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Strong convergence theorems are established for the modified Halpern iterations of nonexpansive
mappings in CAT(0) spaces. Our results extend and improve the recent ones announced by Kim
and Xu (2005), Hu (2008), Song and Chen (2008), Saejung (2010), and many others.

1. Introduction

Let C be a nonempty subset of a metric space (X, d). A mapping T : C → C is said to be
nonexpansive if

d
(
Tx, Ty

) ≤ d
(
x, y

)
, ∀x, y ∈ C. (1.1)

A point x ∈ C is called a fixed point of T if x = Tx. We will denote by F(T) the set of fixed
points of T . In 1967, Halpern [1] introduced an explicit iterative scheme for a nonexpansive
mapping T on a subset C of a Hilbert space by taking any points u, x1 ∈ C and defined the
iterative sequence {xn} by

xn+1 = αnu + (1 − αn)Txn, for n ≥ 1, (1.2)

where αn ∈ [0, 1]. He pointed out that the control conditions: (C1) limn αn = 0 and (C2)∑∞
n=1 αn = ∞ are necessary for the convergence of {xn} to a fixed point of T . Subsequently,

many mathematicians worked on the Halpern iterations both in Hilbert and Banach spaces
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(see, e.g., [2–11] and the references therein). Among other things, Wittmann [7] proved
strong convergence of the Halpern iteration under the control conditions (C1), (C2), and (C4)∑∞

n=1 |αn+1−αn| < ∞ in aHilbert space. In 2005, Kim and Xu [12] generalizedWittmann’s result
by introducing a modified Halpern iteration in a Banach space as follows. Let C be a closed
convex subset of a uniformly smooth Banach space X, and let T : C → C be a nonexpansive
mapping. For any points u, x1 ∈ C, the sequence {xn} is defined by

xn+1 = βnu +
(
1 − βn

)
T(αnxn + (1 − αn)Txn), for n ≥ 1, (1.3)

where {αn} and {βn} are sequences in [0, 1]. They proved under the following control
conditions:

(D1) lim
n

αn = 0, lim
n

βn = 0,

(D2)
∞∑

n=1

αn = ∞,
∞∑

n=1

βn = ∞,

(D3)
∞∑

n=1

|αn+1 − αn| < ∞,
∞∑

n=1

∣∣βn+1 − βn
∣∣ < ∞,

(1.4)

that the sequence {xn} converges strongly to a fixed point of T .
The purpose of this paper is to extend Kim-Xu’s result to a special kind of metric

spaces, namely, CAT(0) spaces. We also prove a strong convergence theorem for another kind
of modified Halpern iteration defined by Hu [13] in this setting.

2. CAT(0) Spaces

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic
triangle inX is at least as “thin” as its comparison triangle in the Euclidean plane. The precise
definition is given below. It is well known that any complete, simply connected Riemannian
manifold having nonpositive sectional curvature is a CAT(0) space. Other examples include
Pre-Hilbert spaces (see [14]), R-trees (see [15]), Euclidean buildings (see [16]), the complex
Hilbert ball with a hyperbolic metric (see [17]), and many others. For a thorough discussion
of these spaces and of the fundamental role they play in geometry, we refer the reader to
Bridson and Haefliger [14].

Fixed point theory in CAT(0) spaces was first studied by Kirk (see [18, 19]). He
showed that every nonexpansive (single-valued) mapping defined on a bounded closed
convex subset of a complete CAT(0) space always has a fixed point. Since then, the fixed
point theory for single-valued and multivalued mappings in CAT(0) spaces has been rapidly
developed, and many papers have appeared (see, e.g., [20–31] and the references therein). It
is worth mentioning that fixed point theorems in CAT(0) spaces (specially in R-trees) can be
applied to graph theory, biology, and computer science (see, e.g., [15, 32–35]).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a
geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R toX such that c(0) = x, c(l) = y
and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The
image α of c is called a geodesic (or metric) segment joining x and y. When it is unique, this
geodesic segment is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every
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two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said to be convex if
Y includes every geodesic segment joining any two of its points.

A geodesic triangleΔ (x1, x2, x3) in a geodesic metric space (X, d) consists of three points
x1, x2, and x3 in X (the vertices of Δ) and a geodesic segment between each pair of vertices
(the edges of Δ). A comparison triangle for the geodesic triangle Δ(x1, x2, x3) in (X, d) is a
triangleΔ(x1, x2, x3) := Δ(x1, x2, x3) in the Euclidean plane E2 such that dE2(xi, xj) = d(xi, xj)
for i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom.

CAT(0): let Δ be a geodesic triangle in X, and let Δ be a comparison triangle for Δ.
Then, Δ is said to satisfy the CAT(0) inequality if for all x, y ∈ Δ and all comparison points
x, y ∈ Δ,

d
(
x, y

) ≤ dE2
(
x, y

)
. (2.1)

Let x, y ∈ X, and by Lemma 2.1 (iv) of [23] for each t ∈ [0, 1], there exists a unique
point z ∈ [x, y] such that

d(x, z) = td
(
x, y

)
, d

(
y, z

)
= (1 − t)d

(
x, y

)
. (2.2)

From now on, we will use the notation (1− t)x ⊕ ty for the unique point z satisfying (2.2). We
now collect some elementary facts about CAT(0) spaces which will be used in the proofs of
our main results.

Lemma 2.1. Let X be a CAT(0) space. Then,

(i) (see [23, Lemma 2.4]) for each x, y, z ∈ X and t ∈ [0, 1], one has

d
(
(1 − t)x ⊕ ty, z

) ≤ (1 − t)d(x, z) + td
(
y, z

)
, (2.3)

(ii) (see [21]) for each x, y ∈ X and t, s ∈ [0, 1], one has

d
(
(1 − t)x ⊕ ty, (1 − s)x ⊕ sy

)
= |t − s|d(x, y), (2.4)

(iii) (see [19, Lemma 3]) for each x, y, z ∈ X and t ∈ [0, 1], one has

d
(
(1 − t)z ⊕ tx, (1 − t)z ⊕ ty

) ≤ td
(
x, y

)
, (2.5)

(iv) (see [23, Lemma 2.5]) for each x, y, z ∈ X and t ∈ [0, 1], one has

d
(
(1 − t)x ⊕ ty, z

)2 ≤ (1 − t)d(x, z)2 + td
(
y, z

)2 − t(1 − t)d
(
x, y

)2
. (2.6)

Recall that a continuous linear functional μ on �∞, the Banach space of bounded real
sequences, is called a Banach limit if ‖μ‖ = μ(1, 1, . . .) = 1 and μn(an) = μn(an+1) for all {an} ∈
�∞.
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Lemma 2.2 (see [8, Proposition 2]). Let {a1, a2, . . .} ∈ �∞ be such that μn(an) ≤ 0 for all Banach
limits μ and lim supn(an+1 − an) ≤ 0. Then, lim supnan ≤ 0.

Lemma 2.3 (see [28, Lemma 2.1]). Let C be a closed convex subset of a complete CAT(0) space X,
and let T : C → C be a nonexpansive mapping. Let u ∈ C be fixed. For each t ∈ (0, 1), the mapping
St : C → C defined by

Stz = tu ⊕ (1 − t)Tz, for z ∈ C (2.7)

has a unique fixed point zt ∈ C, that is,

zt = St(zt) = tu ⊕ (1 − t)T(zt). (2.8)

Lemma 2.4 (see [28, Lemma 2.2]). Let C and T be as the preceding lemma. Then, F(T)/= ∅ if and
only if {zt} given by (2.8) remains bounded as t → 0. In this case, the following statements hold:

(1) {zt} converges to the unique fixed point z of T which is nearest u,
(2) d2(u, z) ≤ μnd

2(u, xn) for all Banach limits μ and all bounded sequences {xn} with
limnd(xn, Txn) = 0.

Lemma 2.5 (see [10, Lemma 2.1]). Let {αn}∞n=1 be a sequence of nonnegative real numbers
satisfying the condition

αn+1 ≤
(
1 − γn

)
αn + γnσn, n ≥ 1, (2.9)

where {γn} and {σn} are sequences of real numbers such that

(1){γn} ⊂ [0, 1] and
∑∞

n=1 γn = ∞,
(2) either lim supn→∞σn ≤ 0 or

∑∞
n=1 |γnσn| < ∞.

Then, limn→∞ αn = 0.

Lemma 2.6 (see [27, 36]). Let {xn} and {yn} be bounded sequences in a CAT(0) space X, and let
{αn} be a sequence in [0, 1] with 0 < lim infnαn ≤ lim supnαn < 1. Suppose that xn+1 = αnyn ⊕ (1 −
αn)xn for all n ∈ N and

lim sup
n→∞

(
d
(
yn+1, yn

) − d(xn+1, xn)
) ≤ 0. (2.10)

Then, limnd(xn, yn) = 0.

3. Main Results

The following result is an analog of Theorem 1 of Kim and Xu [12]. They prove the theorem
by using the concept of duality mapping, while we use the concept of Banach limit. We also
observe that the condition

∑∞
n=1 αn = ∞ in [12, Theorem 1] is superfluous.
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Theorem 3.1. Let C be a nonempty closed convex subset of a complete CAT(0) space X, and let
T : C → C be a nonexpansive mapping such that F(T)/= ∅. Given a point u ∈ C and sequences {αn}
and {βn} in [0, 1], the following conditions are satisfied:

(A1) limnαn = 0 and
∑∞

n=1 |αn+1 − αn| < ∞,
(A2) limnβn = 0,

∑∞
n=1 βn = ∞ and

∑∞
n=1 |βn+1 − βn| < ∞.

Define a sequence {xn} in C by x1 = x ∈ C arbitrarily, and

xn+1 = βnu ⊕ (
1 − βn

)
(αnxn ⊕ (1 − αn)Txn), ∀n ≥ 1. (3.1)

Then, {xn} converges to a fixed point z ∈ F(T) which is nearest u.

Proof. For each n ≥ 1, we let yn := αnxn ⊕ (1 − αn)Txn. We divide the proof into 3 steps.
(i) We will show that {xn}, {yn}, and {Txn} are bounded sequences. (ii) We show that
limnd(xn, Txn) = 0. Finally, we show that (iii) {xn} converges to a fixed point z ∈ F(T)which
is nearest u.

(i) As in the first part of the proof of [12, Theorem 1], we can show that {xn} is
bounded and so is {yn} and {Txn}. Notice also that

d
(
yn, p

) ≤ d
(
xn, p

)
, ∀p ∈ F(T). (3.2)

(ii) It suffices to show that

lim
n→∞

d(xn, xn+1) = 0. (3.3)

Indeed, if (3.3) holds, we obtain

d(xn, Txn) ≤ d(xn, xn+1) + d
(
xn+1, yn

)
+ d

(
yn, Txn

)

= d(xn, xn+1) + d
(
βnu ⊕ (

1 − βn
)
yn, yn

)
+ d(αnxn ⊕ (1 − αn)Txn, Txn)

≤ d(xn, xn+1) + βnd
(
u, yn

)
+ αnd(xn, Txn) −→ 0, as n −→ ∞.

(3.4)

By using Lemma 2.1, we get

d(xn+1, xn) = d
(
βnu ⊕ (

1 − βn
)
yn, βn−1u ⊕ (

1 − βn−1
)
yn−1

)

≤ d
(
βnu ⊕ (

1 − βn
)
yn, βnu ⊕ (

1 − βn
)
yn−1

)

+ d
(
βnu ⊕ (

1 − βn
)
yn−1, βn−1u ⊕ (

1 − βn−1
)
yn−1

)
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≤ (
1 − βn

)
d
(
yn, yn−1

)
+
∣
∣βn − βn−1

∣
∣d
(
u, yn−1

)

=
(
1 − βn

)
d(αnxn ⊕ (1 − αn)Txn, αn−1xn−1 ⊕ (1 − αn−1)Txn−1)

+
∣
∣βn − βn−1

∣
∣d(u, αn−1xn−1 ⊕ (1 − αn−1)Txn−1)

≤ (
1 − βn

)
[d(αnxn ⊕ (1 − αn)Txn, αnxn−1 ⊕ (1 − αn)Txn)

+ d(αnxn−1 ⊕ (1 − αn)Txn, αnxn−1 ⊕ (1 − αn)Txn−1)

+d(αnxn−1 ⊕ (1 − αn)Txn−1, αn−1xn−1 ⊕ (1 − αn−1)Txn−1)]

+
∣
∣βn − βn−1

∣
∣[αn−1d(u, xn−1) + (1 − αn−1)d(u, Txn−1)]

≤ (
1 − βn

)
[αnd(xn, xn−1) + (1 − αn)d(Txn, Txn−1) + |αn − αn−1|d(xn−1, Txn−1)]

+
∣∣βn − βn−1

∣∣[αn−1d(u, xn−1) + (1 − αn−1)d(u, Txn−1)]

=
(
1 − βn

)
d(xn, xn−1) +

(
1 − βn

)|αn − αn−1|d(xn−1, Txn−1)

+
∣∣βn − βn−1

∣∣αn−1d(u, xn−1) +
∣∣βn − βn−1

∣∣(1 − αn−1)d(u, Txn−1)

≤ (
1 − βn

)
d(xn, xn−1) +

(
1 − βn

)|αn − αn−1|d(xn−1, Txn−1)

+
∣∣βn − βn−1

∣∣αn−1[d(u, Txn−1) + d(Txn−1, xn−1)]

+
∣∣βn − βn−1

∣∣d(u, Txn−1) −
∣∣βn − βn−1

∣∣αn−1d(u, Txn−1)

=
(
1 − βn

)
d(xn, xn−1) +

(
1 − βn

)|αn − αn−1|d(xn−1, Txn−1)

+
∣∣βn − βn−1

∣∣αn−1d(xn−1, Txn−1) +
∣∣βn − βn−1

∣∣d(u, Txn−1).

(3.5)

Hence,

d(xn+1, xn) ≤
(
1 − βn

)
d(xn, xn−1) + γ

(|αn − αn−1| + 2
∣∣βn − βn−1

∣∣), (3.6)

where γ > 0 is a constant such that γ ≥ max{d(u, Txn−1), d(xn−1, Txn−1)} for all n ∈ N. By
assumptions, we have

lim
n→∞

βn = 0,
∞∑

n=1

βn = ∞,
∞∑

n=1

(|αn − αn−1| + 2
∣∣βn − βn−1

∣∣) < ∞. (3.7)

Hence, Lemma 2.5 is applicable to (3.6), and we obtain limnd(xn+1, xn) = 0.
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(iii) From Lemma 2.3, let z = limt→ 0zt, where zt is given by (2.8). Then, z is the point
of F(T)which is nearest u. We observe that

d2(xn+1, z) = d2(βnu ⊕ (
1 − βn

)
yn, z

)

≤ βnd
2(u, z) +

(
1 − βn

)
d2(yn, z

) − βn
(
1 − βn

)
d2(u, yn

)

≤ βnd
2(u, z) +

(
1 − βn

)
d2(xn, z) − βn

(
1 − βn

)
d2(u, yn

)

=
(
1 − βn

)
d2(xn, z) + βn

[
d2(u, z) − (

1 − βn
)
d2(u, yn

)]
.

(3.8)

By Lemma 2.4, we have μn(d2(u, z) − d2(u, xn)) ≤ 0 for all Banach limit μ. Moreover, since
limnd(xn+1, xn) = 0,

lim sup
n→∞

[(
d2(u, z) − d2(u, xn+1)

)
−
(
d2(u, z) − d2(u, xn)

)]
= 0. (3.9)

It follows from limnd(yn, xn) = 0 and Lemma 2.2 that

lim sup
n→∞

(
d2(u, z) − (

1 − βn
)
d2(u, yn

))
= lim sup

n→∞

(
d2(u, z) − d2(u, xn)

)
≤ 0. (3.10)

Hence, the conclusion follows from Lemma 2.5.

By using the similar technique as in the proof of Theorem 3.1, we can obtain a
strong convergence theorem which is an analog of [13, Theorem 3.1] (see also [37, 38] for
subsequence comments).

Theorem 3.2. Let C be a nonempty closed and convex subset of a complete CAT(0) space X, and let
T : C → C be a nonexpansive mapping such that F(T)/= ∅. Given a point u ∈ C and an initial value
x1 ∈ C. The sequence {xn} is defined iteratively by

xn+1 = βnxn ⊕
(
1 − βn

)
(αnu ⊕ (1 − αn)Txn), n ≥ 1. (3.11)

Suppose that both {αn} and {βn} are sequences in [0, 1] satisfying

(B1) limn→∞αn = 0,
(B2)

∑∞
n=1 αn = ∞,

(B3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Then, {xn} converges to a fixed point z ∈ F(T) which is nearest u.
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Proof. Let yn := αnu ⊕ (1 − αn)Txn. We divide the proof into 3 steps.

Step 1. We show that {xn}, {yn}, and {Txn} are bounded sequences. Let p ∈ F(T), then we
have

d
(
xn+1, p

)
= d

(
βnxn ⊕

(
1 − βn

)
(αnu ⊕ (1 − αn)Txn), p

)

≤ βnd
(
xn, p

)
+
(
1 − βn

)
d
(
αnu ⊕ (1 − αn)Txn, p

)

≤ βnd
(
xn, p

)
+
(
1 − βn

)
αnd

(
u, p

)
+
(
1 − βn

)
(1 − αn)d

(
Txn, p

)

≤ (
βn +

(
1 − βn

)
(1 − αn)

)
d
(
xn, p

)
+
(
1 − βn

)
αnd

(
u, p

)

=
[
1 − (

1 − βn
)
αn

]
d
(
xn, p

)
+
(
1 − βn

)
αnd

(
u, p

)

≤ max
{
d
(
xn, p

)
, d

(
u, p

)}
.

(3.12)

Now, an induction yields

d
(
xn+1, p

) ≤ max
{
d
(
x1, p

)
, d

(
u, p

)}
, n ≥ 1. (3.13)

Hence, {xn} is bounded and so are {yn} and {Txn}.

Step 2. We show that limnd(xn, Txn) = 0. By using Lemma 2.1, we get

d
(
yn+1, yn

)
= d(αn+1u ⊕ (1 − αn+1)Txn+1, αnu ⊕ (1 − αn)Txn)

≤ αnd(αn+1u ⊕ (1 − αn+1)Txn+1, u)

+ (1 − αn)d(αn+1u ⊕ (1 − αn+1)Txn+1, Txn)

≤ αn(1 − αn+1)d(Txn+1, u) + (1 − αn)αn+1d(u, Txn)

+ (1 − αn)(1 − αn+1)d(Txn+1, Txn)

≤ αn(1 − αn+1)d(Txn+1, u) + (1 − αn)αn+1d(u, Txn)

+ (1 − αn)(1 − αn+1)d(xn+1, xn).

(3.14)

This implies that

d
(
yn+1, yn

) − d(xn+1, xn) ≤ αn(1 − αn+1)d(Txn+1, u) + (1 − αn)αn+1d(u, Txn)

+ [αnαn+1 − αn − αn+1]d(xn+1, xn).
(3.15)

Since {xn} and {Txn} are bounded and limn→∞αn = 0, it follows that

lim sup
n→∞

(
d
(
yn+1, yn

) − d(xn+1, xn)
) ≤ 0. (3.16)
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Hence, by Lemma 2.6, we get

lim
n→∞

d
(
xn, yn

)
= 0. (3.17)

On the other hand,

d
(
yn, Txn

)
= d(αnu ⊕ (1 − αn)Txn, Txn) ≤ αnd(u, Txn) −→ 0, as n −→ ∞. (3.18)

Using (3.17) and (3.18), we get

d(xn, Txn) ≤ d
(
xn, yn

)
+ d

(
yn, Txn

) −→ 0, as n −→ ∞. (3.19)

Step 3. We show that {xn} converges to a fixed point of T . Let z = limt→ 0zt, where zt is given
by (2.8), then z ∈ F(T). Finally, we show that limnxn = z

d2(xn+1, z) = d2(βnxn ⊕
(
1 − βn

)
yn, z

)

≤ βnd
2(xn, z) +

(
1 − βn

)
d2(yn, z

) − βn
(
1 − βn

)
d2(xn, yn

)

≤ βnd
2(xn, z) +

(
1 − βn

)
d2(αnu ⊕ (1 − αn)Txn, z) − βn

(
1 − βn

)
d2(xn, yn

)

≤ (
1 − βn

)[
αnd

2(u, z) + (1 − αn)d2(Txn, z) − αn(1 − αn)d2(u, Txn)
]

− βn
(
1 − βn

)
d2(xn, yn

)
+ βnd

2(xn, z)

≤ [
βn +

(
1 − βn

)
(1 − αn)

]
d2(xn, z) +

(
1 − βn

)
αn

[
d2(u, z) − (1 − αn)d2(u, Txn)

]

=
[
1 − (

1 − βn
)
αn

]
d2(xn, z) +

(
1 − βn

)
αn

[
d2(u, z) − (1 − αn)d2(u, Txn)

]
.

(3.20)

By Lemma 2.4, we have μn(d2(u, z) − d2(u, xn)) ≤ 0 for all Banach limit μ. Moreover, since

d(xn+1, xn) = d
(
βnxn ⊕

(
1 − βn

)
yn, xn

)

≤ (
1 − βn

)
d
(
yn, xn

) −→ 0, as n −→ ∞,

lim sup
n→∞

(
d2(u, z) + d2(u, xn+1) − d2(u, z) − d2(u, xn)

)
= 0,

(3.21)

it follows from condition (B1), limnd(xn, Txn) = 0 and Lemma 2.2 that

lim sup
n→∞

(
d2(u, z) − (1 − αn)d2(u, Txn)

)
= lim sup

n→∞

(
d2(u, z) − d2(u, xn)

)
≤ 0. (3.22)

Hence, the conclusion follows by Lemma 2.5.
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