1; j ∈ k − 1 ∪ {0} and KΦα ≥ 1 such

that for any α(∈ R+) < 1

Eαj(A0t
α) ≤ KEαj

∥
∥
∥eA0t

∥
∥
∥,

∥
∥Φαj(t)

∥
∥ ≤ KΦαj

∥
∥
∥tjeA0t

∥
∥
∥, j ∈ k − 1 ∪ {0, α},

‖Φα(t)‖ ≤ KΦα

∥
∥
∥
(
1/t 1−α

)
eA0t

∥
∥
∥, for t (∈ R+) ≥ 1.

(2.4)

(ii) If α(∈ R+) ≥ 1 then

∥∥Eαj(A0t
α)
∥∥ =

∞∑

�=0

(
�!

Γ
(
α� + j

)

)(
A�

0t
α�

�!

)

≤ sup
�∈Z0+

(
�!

Γ(� + 1)

)∥∥∥eA0(tα)
∥∥∥

=
∥∥∥eA0(tα)

∥∥∥, j ∈ k − 1 ∪ {0}, t ∈ R0+,

∥∥Φαj(t)
∥∥ ≤ sup

�∈Z0+

(
�!

Γ
(
α� + j + 1

)

)

tj
∥∥∥eA0(tα)

∥∥∥ ≤ tj
∥∥∥eA0(tα)

∥∥∥, j ∈ k − 1 ∪ {0}, t ∈ R0+,

‖Φα(t)‖ ≤ sup
�∈Z0+

(
�!

Γ((� + 1)α)

)
tα− 1

∥∥∥e A0(tα)
∥∥∥ ≤ tα−1

∥∥∥eA0(tα)
∥∥∥, t ∈ R0+.

(2.5)

If, in addition,A0 is a stability matrix then ‖eA0t‖ ≤ Ke− λt and ‖eA0(tα)‖ ≤ Ke− λtα ≤ Ke−λt; t ∈ R0+

for some real constants K ≥ 1, λ ∈ R+. Then, one gets from (2.5)

∥∥Eαj(A0t
α)
∥∥ ≤ Ke−λt,

∥∥Φαj(t)
∥∥ ≤ tje−λ t, j ∈ k − 1 ∪ {0},

‖Φα(t)‖ ≤ tα−1e−λt
(2.6)

for t ∈ R0+, and the fractional dynamic system in the absence of delayed dynamics is exponentially
stable if the standard fractional system for α = 1 is exponentially stable.

(iii) The following inequalities hold.

‖Φα, k−1(t)‖ ≤ tk−α‖Φα(t)‖ for α ∈ (k − 1, k] ∩ R+ for k ∈ Z+, t ∈ R0+,

‖Φα(t)‖ ≤ tα+1−k ‖Φα,k−2(t)‖ for α ∈ [k − 1, k) ∩ R+, t ∈ R0+,

‖Φk(t)‖ ≡ ‖Φk,k−1(t)‖ for α = k ∈ Z+, t ∈ R0+.

(2.7)
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Proof. Note from (2.3)-(2.4) for 0 < α(∈ R+) < 1

Eαj(A0t
α) :=

∞∑

�=0

(A0t
α)�

Γ
(
α� + j

)

=
∞∑

�=0

(
�!

Γ
(
α� + j

)

)(
A�

0t
α�

�!

)

=
∞∑

�=0

(
t(α−1)��!
Γ
(
α� + j

)

)(
A�

0t
�

�!

)

,

∥
∥Eαj(A0t

α)
∥
∥ ≤ sup

τ∈(1, ∞)∩R

(

sup
�∈Z0+

(
�!

τ (1−α)�Γ
(
α� + j

)

))∥
∥
∥eA0t

∥
∥
∥, j ∈ k − 1 ∪ {0, α},

t ∈ (1,∞) ∩ R+,

lim sup
t → ∞

∥∥Eα,j(A0t
α)
∥∥ ≤ lim sup

t → ∞

(

sup
�∈Z0+

(
�!

t(1−α)�Γ
(
α� + j

)

)∥∥∥∥∥

∞∑

� =0

A�
0t

�

�!

∥
∥∥∥∥

)

≤ lim sup
t → ∞

∥∥∥eA0t
∥∥∥, j ∈ k − 1 ∪ {0, α},

∥∥Φαj(t)
∥∥ ≤ sup

τ∈(1,∞)∩R

(

sup
�∈Z0+

(
�!

τ (1−α)�Γ
(
α� + j + 1

)

))∥∥∥tjeA0t
∥∥∥, j ∈ k − 1 ∪ {0, α},

t ∈ (1,∞) ∩ R+,

lim sup
t→∞

∥∥Φαj(t)
∥∥ ≤ lim sup

t→∞

(

sup
�∈Z0+

(
�!

t(1−α)�Γ
(
α� + j + 1

)

)∥∥∥∥∥

∞∑

� =0

A�
0t

�+j

�!

∥∥∥∥∥

)

≤ lim sup
t→∞

∥∥∥tjeA0t
∥∥∥, j ∈ k − 1 ∪ {0},

‖Φα(t)‖ ≤ sup
τ∈(1,∞)∩R

(

sup
�∈Z0+

(
�!

τ (1−α)�Γ((� + 1)α)

))∥∥∥∥
1

t1−α
eA0t

∥∥∥∥, t ∈ (1,∞) ∩ R+,

lim sup
t→∞

‖Φα(t)‖ ≤ lim sup
t→∞

(

sup
�∈Z0+

(
�!

t(1−α)�Γ((� + 1)α)

)∥∥
∥∥∥

∞∑

�=0

A�
0t

�+α−1

�!

∥∥
∥∥∥

)

≤ lim sup
t→∞

∥∥∥∥
1

t1−α
eA0t

∥∥∥∥,

(2.8)

since

lim sup
[�,�+1)�t(∈R0+)→∞

(

sup
�∈Z0+

(
�!

t(1−α)�Γ((� + 1)α)

))

≤ lim sup
Z0+��→∞

(

sup
�∈Z0+

(
�!

�(1−α)�Γ
(
α� + j + 1

)

))

= 0.

(2.9)
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The inequalities (2.4) hold since the above matrix norms are bounded on the real interval
(1,∞) and their limit superior is upper-bounded by the given formulas and Property (i) is
proved. On the other hand, if R+ � α ≥ 1 then

∥
∥Eαj(A0t

α)
∥
∥ =

∞∑

�=0

(
�!

Γ
(
α� + j

)

)(
A�

0t
α�

�!

)

≤ sup
�∈Z0+

(
�!

Γ(� + 1)

)∥
∥
∥eA0(tα)

∥
∥
∥ =

∥
∥
∥eA0(tα)

∥
∥
∥, j ∈ k − 1 ∪ {0}, t ∈ R0+

∥
∥Φαj(t)

∥
∥ ≤ sup

�∈Z0+

(
�!

Γ
(
α� + j + 1

)

)

tj
∥
∥∥eA0(tα)

∥
∥∥ ≤ tj

∥
∥∥eA0(tα)

∥
∥∥, j ∈ k − 1 ∪ {0}, t ∈ R0+,

‖Φα(t)‖ ≤ sup
�∈Z0+

(
�!

Γ((� + 1)α)

)
tα−1

∥
∥
∥eA0(tα)

∥
∥
∥ ≤ tα−1

∥
∥
∥eA0(tα)

∥
∥
∥, t ∈ R0+.

(2.10)

If, in addition,A0 is a stability matrix then ‖eA0(tα)‖ ≤ Ke−λt and ‖eA0(tα)‖ ≤ Ke−λt
α ≤ Ke−λt, t ∈

R0+ for some real constants K ≥ 1 and λ ∈ R+ since tα ≥ t, for all t ∈ R0+. Properties (i)-(ii)
have been proved.

(iii) It is proved as follows. Note from (2.3)-(2.4) that

∥∥Φαj(t)
∥∥ =

∥∥∥∥∥

∞∑

�=0

A�
0t

α�+j

Γ
(
α� + j + 1

)

∥∥∥∥∥
≤ sup

�∈Z0+

(
Γ((� + 1)α)t1+j−α

Γ
(
α� + j + 1

)

)∥∥∥∥∥

∞∑

�=0

A�
0t

(�+1)α−1

Γ((� + 1)α)

∥∥∥∥∥
, t ∈ R0+,

(2.11)

j ∈ k − 1 ∪ {0}, so that if k − 1 < α(∈ R+) ≤ k, then

‖Φα,k−1(t)‖ ≤ sup
�∈Z0+

(
Γ((� + 1)α)t1+j−α

Γ(α� + k)

)∥∥∥∥∥

∞∑

�=0

A�
0t

(�+1)α−1

Γ((� + 1)α)

∥∥∥∥∥
≤ tk−α‖Φα(t)‖, t ∈ R0+ (2.12)

Also,

‖Φα(t)‖ =

∥∥∥∥∥

∞∑

�=0

A�
0t

(�+1)α−1

Γ((� + 1)α)

∥∥∥∥∥
≤ tα−j−1 sup

�∈Z0+

(
Γ
(
α� + j + 1

)

Γ((� + 1)α)

)∥∥∥∥∥

∞∑

�=0

A�
0t

α�+j

Γ
(
α� + j + 1

)

∥∥∥∥∥

≤ tα−j−1
∥∥Φαj(t)

∥∥, t ∈ R0+,

(2.13)

if sup�∈Z0+
(Γ(α� + j + 1)/Γ((� + 1)α)) < ∞. This implies that

‖Φα(t)‖ ≤ tα+1−k‖Φα,k−2(t)‖ for α ∈ [k − 1, k) ∩ R+,

‖Φk(t)‖ ≡ ‖Φk,k−1(t)‖ for α ∈ [k − 1, k) ∩ R+.
(2.14)
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3. Fixed Point Results

A technical definition is now given to facilitate the subsequent result about fixed point.
Property (ii) has been proven.

Definition 3.1. S(ϕ, u) is the set of all the piecewise continuous n-vector function from
[−h, 0) ∪ R0+ to Rn being time- differentiable in R+ which are solutions of (2.1) for all
admissible k-tuples of initial conditions ϕ := (ϕ0, ϕ1, . . . , ϕk−1) with ϕj ∈ BPC(0)([−h, 0]),Rn)
and controls u ∈ BPC(0)(R0+,Rn)with ϕj(0) = xj(0) = x(j)(0) = xj0; for all j ∈ k − 1 ∪ {0}.

A fixed point theorem is now given for the Caputo fractional system (2.1).

Theorem 3.2. Assume any set of r given finite delays 0 = r0 < r1 ≤ . . . ≤ rr = h < ∞. The following
properties hold.

(i) Assume that Φαj ∈ L∞(R0+,Rn×n) and
∫δ
0 ‖Φα(δ − τ)dτ‖‖Ã0‖∞ < 1; let gh : R+ → R0+

be defined by

gh(δ) :=

(

1 −
∫δ

0
‖Φα(δ − τ)dτ‖

∥∥∥Ã0

∥∥∥∞

)−1

×
⎛

⎝

∥∥∥∥∥∥

k−1∑

j=0

Φαj(δ)

∥∥∥∥∥∥
+

(∥∥∥∥∥

∫δ

0
Φα(δ − τ)dτ

∥∥∥∥∥

)(
r∑

i=1

∥∥∥Âi

∥∥∥
∞

)⎞

⎠ ≤ 1, δ ∈ R+.

(3.1)

Then, the mapping fh : [−h, 0] × Rn → R+ × Rn defined by the state trajectory solution (2.2) of
the uncontrolled system from any initial conditions in the admissible set is nonexpansive, and the
solution is bounded fulfilling supt∈R0+

‖xα(t)‖∞ ≤ supt∈[−h,0]
∑k−1

j=0 (‖ϕj(t)‖∞). If gh(δ) ≤ Kc(δ) <
1; for allδ ∈ R+ then fh : [−h, 0] ×Rn → R+ ×Rn is contractive and possesses a unique fixed point,
irrespective of the delays, in some bounded subset of Rn. Such a fixed point is 0 ∈ Rn which is also a
globally asymptotically stable equilibrium point.

(ii)Assume thatΦαj ∈ L∞(R0+,Rn×n), Φα ∈ L2(R0+,Rn×n) and
∫δ
0 ‖Φα(δ−τ)dτ‖(

∫δ
0 ‖Ã0(t+

τ)‖2dτ)1/2 < 1; for all t ∈ R0+ and define pointwise ĝh : R0+ × R+ → R0+ as follows

ĝ h(t, δ) :=

(

1 −
∫δ

0
‖Φα(δ − τ)dτ‖

(∫δ

0

∥∥∥Ã 0(t + τ)
∥∥∥2dτ

)
1/2

)
−1

×
⎛

⎝
k−1∑

j=0

∥∥Φαj(δ)
∥∥
∞ +

(∫δ

0
‖Φα(δ − τ)‖2dτ

)
1/2

×
(

r∑

i=1

(∫δ

0

∥∥∥Âi(t + τ − ri)
∥∥∥2
)

1/2
dτ

))

, δ ∈ R+.

(3.2)

Then, Property (i) still holds by replacing their corresponding constraints on gh by corresponding ones
on ĝh.

(iii) Assume that a control u(t) =
∑r

i=0 Ki(xt, t)x(t − ri) is injected to (2.1) where Ki :
Rn × R0+ → Rm is in BPC(R0+,Rm), xit : [max(0, t − ri), t] → Rn, for all i ∈ r − 1 ∪ {0}, for all
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t ∈ R0+ is a strip of the state-trajectory solution of (2.1). Assume also that

‖Ki(xit, t)‖∞ ≤ K0
i < ∞, ∀i ∈ r − 1 ∪ {0}, ∀t ∈ R0+,Φαj ∈ L∞

(
R0+, Rn×n),

Φα ∈ L1 ( R0+,Rn×n),
(3.3)

and define ĝf : R+ → R0+ as

gh(δ) :=

(

1 −
∫δ

0
‖Φα(δ − τ)dτ‖

(∥∥
∥Ã0

∥
∥
∥
∞
+ ‖B‖∞K0

0

))−1

×
⎛

⎝

∥
∥
∥∥
∥
∥

k−1∑

j=0

Φαj(δ)

∥
∥
∥∥
∥
∥
+

(∥∥
∥
∥
∥

∫δ

0
Φα(δ − τ)dτ

∥
∥
∥
∥
∥

)(
r∑

i=1

(∥∥
∥Âi

∥
∥
∥
∞
+ ‖B‖∞K0

i

))
⎞

⎠ ≤ 1,

δ ∈ R+,

(3.4)

provided that
∫δ
0 ‖Φα(δ − τ)dτ‖(‖Ã0‖∞ + ‖B‖∞K0

0) < 1. Then, for any given set of finite delays, the
mapping ff : [−h, 0]×Rn ×Rm ×R0+ → R+ ×Rn defined by the state trajectory solution (2.2) of the
controlled system from any initial conditions in the admissible set and any given admissible control is
a nonexpansive mapping if gh(δ) ≤ 1; for all δ ∈ R+ and contractive and the zero equilibrium is the
unique fixed point, irrespective of the delays and control, if gh(δ) ≤ Kc(δ) < 1; for all δ ∈ R+ which
is also a globally asymptotically stable equilibrium point.

(iv) Assume that ∃ ε(< 1) ∈ R+ that gh(δ) < 1 − ε; for all t ∈ R0+. Then, state trajectory
solution (2.2) of the forced system from any initial conditions in the admissible set is defined by a
contractive self-mapping with a unique fixed point in some bounded subset of Rn for all controls of the
form u(t) =

∑r
i=0 Ki(xit, t)x(t− ri) fulfilling ‖Ki(xit, t)‖∞ ≤ ε/(r + 1)(‖ ∫δ0 Φα(δ − τ)dτ‖)‖B‖∞, for

all i ∈ r − 1 ∪ {0}.
(v) Assume thatΦαj ∈ L∞(R0+,Rn×n); for all j ∈ k − 1∪{0},Φα ∈ L2(R0+,Rn×n) and BKi ∈

L2(R0+,Rn×n); for all i ∈ r − 1∪{0}, instead of the hypotheses (3.3), and define ĝf : R0+×R+ → R0+

as:

ĝf(t, δ) :=

⎛

⎝1 −
∫δ

0
‖Φα(δ − τ)dτ‖

×
⎛

⎝
(∫δ

0

∥∥∥Ã0(t + τ)
∥∥∥2dτ

)1/2

+

(∫δ

0
‖B(t + τ)K0(xt+τ , t + τ)‖2dτ

)1/2⎞

⎠

⎞

⎠

−1

×
⎛

⎝
k−1∑

j=0

∥∥Φαj(δ)
∥∥
∞ +

(∫δ

0
‖Φα(δ − τ)‖2dτ

)1/2

×
⎛

⎝
r∑

i=1

(∫δ

0

∥∥∥Âi(t + τ − ri)
∥∥∥2
)1/2

dτ +

(∫δ

0
‖B(t + τ)Ki(xt+τ , t + τ)‖2dτ

)1/2
⎞

⎠

⎞

⎠,

∀t, δ ∈ R+,

(3.5)
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provided that the inverse exists onR0+. Then, Property (iii) still holds by replacing their corresponding
constraints on gf by corresponding ones on ĝf . If, in addition, ∃ε(< 1) ∈ R+, δ = δ(ε) ∈ R+ such
that ĝh(δ) < 1 − ε; for all t ∈ R0+ then the mapping ff : [−h, 0] × Rn × Rm × R0+ → R+ × Rn

defining the state-trajectory solution from any set of admissible initial conditions and all controls
u(t) =

∑r
i=0 Ki(xit, t)x(t − ri) being subject to

r∑

i=1

∫δ

0

(
‖B(t + τ)Ki(xt+τ , t + τ)‖2dτ

)
1/2 ≤ ε

(∫δ
0 ‖Φα(δ − τ)‖2dτ

)1/2
‖B‖∞

, ∀t ∈ R+ (3.6)

is contractive with a unique fixed point, irrespective of the delays, which is 0 ∈ Rn being a globally
asymptotically stable equilibrium point.

Proof. The pointwise difference between two solutions x(t) and z(t) of (2.1) subject to
respective piecewise continuous initial conditions ϕx : [−h, 0] → Rn and ϕz : [−h, 0] → Rn

and respective controls ux, uy ∈ BPC(0)(R0+,Rn) is according to (2.2)

xα(t) − zα(t) =
k−1∑

j=0

(

Φαj(t)
(
xj0 − zj0

)
+

r∑

i=1

∫ ri

0
Φα(t − τ)Ai

(
ϕxj(τ − ri) − ϕzj(τ − ri)

)
dτ

)

+
k−1∑

j=0

r∑

i =1

∫ ri

0
Φα(t − τ)Ãi(τ)

(
ϕxj(τ − ri) − ϕzj(τ − ri)

)
dτ

+
r∑

i=1

∫ t

ri

Φα(t − τ)Ai(xα(τ − ri) − zα(τ − ri))dτ

+
r∑

i=0

∫ ri

0
Φα(t − τ)Ãi(τ)(xα(τ − ri) − zα(τ − ri))dτ

+
∫ t

0
Φα(t − τ)B(τ)(ux(τ) − uz(τ))dτ, t ∈ R0+.

(3.7)

Note from (2.3) that Φαj(0) = In/j!; for all j ∈ k − 1 ∪ {0} what is used in the definition of the
metric space (M, ‖ · ‖∞) with the supremum metric ‖ · ‖∞

M :=

⎧
⎨

⎩
φ ∈ PBC(0)([−h, 0) ∪ R0+,Rn) : φ ∈ S

(
φ, u

)
, φ ≡

⎛

⎝
k−1∑

j=0

φj

⎞

⎠ ∈ BPC(0)([−h, 0),Rn),

∀j ∈ k − 1 ∪ {0}, φu ∈ Mu

⎫
⎬

⎭
,

(3.8)
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where

Mu :=
{
φ ∈ PBC(0)(R0+,Rn) : φ ∈ S(0, u), u ∈ BPC(0)(R0+,Rn)

}
, (3.9)

where BPC(0)(R,Rn) is the set of bounded continuous n-vector functions on R. Now, define
P : M → M as the subsequent piecewise bounded continuous function on [−h, 0) ∪ R0+,
which is bounded continuous on R+, that is, φ ∈ PBC(0)([−h, 0],Rn), φ ∈ BC(0)(R+,R n) and
satisfies (2.1) on R+. One gets for any bounded piecewise continuous solution of (2.1)

(
P
(
φ, u

))
(t) :=

k−1∑

j=0

Φαj(t)φj(0) +
∫ t

0
Φα(t − τ)Ã0(τ)φ(τ)dτ

+
k−1∑

j=0

r∑

i=1

(∫ ri

0
Φα(t − τ)Âi(τ)φj(τ − ri)dτ +

∫ t

ri

Φα(t − τ)Âi(τ)φj(τ − ri)dτ

)

+
∫ t

0
Φα(t − τ)B(τ)uφ(τ)dτ.

(3.10)

Note that the supremummetric on [−h, 0)∪R0+ is induced by the supremum norm on [−h, 0)∪
R0+ so that it is then coincident with the supremum norm. Define the truncated φa,b ∈ M as
φa,b(τ) = φ(τ), τ ∈ [a, b) and φa,b(τ) = 0, τ ∈ [0, a) ∪ [b,∞) ⊂ R0+; for all a, b(> a) ∈ [a, b) ⊆
R0+, for all t ∈ R0+, for all φ ∈ M and note that ‖φ‖a,b := supτ∈[a,b)‖φ(τ)‖ = ‖φa,b‖∞ ≤ ‖φ‖∞
and φt ∈ M is a simplified notation for the truncated φ ∈ M on [0,∞). Norms without
subscripts mean, depending on context, vector or correspondingly inducedmatrix norms (as,
for instance, the �2-vector or induced matrix norms) or pointwise values of such norms for
vector or matrix functions in the subsequent developments. LetMt be the space of truncated
functions φt ∈ M. Note that any truncated solution of (2.1) on any finite interval is always in
M so that one gets for any δ ∈ R+ from (3.10) in the most general controlled case with control
u(t) =

∑r
i=0 Ki(xt, t)x(t − ri)

∥∥(P
(
φ, uφ

))
(t + δ) − (P(η, uη

))
(t + δ)

∥∥

≤
k−1∑

j=0

∥∥Φαj(δ)
∥∥∥∥φj − ηj

∥∥
t
+

∥∥∥∥∥

∫δ

0
Φα(δ − τ)B(t + τ)dτ

∥∥∥∥∥
∥∥uφ − uη

∥∥
t+δ

+

(
r∑

i=1

∥∥∥∥∥

∫δ

0
Φα(δ − τ)Âi(t + τ)dτ

∥∥∥∥∥
t+δ−ri

+
∫δ

0

∥∥∥Φα(δ − τ)Ã0(t + τ)dτ
∥∥∥

)
∥∥φ − η

∥∥
t+δ

(3.11)
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≤
⎛

⎝

∥
∥
∥
∥
∥
∥

k−1∑

j=0

Φαj(δ)

∥
∥
∥
∥
∥
∥
+

r∑

i=1

∫δ

0
‖Φα(δ − τ)B(t + τ)Ki(xi,t+τ , t + τ)dτ‖∥∥φ − η

∥
∥
t+δ−ri

+
r∑

i=1

∫δ

0

∥
∥
∥Φα(δ − τ)Âi(t + τ)dτ

∥
∥
∥
∥
∥φ − η

∥
∥
t+δ−ri

+
∫δ

0

∥
∥
∥Φα(δ − τ)

(
Ã0(t + τ) + B(t + τ)K0(t + τ)

)∥∥
∥dτ

∥
∥φ − η

∥
∥
t+δ

⎞

⎠

(3.12)

≤
∥
∥
∥
∥
∥
∥

k−1∑

j=0

Φαj(δ)

∥
∥
∥
∥
∥
∥

∥
∥φ − η

∥
∥
t+δ +

r∑

i=1

∫δ

0
‖Φα(δ − τ)dτ‖

×
(

r∑

i=1

(∥∥∥Âi

∥∥∥∞ + ‖B‖∞K0
i

)∥∥φ − η
∥∥
t+δ−ri +

(∥∥∥Ã0

∥∥∥
∞
+ ‖B‖∞K0

0

)∥∥φ − η
∥∥
t+δ

)

≤
⎛

⎝

∥∥∥∥∥∥

k−1∑

j=0

Φαj(δ)

∥∥∥∥∥∥
+

r∑

i=1

∫δ

0
‖Φα(δ − τ)dτ‖

(
r∑

i=1

(∥∥∥Âi

∥∥∥∞ + ‖B‖∞K0
i

)
+
(∥∥∥Ã0

∥∥∥∞ + ‖B‖∞K0
0

))
⎞

⎠

× ∥∥φ − η
∥∥
t+δ,

(3.13)

where the property that A0 is constant has been used to rewrite the limits of the involved
integral is the most convenient fashion to simplify the related expressions. Equation (3.13)
leads to

∥∥φ − η
∥∥
t+ δ

≤
(

1 −
∫δ

0
‖Φα(δ − τ)dτ‖

(∥∥∥Ã0

∥∥∥∞ + ‖B‖∞
∥∥∥K0

0

∥∥∥
∞

))−1

×
⎛

⎝

∥∥∥∥∥∥

k−1∑

j=0

Φαj(δ)

∥∥∥∥∥∥
+

r∑

i=1

∫δ

0
‖Φα(δ − τ)dτ‖

(
r∑

i=1

(∥∥∥Âi

∥∥∥∞ + ‖B‖∞
∥∥∥K0

i

∥∥∥
∞

)∥∥φ − η
∥∥
t+δ−ri

)⎞

⎠

≤
(

1 −
∫δ

0
‖Φα(δ − τ)dτ‖

(∥∥∥Ã0

∥∥∥∞ + ‖B‖∞
∥∥∥K0

0

∥∥∥
∞

))−1

×
⎛

⎝

∥∥∥∥∥∥

k−1∑

j=0

Φαj(δ)

∥∥∥∥∥∥
+

r∑

i=1

∫δ

0
‖Φα(δ − τ)dτ‖

(
r∑

i=1

(∥∥∥Âi

∥∥∥∞ + ‖B‖∞
∥∥∥K0

i

∥∥∥
∞

)∥∥φ − η
∥∥
t+δ−r1

)⎞

⎠,

∀δ ∈ R+, ∀t ∈ R0+,

(3.14)
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provided that
∫δ
0 ‖Φα(δ − τ)dτ‖(‖Ã0‖∞ + ‖B‖∞K0

0) < 1, since r1 ≤ ri (i ∈ r), so that

∥
∥φ − η

∥
∥
t

≤
(

1 −
∫δ

0
‖Φα(δ − τ)dτ‖

(∥∥
∥Ã0

∥
∥
∥∞ + ‖B‖∞K0

0

))−1

×
⎛

⎝

∥
∥
∥
∥
∥
∥

k−1∑

j=0

Φαj(δ)

∥
∥
∥
∥
∥
∥
+

r∑

i=1

∫δ

0
‖Φα(δ − τ)dτ‖

(
r∑

i=1

(∥∥
∥Âi

∥
∥
∥∞ + ‖B‖∞

∥
∥
∥K0

i

∥
∥
∥
∞

)∥
∥φ − η

∥
∥
t−r1

)⎞

⎠

= gh(δ)
∥
∥φ − η

∥
∥
t−r1 ; ∀δ ∈ R+, ∀t ∈ R0+.

(3.15)

Then, the mapping fh : [−h, 0] × Rn → R+ × Rn defining the state trajectory solution from
admissible initial conditions is nonexpansive if gh(δ) ≤ 1. Furthermore, the state trajectory
solution is globally Lyapunov stable since by taking the trivial solution η ≡ 0 in (3.15), it
follows that any solution φ of (2.1) generated from any set of admissible initial conditions
is uniformly bounded on R0+. If, in addition, gh(δ) ≤ Kc(δ) < 1 then it follows also from
(3.15) as t → ∞ that any real sequence of the form {v(kr1 + τ)}k∈Z0+,τ∈[0,r1)∩R0+ is a convergent
Cauchy sequence to zero in the metric space (M, ‖ · ‖∞) of the solutions of (2.1) under the
class of given initial conditions and controls with the supremum metric ‖ · ‖∞ is complete.
Therefore, a unique fixed point exists on some bounded set of Rn from Banach contraction
principle. Since

lim
Z0+�k→∞,τ∈[0,r1)∩R0+

∥∥φ − η
∥∥(k+1)(r1+τ) ≤

(
lim

Z0+�k→∞
Kk

c (δ)
)∥∥φ − η

∥∥
k(r1+τ),τ∈[0,r1)∩R0+ = 0, (3.16)

it follows by taking one of the solutions to be the trivial solution that the only fixed point
is the equilibrium point zero which is a globally asymptotically stable attractor. Property (i)
has been proven. By zeroing the control and considering the uncontrolled system, one proves
Property (i) as a particular case of Property (iii). Property (ii) (and its particular case Property
(iv) for the case of controller gains satisfying ‖Ki(xit, t)‖∞ ≤ K0

i < ∞) and Property (v) are
proved by using similar technical tools to those involved in the above proofs by replacing the
basic inequality (3.13) by

∥∥(P
(
φ, uφ

))
(t) − (P(η, uη

))
(t)
∥∥

≤
⎛

⎝

∥∥∥∥∥∥

k−1∑

j=0

Φαj(t)

∥∥∥∥∥∥
t−r1,t

+
r∑

i=1

(∫ t

t−ri
‖Φα(t − τ)‖2dτ

)1/2

×
⎛

⎝
(∫ t

t−ri

∥∥∥Âi(τ)
∥∥∥
2
)1/2

dτ +
∫ t

t−ri

(
‖B(τ)Ki(xτ , τ)‖2dτ

)1/2
⎞

⎠

+

(∫ t

t−r1

∥∥∥Ã0(τ)
∥∥∥2dτ

)1/2
⎞

⎠
∥∥φ − η

∥∥
t−r1 , ∀δ ∈ R+, ∀t ∈ R0+.

(3.17)
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If all the delays are zero, it is more convenient to discuss the adhoc solution version of (2.2):

xα(t) =
k−1∑

j=0

Φαj(t)xj0 +
r∑

i=0

∫ t

0
Φα(t − τ)Ãi(τ)xα(τ)dτ +

∫ t

0
Φα(t − τ)B(τ)u(τ)dτ, t ∈ R0+,

(3.18)

where Φαj(t) and Φα(t) are similar to Φαj(t) from (2.3)-(2.4) by replacing A0 → (
∑r

i=0 Ai).
The following result is a counterpart to Theorem 3.2 for the case of absence of delays.

Theorem 3.3. Assume that

(1) ‖Φαj(t)‖ ≤ K0j(t); t ∈ R0+, for all j ∈ k − 1 ∪ {0} with max0≤j≤k−1(supt∈R0+
K0j(t)) ≤

K0 < ∞.

(2) Φα ∈ L1(R0+,Rn×n) with supt∈R0+
‖Φα(t)‖ ≤ K1 < ∞.

Then, the Caputo delay-free fractional dynamic system (2.1) of real order α has the following properties.

(i) It is globally stable under a control u(t) =
∑r

i=0 Ki(xit, t)x(t) subject to ‖Ki(xit, t)‖∞ ≤
K0

i < ∞, for all i ∈ r − 1{0} if K1 < (1/
∑r

i=0(‖Ãi‖∞ + ‖B‖∞K0
i )), for all i ∈ r − 1{0}.

If, in addition, K0j(t) → 0 as t → ∞; for all j ∈ k − 1 ∪ {0} then the system is globally
asymptotically stable to the zero equilibrium point.

(ii) Property (i) holds if K0(t) = K0
0 is constant if K1 < 1/

∑r
i=0 ‖Ãi‖∞ + ‖B‖∞ (

∑r
i=1 K

0
i )

where Φαj(t) and Φα(t)are similar to Φαj(t) from (2.3)-(2.4) by replacing A0 →
(
∑r

i=0 Ai) + BK0
0 .

Proof. (i) One gets, after taking norms in (3.18), that

‖xα(t)‖ ≤
∥∥∥
∥∥∥

k−1∑

j=0

Φαj(t)xj0

∥∥∥∥∥∥
+

r∑

i=0

(∥∥∥Ãi

∥∥∥
∞
+ ‖B‖K0

i

)(∫ t

0
‖Φα(t − τ)dτ‖

)

sup
τ∈[0,t)

‖xα(τ)‖

≤
k−1∑

j=0

K0j(t)
∥∥xj0

∥∥ +
r∑

i=0

(∥∥∥Ãi

∥∥∥
∞
+ ‖B‖K0

i

)(∫ t

0
‖Φα(t − τ)dτ‖

)

sup
τ∈[0,t)

‖xα(τ)‖

≤
k−1∑

j=0

K0j(t)
∥∥xj0

∥∥ +K1

(
r∑

i=0

(∥∥∥Ãi

∥∥∥∞ + ‖B‖K0
i

))

sup
τ∈[0,t)

‖xα(τ)‖

(3.19)

≤ K0

⎛

⎝
k−1∑

j=0

∥∥xj0
∥∥

⎞

⎠ +K1

(
r∑

i=0

(∥∥∥Ãi

∥∥∥∞ + ‖B‖K0
i

))

sup
τ∈[0,t)

‖xα(τ)‖, t ∈ R0+, (3.20)
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with supτ∈[0,t)‖xα(τ)‖ = ‖xα‖t
≤ ‖xα‖∞ . Thus, one gets from (3.20)

‖xα(t)‖ ≤ sup
τ∈[0,t)

‖xα(τ)‖

≤
(

1 −K1

(
r∑

i=0

(∥∥
∥Ãi

∥
∥
∥∞ + ‖B‖∞K0

i

)))−1
K0

⎛

⎝
k−1∑

j=0

∥
∥xj0

∥
∥

⎞

⎠ ≤ K2 < ∞, t ∈ R0+.

(3.21)

Since K1(
∑r

i=0(‖Ãi‖∞ + ‖B‖∞K0
i )) < 1, where K2 := supt∈R0+

‖xα(t)‖ < ∞. As a result, the
Caputo fractional system of real order α is globally stable under zero delays since any state
trajectory solution generated from any admissible initial conditions is bounded for all time.
The proof of Property (ii) is similar to that of (i) under the modified constraints. Now, assume
that if, in addition, K0j(t) → 0 as t → ∞; for all j ∈ k − 1 ∪ {0}, then

‖xα(t)‖ ≤ min

⎛

⎝1,

⎡

⎣
k−1∑

j=0

K0j(t) +
r∑

i=0

(∥∥∥Ãi

∥∥∥∞ + ‖B‖∞K0
i

)
K1

⎤

⎦

⎞

⎠K2, (3.22)

so that

lim sup
t→∞

‖xα(t)‖ ≤ min

⎛

⎝1, lim sup
t→∞

⎡

⎣
k−1∑

j=0

K0j(t) +
r∑

i=0

(∥∥∥Ãi

∥∥∥
∞
+ ‖B‖∞K0

i

)
K1

⎤

⎦

⎞

⎠K2

=

(
r∑

i=0

(∥∥∥Ãi

∥∥∥
∞
+ ‖B‖∞K0

i

)
K1

)

K2 < K2.

(3.23)

Since limt→∞K0j(t) = 0; for all j ∈ k − 1 ∪ {0} and
∑r

i=0(‖Ãi‖∞ + ‖B‖K0
i )K1 < 1. Equation

(3.23) implies that the supremum ‖xα(t)‖ on R0+ is reached by the first time at some finite
time t0 ∈ R0+. Thus, one gets from (3.19) that

lim
t→∞

‖xα(t)‖ ≤ lim
t→∞

(

sup
τ∈[t0,t)

‖xα(τ)‖
)

≤
(

1 −K1

(
r∑

i=0

(∥∥∥Ãi

∥∥∥∞ + ‖B‖∞K0
i

)))−1⎛

⎝
k−1∑

j=0

∥∥xαjt0

∥∥
(
lim
t→∞

(
K0j(t − t0)

)
)
⎞

⎠

= 0
(3.24)

provided thatK0j(t) → 0 as t → ∞; for all j ∈ k − 1∪{0}which proves the global asymptotic
stability. Property (i) has been proven. Property (ii) follows in a similar way under the
modified constraints K0(t) = K0

0K1 < (1/
∑r

i=0 ‖Ãi‖∞ + ‖B‖∞(
∑r

i=1 K
0
i )), Φαj(t),Φα(t) being

similar to Φαj(t) from (2.3)-(2.4) by replacing A0 → (
∑r

i=0 Ai) + BK0
0.
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The subsequent stability result is based on a transformation of the matrix A0 to its
diagonal Jordan form which allows an easy computation of the �2-matrix measure of its
diagonal part.

Theorem 3.4. Assume that JA0 = JA0d + J̃A0 is the Jordan form of A0 with JA0d being diagonal and
J̃A0 being off-diagonal such that the above decomposition is unique with A0 = T−1JA0T where T is a
unique nonsingular transformation matrix. The following properties hold.

(i) The Caputo fractional differential system (2.1) is globally Lyapunov stable independent of
the delays if the �2-matrix measure of JA0d is negative, that is,

μ2

(
J1/αA0d

)
:=

1
2
λmax

(
J1/αA0d

+ J∗1/αA0d

)
= max

k∈n
Re
(
λ1/α
k

)
< 0, ∀λk ∈ σ

(
J1/αA0d

)
, (3.25)

where σ(J1/αA0d
) is the spectrum of J1/αA0d

and, furthermore,

∥∥∥∥

(
1
β0

T−1J̃A0T,
1
β1

T−1A1T,
1
β2

T−1A2T, . . . ,
1
βr

T−1ArT

)∥∥∥∥
2
≤ ∣∣μ2(JA0d)

∣∣1/α (3.26)

for some set of numbers βi ∈ R+(i ∈ p ∪ {0}) satisfying∑r
i=0 β

2
i = 1. The fractional system is globally

asymptotically Lyapunov stable for one such set of real numbers if μ2(J
1/α
A0d

) < 0, and

∥∥∥∥

(
1
β0

T−1J̃A0T,
1
β1

T−1A1T,
1
β2

T−1A2T, . . . ,
1
βr

T−1ArT

)∥∥∥∥
2
<
∣∣μ2(JA0d)

∣∣1/α. (3.27)

(ii) A necessary condition for μ2(J
1/α
A0d

) < 0 is that A0 should be a stability matrix with
| arg(λ)| < (απ/2); for all λ ∈ σ(A0). Such a condition holds directly if α > 2ϕ/π where
(−ϕ, ϕ) ⊆ (−π/2, π/2) is the symmetric maximum real interval containing the arguments of all
λ ∈ σ(A0). It also holds, in particular, if A0 is a stability matrix and α(∈ R+) ≥ 1.

Proof. It follows by using thematrix similarity transformationA0 = T−1JA0T = T−1(JA0d+J̃A0)T
and using the homogeneous transformed Caputo fractional differential system from (2.1)

(
CDα

0+ z
)
(t) =

(
CDα

0+ Tx
)
(t) =

r∑

i=0

AiTx(t − hi) ⇐⇒

(
CDα

0+ x
)
(t) =

p∑

i=0

T−1AiTx(t − hi) = T−1A0Tx(t) +
r∑

i=1

T−1AiTx(t − hi)

= T−1JA0dTx(t) +
r∑

i=0

T−1AiTx(t − hi),

(3.28)
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where z(t) = Tx(t); for all t ∈ R0+, h0 = 0 plays the role of an additional delay. A0 = J̃A0

and Ai = Ai (i ∈ r) by noting also that since (JA0d + J∗A0d
) is diagonal with real eigenvalues by

construction, one has

∣
∣
∣μ2

(
J1/αA0d

)∣∣
∣ =

∣
∣
∣
∣
1
2
λmax

(
J1/αA0d

+ J1/αA0d

∗)
∣
∣
∣
∣ =

∣
∣
∣λ max

(
J1/αA0d

)∣∣
∣

=
∣
∣
∣Reλmax

(
J1/αA0d

)∣∣
∣ =

∣
∣
∣Reλ1/αmax(JA0d)

∣
∣
∣ =

∣
∣
∣Reλ1/αmax(A0d)

∣
∣
∣

=
∣
∣μ2(JA0d)

∣
∣1/α.

(3.29)

Then, the remaining part of the proof of Property (i) is similar to that quoted as a sufficient
condition for stability independent of the delays in [27]. Property (i) has been proven.

To prove property (ii), note that

λmax

(
J1/αA0d

+ J∗1/αA0d

)
≥ 1

2
λmax

(
JA0d + J∗A0d

)1/α
if μ2

(
J1/αA0d

)
< 0 so that

0 > μ2

(
J1/αA0d

)
=

1
2
λmax

(
J1/αA0d

+ J∗1/αA0d

)
≥ 1

2
λmax

(
JA0d + J∗A0d

)1/α

= max
(
Re λ̂ : λ̂ ∈ σ

(
J1/αA0d

))

≥ 1
2
λmax

(
JA0d + J∗A0d

)1/α
= max

(
Reλ1/α : λ ∈ σ(A0) ≡ σ(JA0d)

)
.

(3.30)

Thus, A0 is a stability matrix if and only if arg(λ) ∈ (−θ1, θ2) ⊆ (−π/2, π/2); for all λ ∈
σ(A0). If also J1/αA0d

is a stability matrix with μ2(J
1/α
A0d

) < 0, then (1/α) arg(λ) ∈ (−θ1/α, θ2/α) ⊆
(−π/2, π/2) so that | arg(λ)| < (απ/2); for all λ ∈ σ(A0), which is also a necessary condition
for the fulfillment of the sufficiency-type condition (3.27) for global asymptotic stability of
(2.1), which implies the stability of the matrix J1/αA0d

with the further constraint that μ2(J
1/α
A0d

) <
0.

It follows after inspecting the solution (2.2), subject to (2.3)-(2.4), and Lemma 2.2
that the stability properties for arbitrary admissible initial conditions or admissible bounded
controls are lost in general if α ≥ 2. However, it turns out that the boundedness of the
solutions can be obtained by zeroing some of the functions of initial conditions. Note, in
particular that ϕj is required to be identically zero on its definition domain for k − 1 ∪ {0} �
j < α − 1(α ≥ 2) in order that the Γ- functions will be positive (note that Γ(x) is discontinuous
at zero with an asymptote to −∞ as x → 0−). This observation combined with Theorem 3.4
leads to the following direct result which is not a global stability result.

Theorem 3.5. Assume that α ≥ 2 and the constraint (3.27) holds with negative matrix measure
μ2(J

1/α
A0d

). Assume also that ϕj : [−h, 0] → Rn are any admissible functions of initial conditions for

k − 1 ∪ {0} � j ≥ α − 1 while they are identically zero if k − 1 ∪ {0} � j < α − 1. Then, the unforced
solutions are uniformly bounded for all time independent of the delays. Also, the total solutions for
admissible bounded controls are also bounded for all time independent of the delays.
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