Research Article

The Iterative Method of Generalized u_{0}-Concave Operators

Yanqiu Zhou, Jingxian Sun, and Jie Sun

Department of Mathematics, Xuzhou Normal University, Xuzhou 221116, China
Correspondence should be addressed to Jingxian Sun, jxsun7083@sohu.com
Received 16 November 2010; Accepted 12 January 2011
Academic Editor: N. J. Huang
Copyright © 2011 Yanqiu Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We define the concept of the generalized u_{0}-concave operators, which generalize the definition of the u_{0}-concave operators. By using the iterative method and the partial ordering method, we prove the existence and uniqueness of fixed points of this class of the operators. As an example of the application of our results, we show the existence and uniqueness of solutions to a class of the Hammerstein integral equations.

1. Introduction and Preliminary

In [1, 2], Collatz divided the typical problems in computation mathematics into five classes, and the first class is how to solve the operator equation

$$
\begin{equation*}
A x=x \tag{1.1}
\end{equation*}
$$

by the iterative method, that is, construct successively the sequence

$$
\begin{equation*}
x_{n+1}=A x_{n} \tag{1.2}
\end{equation*}
$$

for some initial x_{0} to solve (1.1).
Let P be a cone in real Banach space E and the partial ordering $\leq \operatorname{defined}$ by P, that is, $x \leq y$ if and only if $y-x \in P$. The concept and properties of the cone can be found in [35]. People studied how to solve (1.1) by using the iterative method and the partial ordering method (see [1-11]).

In [7], Krasnosel'skir gave the concept of u_{0}-concave operators and studied the existence and uniqueness of the fixed point for the operator by the iterative method. The concept of u_{0}-concave operators was defined by Krasnosel'skiř as follows.

Let operator $A: P \mapsto P$ and $u_{0}>\theta$. Suppose that
(i) for any $x>\theta$, there exist $\alpha=\alpha(x)>0$ and $\beta=\beta(x)>0$, such that

$$
\begin{equation*}
\alpha u_{0} \leq A x \leq \beta u_{0} \tag{1.3}
\end{equation*}
$$

(ii) for any $x \in P$ satisfying $\alpha_{1} u_{0} \leq x \leq \beta_{1} u_{0}\left(\alpha_{1}=\alpha_{1}(x)>0, \beta_{1}=\beta_{1}(x)>0\right)$ and any $0<t<1$, there exists $\eta=\eta(x, t)>0$, such that

$$
\begin{equation*}
A(t x) \geq(1+\eta) t A x \tag{1.4}
\end{equation*}
$$

Then A is called an u_{0}-concave operator.
In many papers, the authors studied u_{0}-concave operators and obtained some results (see $[3-5,8-15]$). In this paper, we generalize the concept of u_{0}-concave operators, give a concept of the generalized u_{0}-concave operators, and study the existence and uniqueness of fixed points for this class of operators by the iterative method. Our results generalize the results in $[3,4,7,15]$.

2. Main Result

In this paper, we always let P be a cone in real Banach space E and the partial ordering \leq defined by P. Given $w_{0} \in E$, let $P\left(w_{0}\right)=\left\{x \in E \mid x \geq w_{0}\right\}$.

Definition 2.1. Let operator $A: P\left(w_{0}\right) \mapsto P\left(w_{0}\right)$ and $u_{0}>\theta$. Suppose that
(i) for any $x>w_{0}$, there exist $\alpha=\alpha(x)>0$ and $\beta=\beta(x)>0$, such that

$$
\begin{equation*}
\alpha u_{0}+w_{0} \leq A x \leq \beta u_{0}+w_{0} \tag{2.1}
\end{equation*}
$$

(ii) for any $x \in P\left(w_{0}\right)$ satisfying $\alpha_{1} u_{0}+w_{0} \leq x \leq \beta_{1} u_{0}+w_{0}\left(\alpha_{1}=\alpha_{1}(x)>0, \beta_{1}=\beta_{1}(x)>\right.$ 0) and any $0<t<1$, there exists $\eta=\eta(x, t)>0$, such that

$$
\begin{equation*}
A\left[t x+(1-t) w_{0}\right] \geq(1+\eta) t A x+[1-(1+\eta) t] w_{0} \tag{2.2}
\end{equation*}
$$

Then A is called a generalized u_{0}-concave operator.
Remark 2.2. In Definition 2.1, let $w_{0}=\theta$, we get the definition of the u_{0}-concave operator.
Theorem 2.3. Let operator $A: P\left(w_{0}\right) \mapsto P\left(w_{0}\right)$ be generalized u_{0}-concave and increasing (i.e., $x \leq y \Rightarrow A x \leq A y)$, then A has at most one fixed point in $P\left(w_{0}\right) \backslash\left\{w_{0}\right\}$.

Proof. Let $x^{(1)}>w_{0}, x^{(2)}>w_{0}$ be two different fixed points of A, that is, $A x^{(1)}=x^{(1)}, A x^{(2)}=$ $x^{(2)}$, and $x^{(1)} \neq x^{(2)}$. By Definition 2.1, there exist real numbers $\alpha_{1}=\alpha_{1}\left(x^{(1)}\right)>0, \beta_{1}=\beta_{1}\left(x^{(1)}\right)>$ $0, \alpha_{2}=\alpha_{2}\left(x^{(2)}\right)>0, \beta_{2}=\beta_{2}\left(x^{(2)}\right)>0$, such that

$$
\begin{equation*}
\alpha_{1} u_{0}+w_{0} \leq x^{(1)} \leq \beta_{1} u_{0}+w_{0}, \quad \alpha_{2} u_{0}+w_{0} \leq x^{(2)} \leq \beta_{2} u_{0}+w_{0} . \tag{2.3}
\end{equation*}
$$

Hence $\alpha_{1} / \beta_{2}\left(x^{(2)}-w_{0}\right)+w_{0} \leq \alpha_{1} u_{0}+w_{0} \leq x^{(1)} \leq \beta_{1} u_{0}+w_{0} \leq \beta_{1} / \alpha_{2}\left(x^{(2)}-w_{0}\right)+w_{0}$.
Let $\alpha=\alpha_{1} / \beta_{2}, \beta=\beta_{1} / \alpha_{2}$, we get that $\alpha\left(x^{(2)}-w_{0}\right)+w_{0} \leq x^{(1)} \leq \beta\left(x^{(2)}-w_{0}\right)+w_{0}$, that is, $\alpha x^{(2)}+(1-\alpha) w_{0} \leq x^{(1)} \leq \beta x^{(2)}+(1-\beta) w_{0}$. Let

$$
\begin{equation*}
t_{0}=\sup \left\{t>0 \mid t x^{(2)}+(1-t) w_{0} \leq x^{(1)} \leq t^{-1} x^{(2)}+\left(1-t^{-1}\right) w_{0}\right\}, \tag{2.4}
\end{equation*}
$$

hence $0<t \leq t^{-1}$, that is, $0<t \leq 1$, then $t_{0} \in(0,1]$.
Next we will show that $t_{0}=1$. Assume that $t_{0}<1$; by (2.2) and (2.4), there exists $\eta_{1}=\eta_{1}\left(x^{(2)}, t_{0}\right)>0$, such that

$$
\begin{align*}
x^{(1)} & =A x^{(1)} \geq A\left[t_{0} x^{(2)}+\left(1-t_{0}\right) w_{0}\right] \\
& \geq\left(1+\eta_{1}\right) t_{0} A x^{(2)}+\left[1-\left(1+\eta_{1}\right) t_{0}\right] w_{0} \tag{2.5}\\
& =\left(1+\eta_{1}\right) t_{0} x^{(2)}+\left[1-\left(1+\eta_{1}\right) t_{0}\right] w_{0} .
\end{align*}
$$

By (2.2), there exists $\eta_{2}=\eta_{2}\left(x^{(2)}, t_{0}\right)>0$, such that

$$
\begin{align*}
x^{(2)} & =A x^{(2)}=A\left\{t_{0}\left[t_{0}^{-1} x^{(2)}+\left(1-t_{0}^{-1}\right) w_{0}\right]+\left(1-t_{0}\right) w_{0}\right\} \tag{2.6}\\
& \geq\left(1+\eta_{2}\right) t_{0} A\left[t_{0}^{-1} x^{(2)}+\left(1-t_{0}^{-1}\right) w_{0}\right]+\left[1-\left(1+\eta_{2}\right) t_{0}\right] w_{0},
\end{align*}
$$

hence,

$$
\begin{equation*}
A\left[t_{0}^{-1} x^{(2)}+\left(1-t_{0}^{-1}\right) w_{0}\right] \leq\left(1+\eta_{2}\right)^{-1} t_{0}^{-1} A x^{(2)}+\left[1-\left(1+\eta_{2}\right)^{-1} t_{0}^{-1}\right] w_{0} . \tag{2.7}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
x^{(1)} & =A x^{(1)} \leq A\left[t_{0}^{-1} x^{(2)}+\left(1-t_{0}^{-1}\right) w_{0}\right] \\
& \leq\left(1+\eta_{2}\right)^{-1} t_{0}^{-1} A x^{(2)}+\left[1-\left(1+\eta_{2}\right)^{-1} t_{0}^{-1}\right] w_{0} \tag{2.8}\\
& \leq\left(1+\eta_{2}\right)^{-1} t_{0}^{-1} x^{(2)}+\left[1-\left(1+\eta_{2}\right)^{-1} t_{0}^{-1}\right] w_{0} .
\end{align*}
$$

Obviously, by (2.5) and (2.8), we get

$$
\begin{equation*}
\left(1+\eta_{1}\right) t_{0} x^{(2)}+\left[1-\left(1+\eta_{1}\right) t_{0}\right] w_{0} \leq x^{(1)} \leq\left(1+\eta_{2}\right)^{-1} t_{0}^{-1} x^{(2)}+\left[1-\left(1+\eta_{2}\right)^{-1} t_{0}^{-1}\right] w_{0} . \tag{2.9}
\end{equation*}
$$

Let $\eta=\min \left\{\eta_{1}, \eta_{2}\right\}$, we have

$$
\begin{equation*}
(1+\eta) t_{0} x^{(2)}+\left[1-(1+\eta) t_{0}\right] w_{0} \leq x^{(1)} \leq(1+\eta)^{-1} t_{0}^{-1} x^{(2)}+\left[1-(1+\eta)^{-1} t_{0}^{-1}\right] w_{0} \tag{2.10}
\end{equation*}
$$

in contradiction to the definition of t_{0}. Therefore, $t_{0}=1$.
By (2.4), $x^{(1)}=x^{(2)}$. The proof is completed.
To prove the following Theorem 2.4, we will use the definition of the u_{0}-norm as follows.

Given $u_{0}>\theta$, set
$E_{u_{0}}=\left\{x \in E \mid\right.$ there exists a real number $\lambda>0$, such that $\left.-\lambda u_{0} \leq x \leq \lambda u_{0}\right\}$,

$$
\begin{equation*}
\|x\|_{u_{0}}=\inf \left\{\lambda>0 \mid-\lambda u_{0} \leq x \leq \lambda u_{0}\right\}, \quad \forall x \in E_{u_{0}} \tag{2.11}
\end{equation*}
$$

It is easy to see that $E_{u_{0}}$ becomes a normed linear space under the norm $\|\cdot\|_{u_{0}} \cdot\|x\|_{u_{0}}$ is called the u_{0} - norm of the element $x \in E_{u_{0}}$ (see $[3,4]$).

Theorem 2.4. Let operator $A: P\left(w_{0}\right) \mapsto P\left(w_{0}\right)$ be increasing and generalized u_{0}-concave. Suppose that A has a fixed point x^{*} in $P\left(w_{0}\right) \backslash\left\{w_{0}\right\}$, then, constructing successively the sequence $x_{n+1}=$ $A x_{n}(n=0,1,2, \ldots)$ for any initial $x_{0} \in P\left(w_{0}\right) \backslash\left\{w_{0}\right\}$, we have $\left\|x_{n}-x^{*}\right\|_{u_{0}} \rightarrow 0(n \rightarrow \infty)$.

Proof. Suppose that $\left\{x_{n}\right\}$ is generated from $x_{n+1}=A x_{n}(n=0,1,2, \ldots)$. Take $0<\varepsilon_{0}<1$, such that $\varepsilon_{0} x^{*}+\left(1-\varepsilon_{0}\right) w_{0} \leq x_{1} \leq \varepsilon_{0}^{-1} x^{*}+\left(1-\varepsilon_{0}^{-1}\right) w_{0}$. Let $y_{0}=\varepsilon_{0} x^{*}+\left(1-\varepsilon_{0}\right) w_{0}, z_{0}=\varepsilon_{0}^{-1} x^{*}+\left(1-\varepsilon_{0}^{-1}\right) w_{0}$, and constructing successively the sequences $y_{n+1}=A y_{n}, z_{n+1}=A z_{n}(n=0,1,2, \ldots)$. Since A is a generalized u_{0}-concave operator, we know that there exists $\eta_{1}=\eta_{1}\left(x^{*}, \varepsilon_{0}\right)>0$, such that

$$
\begin{align*}
x^{*} & =A x^{*}=A\left\{\varepsilon_{0}\left[\varepsilon_{0}^{-1} x^{*}+\left(1-\varepsilon_{0}^{-1}\right) w_{0}\right]+\left(1-\varepsilon_{0}\right) w_{0}\right\} \tag{2.12}\\
& \geq\left(1+\eta_{1}\right) \varepsilon_{0} A\left[\varepsilon_{0}^{-1} x^{*}+\left(1-\varepsilon_{0}^{-1}\right) w_{0}\right]+\left[1-\left(1+\eta_{1}\right) \varepsilon_{0}\right] w_{0}
\end{align*}
$$

hence, $A\left[\varepsilon_{0}^{-1} x^{*}+\left(1-\varepsilon_{0}^{-1}\right) w_{0}\right] \leq\left(1+\eta_{1}\right)^{-1} \varepsilon_{0}^{-1} A x^{*}+\left[1-\left(1+\eta_{1}\right)^{-1} \varepsilon_{0}^{-1}\right] w_{0}$, then

$$
\begin{align*}
z_{1} & =A\left(z_{0}\right)=A\left[\varepsilon_{0}^{-1} x^{*}+\left(1-\varepsilon_{0}^{-1}\right) w_{0}\right] \leq\left(1+\eta_{1}\right)^{-1} \varepsilon_{0}^{-1} A x^{*}+\left[1-\left(1+\eta_{1}\right)^{-1} \varepsilon_{0}^{-1}\right] w_{0} \\
& =\left(1+\eta_{1}\right)^{-1} \varepsilon_{0}^{-1}\left(A x^{*}-w_{0}\right)+w_{0}<\varepsilon_{0}^{-1}\left(A x^{*}-w_{0}\right)+w_{0}=\varepsilon_{0}^{-1} A x^{*}+\left(1-\varepsilon_{0}^{-1}\right) w_{0} \tag{2.13}\\
& =\varepsilon_{0}^{-1} x^{*}+\left(1-\varepsilon_{0}^{-1}\right) w_{0}=z_{0}
\end{align*}
$$

By (2.2), we can easily get $y_{1}>y_{0}$. So it is easy to show that

$$
\begin{equation*}
y_{0} \leq y_{1} \leq \cdots \leq y_{n} \leq \cdots \leq x^{*} \leq \cdots \leq z_{n} \leq \cdots \leq z_{1} \leq z_{0} \tag{2.14}
\end{equation*}
$$

Let

$$
\begin{equation*}
t_{n}=\sup \left\{t>0 \mid t x^{*}+(1-\mathrm{t}) w_{0} \leq y_{n}, z_{n} \leq t^{-1} x^{*}+\left(1-t^{-1}\right) w_{0}\right\} \quad(n=0,1,2, \ldots) \tag{2.15}
\end{equation*}
$$

then,

$$
\begin{equation*}
0 \leq t_{0} \leq t_{1} \leq \cdots \leq t_{n} \leq \cdots \leq 1 \tag{2.16}
\end{equation*}
$$

which implies that the limit of $\left\{t_{n}\right\}$ exists. Let $\lim _{n \rightarrow \infty} t_{n}=t^{*}$, then $0<t_{n} \leq t^{*} \leq 1$.
Next we will show that $t^{*}=1$. Suppose that $0<t^{*}<1$. Since A is a generalized u_{0}-concave operator, then there exists $\eta_{2}=\eta_{2}\left(x^{*}, t^{*}\right)>0$, such that

$$
\begin{equation*}
A\left[t^{*} x^{*}+\left(1-t^{*}\right) w_{0}\right] \geq\left(1+\eta_{2}\right) t^{*} A x^{*}+\left[1-\left(1+\eta_{2}\right) t^{*}\right] w_{0}=\left(1+\eta_{2}\right) t^{*} x^{*}+\left[1-\left(1+\eta_{2}\right) t^{*}\right] w_{0} \tag{2.17}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
x^{*} & =A x^{*}=A\left\{t^{*}\left[\left(t^{*}\right)^{-1} x^{*}+\left(1-\left(t^{*}\right)^{-1}\right) w_{0}\right]+\left(1-t^{*}\right) w_{0}\right\} \tag{2.18}\\
& \geq\left(1+\eta_{2}\right) t^{*} A\left[\left(t^{*}\right)^{-1} x^{*}+\left(1-\left(t^{*}\right)^{-1}\right) w_{0}\right]+\left[1-\left(1+\eta_{2}\right) t^{*}\right] w_{0}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
A\left[\left(t^{*}\right)^{-1} x^{*}+\left(1-\left(t^{*}\right)^{-1}\right) w_{0}\right] \leq\left(1+\eta_{2}\right)^{-1}\left(t^{*}\right)^{-1} x^{*}+\left[1-\left(1+\eta_{2}\right)^{-1}\left(t^{*}\right)^{-1}\right] w_{0} \tag{2.19}
\end{equation*}
$$

By (2.17) and (2.19), for any $0<t \leq t^{*}$, there exists $\eta_{3}=\eta_{3}\left(x^{*}, t\right)>0$, such that

$$
\begin{gather*}
A\left[t x^{*}+(1-t) w_{0}\right] \geq\left(1+\eta_{3}\right) t x^{*}+\left[1-\left(1+\eta_{3}\right) t\right] w_{0} \\
A\left[t^{-1} x^{*}+\left(1-t^{-1}\right) w_{0}\right] \leq\left(1+\eta_{3}\right)^{-1} t^{-1} x^{*}+\left[1-\left(1+\eta_{3}\right)^{-1} t^{-1}\right] w_{0} \tag{2.20}
\end{gather*}
$$

Particularly, for any $0<t_{n} \leq t^{*}(n=0,1,2, \ldots)$, we have

$$
\begin{gather*}
A\left[t_{n} x^{*}+\left(1-t_{n}\right) w_{0}\right] \geq(1+\eta) t_{n} x^{*}+\left[1-(1+\eta) t_{n}\right] w_{0} \\
A\left[t_{n}^{-1} x^{*}+\left(1-t_{n}^{-1}\right) w_{0}\right] \leq(1+\eta)^{-1} t_{n}^{-1} x^{*}+\left[1-(1+\eta)^{-1} t_{n}^{-1}\right] w_{0} \tag{2.21}
\end{gather*}
$$

where $\eta=\eta\left(t_{n}, x^{*}\right)>0$.
Hence,

$$
\begin{align*}
& y_{n+1}=A y_{n} \geq A\left[t_{n} x^{*}+\left(1-t_{n}\right) w_{0}\right] \geq(1+\eta) t_{n} x^{*}+\left[1-(1+\eta) t_{n}\right] w_{0} \\
& z_{n+1}=A z_{n} \leq A\left[t_{n}^{-1} x^{*}+\left(1-t_{n}^{-1}\right) w_{0}\right] \leq(1+\eta)^{-1} t_{n}^{-1} x^{*}+\left[1-(1+\eta)^{-1} t_{n}^{-1}\right] w_{0} \tag{2.22}
\end{align*}
$$

By (2.15), and (2.22), we get $t_{n+1} \geq(1+\eta) t_{n}(n=0,1,2, \ldots)$ therefore, $t_{n+1} \geq(1+\eta)^{n+1} t_{0}(n=$ $0,1,2, \ldots)$, in contradiction to $0<t_{n} \leq 1(n=1,2, \ldots)$. Hence,

$$
\begin{equation*}
t^{*}=1 \tag{2.23}
\end{equation*}
$$

Since A is a generalized u_{0}-concave operator, thus there exist real numbers $\alpha=\alpha\left(x^{*}\right)>0$, $\beta=\beta\left(x^{*}\right)>0$, such that $\alpha u_{0}+w_{0} \leq x^{*} \leq \beta u_{0}+w_{0}$, and $t_{n} x^{*}+\left(1-t_{n}\right) w_{0} \leq y_{n} \leq x_{n+1} \leq z_{n} \leq$ $t_{n}^{-1} x^{*}+\left(1-t_{n}^{-1}\right) w_{0}(n=0,1,2, \ldots)$, we have

$$
\begin{equation*}
\left(t_{n}-1\right) x^{*}+\left(1-t_{n}\right) w_{0} \leq x_{n+1}-x^{*} \leq\left(t_{n}^{-1}-1\right) x^{*}+\left(1-t_{n}^{-1}\right) w_{0} \tag{2.24}
\end{equation*}
$$

Moreover

$$
\begin{gather*}
\left(t_{n}-1\right) x^{*}+\left(1-t_{n}\right) w_{0} \geq\left(t_{n}-1\right)\left(\beta u_{0}+w_{0}\right)+\left(1-t_{n}\right) w_{0}=\left(t_{n}-1\right) \beta u_{0} \\
\left(t_{n}^{-1}-1\right) x^{*}+\left(1-t_{n}^{-1}\right) w_{0} \leq\left(t_{n}^{-1}-1\right)\left(\beta u_{0}+w_{0}\right)+\left(1-t_{n}^{-1}\right) w_{0}=\left(t_{n}^{-1}-1\right) \beta u_{0} \tag{2.25}
\end{gather*}
$$

Hence,

$$
\begin{equation*}
\left(1-t_{n}^{-1}\right) \beta u_{0} \leq\left(t_{n}-1\right) \beta u_{0} \leq x_{n+1}-x^{*} \leq\left(t_{n}^{-1}-1\right) \beta u_{0} \quad(n=0,1,2, \ldots) \tag{2.26}
\end{equation*}
$$

Consequently, by (2.23), we get $\left\|x_{n}-x^{*}\right\|_{u_{0}} \rightarrow 0(n \rightarrow \infty)$.
To prove the following Theorem 2.5, we will use the definition of the normal cone as follows.

Let P be a cone in E. Suppose that there exist constants $N>0$, such that

$$
\begin{equation*}
\theta \leq x \leq y \Rightarrow\|x\| \leq N\|y\| \tag{2.27}
\end{equation*}
$$

then P is said to be normal, and the smallest N is called the normal constant of P (see [3-5]).

Theorem 2.5. v Let P be a normal cone of E. If operator $A: P\left(w_{0}\right) \longmapsto P\left(w_{0}\right)$ is increasing and generalized u_{0}-concave, and $\eta=\eta(t, x)$ is irrelevant to x in (2.2), then A has the only one fixed point $x^{*} \in P\left(w_{0}\right) \backslash\left\{w_{0}\right\}$. Moreover, constructing successively the sequence $x_{n+1}=A x_{n}(n=0,1,2, \ldots)$ for any initial $x_{0}>w_{0}$, we have $\left\|x_{n}-x^{*}\right\| \rightarrow 0(n \rightarrow \infty)$.

Proof. Since A is a generalized u_{0}-concave operator, hence there exist real numbers $\beta>\alpha>0$, such that $\alpha u_{0}+w_{0} \leq A\left(u_{0}+w_{0}\right) \leq \beta u_{0}+w_{0}$. Take $t_{0} \in(0,1)$ small enough, then $t_{0} u_{0}+w_{0} \leq$ $A\left(u_{0}+w_{0}\right) \leq\left(1 / t_{0}\right) u_{0}+w_{0}$.

Therefore, $t_{n+1} \geq t_{n}$, that is, $\left\{t_{n}\right\}$ is an increasing sequence and $0<t_{n} \leq 1$, hence, the limit of $\left\{t_{n}\right\}$ exists. Set $\lim _{n \rightarrow \infty} t_{n}=t^{*}$, then $0<t^{*} \leq 1$.

Let $\gamma(t)=(1+\eta(t)) t$, where $\eta(t)$ which is irrelevant to x is $\eta(t, x)$ in (2.2), and A is increasing, so $t<\gamma(t) \leq 1, A\left(t x+(1-t) w_{0}\right) \geq \gamma(t) A x+(1-\gamma(t)) w_{0}$, for all $t \in(0,1)$. By $r\left(t_{0}\right) / t_{0}>1$, we can choose a natural number $k>0$ big enough, such that

$$
\begin{equation*}
\left(\frac{\gamma\left(t_{0}\right)}{t_{0}}\right)^{k}>\frac{1}{t_{0}} \tag{2.28}
\end{equation*}
$$

Let

$$
\begin{equation*}
y_{0}=t_{0}^{k} u_{0}+w_{0}, \quad z_{0}=\frac{1}{t_{0}^{k}} u_{0}+w_{0} ; \quad y_{n}=A y_{n-1}, \quad z_{n}=A z_{n-1} \quad(n=1,2, \ldots) \tag{2.29}
\end{equation*}
$$

Obviously, $y_{0}, z_{0} \in P\left(w_{0}\right), y_{0}<z_{0}$. Since A is increasing, we have

$$
\begin{align*}
y_{1} & =A y_{0}=A\left(t_{0}^{k} u_{0}+w_{0}\right)=A\left[t_{0}\left(t_{0}^{k-1} u_{0}+w_{0}\right)+\left(1-t_{0}\right) w_{0}\right] \\
& \geq \gamma\left(t_{0}\right) A\left(t_{0}^{k-1} u_{0}+w_{0}\right)+\left(1-\gamma\left(t_{0}\right)\right) w_{0} \\
& =\gamma\left(t_{0}\right) A\left[t_{0}\left(t_{0}^{k-2} u_{0}+w_{0}\right)+\left(1-t_{0}\right) w_{0}\right]+\left(1-\gamma\left(t_{0}\right)\right) w_{0} \\
& \geq \gamma\left(t_{0}\right)\left[\gamma\left(t_{0}\right) A\left(t_{0}^{k-2} u_{0}+w_{0}\right)+\left(1-\gamma\left(t_{0}\right)\right) w_{0}\right]+\left(1-\gamma\left(t_{0}\right)\right) w_{0} \\
& =r^{2}\left(t_{0}\right) A\left(t_{0}^{k-2} u_{0}+w_{0}\right)+\left(1-r^{2}\left(t_{0}\right)\right) w_{0} \geq \cdots \geq \gamma^{k}\left(t_{0}\right) A\left(u_{0}+w_{0}\right)+\left(1-\gamma^{k}\left(t_{0}\right)\right) w_{0} \\
& >t_{0}^{k-1}\left(t_{0} u_{0}+w_{0}\right)+\left(1-t_{0}^{k-1}\right) w_{0}=t_{0}^{k} u_{0}+w_{0}=y_{0} . \tag{2.30}
\end{align*}
$$

Since $A x=A\left\{t_{0}\left[t_{0}^{-1} x+\left(1-t_{0}^{-1}\right) w_{0}\right]+\left(1-t_{0}\right) w_{0}\right\} \geq \gamma\left(t_{0}\right) A\left[t_{0}^{-1} x+\left(1-t_{0}^{-1}\right) w_{0}\right]+\left(1-\gamma\left(t_{0}\right)\right) \mathrm{w}_{0}$, we get $A\left[t_{0}^{-1} x+\left(1-t_{0}^{-1}\right) w_{0}\right] \leq 1 / \gamma\left(t_{0}\right) A x+\left(1-1 / \gamma\left(t_{0}\right)\right) w_{0}$. Hence

$$
\begin{align*}
z_{1} & =A\left(\frac{1}{t_{0}^{k}} u_{0}+w_{0}\right)=A\left[\frac{1}{t_{0}}\left(\frac{1}{t_{0}^{k-1}} u_{0}+w_{0}\right)+\left(1-\frac{1}{t_{0}}\right) w_{0}\right] \\
& \leq \frac{1}{\gamma\left(t_{0}\right)} A\left(\frac{1}{t_{0}^{k-1}} u_{0}+w_{0}\right)+\left(1-\frac{1}{r\left(t_{0}\right)}\right) w_{0} \tag{2.31}\\
& \leq \cdots \leq \frac{1}{r^{k}\left(t_{0}\right)} A\left(u_{0}+w_{0}\right)+\left(1-\frac{1}{r^{k}\left(t_{0}\right)}\right) w_{0} \leq \frac{1}{t_{0} r^{k}\left(t_{0}\right)} u_{0}+w_{0}<\frac{1}{t_{0}^{k}} u_{0}+w_{0}=z_{0}
\end{align*}
$$

then $y_{0} \leq y_{1} \leq z_{1} \leq z_{0}$. It is easy to see

$$
\begin{equation*}
y_{0} \leq y_{1} \leq \cdots \leq y_{n} \leq \cdots \leq z_{n} \leq \cdots \leq z_{1} \leq z_{0} \tag{2.32}
\end{equation*}
$$

Let

$$
\begin{equation*}
t_{n}=\sup \left\{t>0 \mid y_{n} \geq t z_{n}+(1-t) w_{0}\right\} \tag{2.33}
\end{equation*}
$$

Obviously, $y_{n} \geq t_{n} z_{n}+\left(1-t_{n}\right) w_{0}$. So $y_{n+1} \geq y_{n} \geq t_{n} z_{n}+\left(1-t_{n}\right) w_{0} \geq t_{n} z_{n+1}+\left(1-t_{n}\right) w_{0}$.
Therefore, $t_{n+1} \geq t_{n}$, that is, $\left\{t_{n}\right\}$ is an increasing sequence and $0<t_{n} \leq 1$, hence, the limit of $\left\{t_{n}\right\}$ exists. Set $\lim _{n \rightarrow \infty} t_{n}=t^{*}$, then $0<t^{*} \leq 1$.

Next we will show that $t^{*}=1$. Suppose that $0<t^{*}<1$, we have the following.
(i) If for any natural number $\mathrm{n}, t_{n}<t^{*}<1$, then

$$
\begin{align*}
y_{n+1} & =A y_{n} \geq A\left[t_{n} z_{n}+\left(1-t_{n}\right) w_{0}\right]=A\left\{\frac{t_{n}}{t^{*}}\left[t^{*} z_{n}+\left(1-t^{*}\right) w_{0}\right]+\left(1-\frac{t_{n}}{t^{*}}\right) w_{0}\right\} \\
& \geq r\left(\frac{t_{n}}{t^{*}}\right) A\left[t^{*} z_{n}+\left(1-t^{*}\right) w_{0}\right]+\left(1-\gamma\left(\frac{t_{n}}{t^{*}}\right)\right) w_{0} \\
& \geq r\left(\frac{t_{n}}{t^{*}}\right)\left[\gamma\left(t^{*}\right) A z_{n}+\left(1-\gamma\left(t^{*}\right)\right) w_{0}\right]+\left(1-\gamma\left(\frac{t_{n}}{t^{*}}\right)\right) w_{0} \\
& =\gamma\left(\frac{t_{n}}{t^{*}}\right) \gamma\left(t^{*}\right) A z_{n}+\left(1-\gamma\left(\frac{t_{n}}{t^{*}}\right) \gamma\left(t^{*}\right)\right) w_{0}=\gamma\left(\frac{t_{n}}{t^{*}}\right) \gamma\left(t^{*}\right) z_{n+1}+\left(1-\gamma\left(\frac{t_{n}}{t^{*}}\right) \gamma\left(t^{*}\right)\right) w_{0} \tag{2.34}
\end{align*}
$$

hence,

$$
\begin{equation*}
t_{n+1} \geq \gamma\left(\frac{t_{n}}{t^{*}}\right) \gamma\left(t^{*}\right)=\left(1+\eta\left(\frac{t_{n}}{t^{*}}\right)\right) \frac{t_{n}}{t^{*}}\left(1+\eta\left(t^{*}\right)\right) t^{*} \geq t_{n}\left(1+\eta\left(t^{*}\right)\right) \tag{2.35}
\end{equation*}
$$

Taking limits, we have $t^{*} \geq t^{*}\left(1+\eta\left(t^{*}\right)\right)>t^{*}$, a contradiction.
(ii) Suppose that there exists a natural number $N>0$, such that $t_{n}=t^{*}(n>N)$.

When $n>N$, so we have

$$
\begin{align*}
y_{n+1} & =A y_{n} \geq A\left[t_{n} z_{n}+\left(1-t_{n}\right) w_{0}\right]=A\left[t^{*} z_{n}+\left(1-t^{*}\right) w_{0}\right] \tag{2.36}\\
& \geq \gamma\left(t^{*}\right) A z_{n}+\left(1-\gamma\left(t^{*}\right)\right) w_{0}=\gamma\left(t^{*}\right) z_{n+1}+\left(1-\gamma\left(t^{*}\right)\right) w_{0}
\end{align*}
$$

then $t^{*}=t_{n+1} \geq \gamma\left(t^{*}\right)=\left(1+\eta\left(t^{*}\right)\right) t^{*}>t^{*}$, a contradiction.
Therefore, $t^{*}=1$.
For any natural numbers n, p, we have

$$
\begin{equation*}
\theta \leq y_{n+p}-y_{n} \leq z_{n+p}-y_{n} \leq z_{n}-y_{n} \leq z_{n}-\left[t_{n} z_{n}+\left(1-t_{n}\right) w_{0}\right]=\left(1-t_{n}\right)\left(z_{n}-w_{0}\right) \tag{2.37}
\end{equation*}
$$

Similarly, $\theta \leq z_{n}-z_{n+p} \leq z_{n}-y_{n} \leq\left(1-t_{n}\right)\left(z_{n}-w_{0}\right)$. By the normality of P and $\lim _{n \rightarrow \infty} t_{n}=1$, we get

$$
\begin{align*}
& \left\|\left(y_{n+p}-w_{0}\right)-\left(y_{n}-w_{0}\right)\right\|=\left\|y_{n+p}-y_{n}\right\| \leq N\left(1-t_{n}\right)\left\|z_{n}-w_{0}\right\| \rightarrow 0 \quad(n \rightarrow \infty) \tag{2.38}\\
& \left\|\left(z_{n+p}-w_{0}\right)-\left(z_{n}-w_{0}\right)\right\|=\left\|z_{n}-z_{n+p}\right\| \leq N\left(1-t_{n}\right)\left\|z_{n}-w_{0}\right\| \rightarrow 0 \quad(n \rightarrow \infty)
\end{align*}
$$

where N is the normal constant of P. Hence the limits of $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ exist. Let $\lim _{n \rightarrow \infty} y_{n}=$ y^{*}, and let $\lim _{n \rightarrow \infty} z_{n}=z^{*}$, then $y_{n} \leq y^{*} \leq z^{*} \leq z_{n}(n=0,1,2, \ldots)$, hence,

$$
\begin{equation*}
\theta \leq z^{*}-y^{*} \leq z_{n}-y_{n} \leq\left(1-t_{n}\right)\left(z_{n}-w_{0}\right) \rightarrow \theta \quad(n \rightarrow \infty) . \tag{2.39}
\end{equation*}
$$

That is, $y^{*}=z^{*}$. Let $x^{*}=y^{*}=z^{*}$, then $y_{n+1}=A y_{n} \leq A x^{*} \leq A z_{n}=z_{n+1}$.
Taking limits, we get $x^{*} \leq A x^{*} \leq x^{*}$. Hence $A x^{*}=x^{*}$, that is, $x^{*} \in P\left(w_{0}\right) \backslash\left\{w_{0}\right\}$ is a fixed point of A. By Theorem 2.4, the conclusions of Theorem 2.5 hold. The proof is completed.

3. Examples

Example 3.1. Let $I=[0,1]$, let $C(I)=\{x(t): I \mapsto R \mid x(t)$ is continuous $\}$, let $\|x\|=$ $\sup \{\mid x(t) \| t \in I\}$, let $P=\{x \in C(I) \mid x(t) \geq 0, \forall t \in I\}$, then $C(I)$ is a real Banach space and P is a normal and solid cone in $C(I)$ (P is called solid if it contains interior points, i.e., $\stackrel{\circ}{P} \neq \emptyset)$. Take $a<0$, let $w_{0}=w_{0}(t) \equiv a, P\left(w_{0}\right)=\left\{x \in C(I) \mid x(t) \geq w_{0}, \forall t \in I\right\}$, and $\stackrel{\circ}{P}\left(w_{0}\right)=\left\{x+w_{0} \in P\left(w_{0}\right) \mid x \in \stackrel{\circ}{P}\right\}$.

Considering the Hammerstein integral equation

$$
\begin{equation*}
x(t)=\int_{0}^{1} k(t, s) f(s, x(s)) d s, \quad t \in[0,1], \tag{3.1}
\end{equation*}
$$

where $k(t, s): I \times I \mapsto[0,+\infty)$ is continuous, $f(s, u): I \times[a,+\infty) \mapsto R$ is increasing for u. Suppose that
(1) there exist real numbers $0 \leq m \leq M \leq 1$, such that $m \leq k(t, s) \leq M$, for all $(t, s) \in$ $I \times I$, and $f(s, u) \geq a / M$, for $\operatorname{all}(s, u) \in I \times[a,+\infty)$,
(2) for any $\lambda \in(0,1)$ and $u \in(a,+\infty)$, there exists $\eta=\eta(\lambda)>0$, such that

$$
\begin{equation*}
m f[s, \lambda u+(1-\lambda) a] \geq(1+\eta) \lambda m f(s, u)+[1-(1+\eta) \lambda] a . \tag{3.2}
\end{equation*}
$$

Then (3.1) has the only one solution $x^{*} \in P\left(w_{0}\right) \backslash\left\{w_{0}\right\}$. Moreover, constructing successively the sequence:

$$
\begin{equation*}
x_{n}(t)=\int_{0}^{1} k(t, s) f\left(s, x_{n-1}(s)\right) d s, \quad \forall t \in I, \quad n=1,2, \ldots \tag{3.3}
\end{equation*}
$$

for any initial $x_{0} \in P\left(w_{0}\right) \backslash\left\{w_{0}\right\}$, we have $\left\|x_{n}-x^{*}\right\| \rightarrow 0(n \rightarrow \infty)$.
Proof. Considering the operator

$$
\begin{equation*}
A x(t)=\int_{0}^{1} k(t, s) f(s, x(s)) d s, \quad t \in I . \tag{3.4}
\end{equation*}
$$

Obviously, $A: P\left(w_{0}\right) \backslash\left\{w_{0}\right\} \mapsto \stackrel{\circ}{P}\left(w_{0}\right)$ is increasing. Therefore, (i) of Definition 2.1 is satisfied. For any $x \in \stackrel{\circ}{P}\left(w_{0}\right)$, by (3.2), we have

$$
\begin{align*}
A\left[\lambda x(t)+(1-\lambda) w_{0}\right] & =\int_{0}^{1} k(t, s) f\left(s, \lambda x(s)+(1-\lambda) w_{0}\right) d s \\
& =\int_{0}^{1} \frac{1}{m} k(t, s) m f\left(s, \lambda x(s)+(1-\lambda) w_{0}\right) d s \\
& \geq(1+\eta) \lambda \int_{0}^{1} \frac{1}{m} k(t, s) m f(s, x(s)) d s+[1-(1+\eta) \lambda] w_{0} \int_{0}^{1} \frac{1}{m} k(t, s) d s \\
& \geq(1+\eta) \lambda A x(t)+[1-(1+\eta) \lambda] w_{0} \tag{3.5}
\end{align*}
$$

Therefore, (ii) of Definition 2.1 is satisfied. Hence the operator $A: P\left(w_{0}\right) \mapsto P\left(w_{0}\right)$ is generalized u_{0}-concave. Consequently, operator A satisfies all conditions of Theorem 2.5 , thus the conclusion of Example 3.1 holds.

Example 3.2. Let R be a real numbers set, and let $P=\{x \mid x \geq 0, x \in R\}$, then R is a real Banach space and P is a normal and solid cone in R. Let $A x=(x+2)^{1 / 2}-2$. Considering the equation: $x=A x$. Obviously, A is a generalized u_{0}-concave operator and satisfies all the conditions of Theorem 2.5. Hence A has the only one fixed point $x^{*} \in P(-2) \backslash\{-2\}=(-2,+\infty)$. Moreover, we know $x^{*}=-1$ by computing.

In Example 3.2, we know that operator $A:[-2,+\infty) \mapsto[-2,+\infty)$ doesn't satisfy the definition of u_{0}-concave operators. Therefore, we can't obtain the fixed point of A by the fixed point theorem of u_{0}-concave operators. The u_{0}-concave operators' fixed points are all positive, but here A^{\prime} 's fixed point is negative.

Acknowledgment

The project is supported by the National Science Foundation of China (10971179), the College Graduate Research and Innovation Plan Project of Jiangsu (CX10S-037Z), the Graduate Research and Innovation Programs of Xuzhou Normal University Innovation Plan (2010YLA001).

References

[1] L. Collatz, "The theoretical basis of numerical mathematics," Mathematics Asian Studies, vol. 4, pp. 1-17, 1966 (Chinese).
[2] L. Collatz, "Function analysis as the assistant tool for Numerical Mathematics," Mathematics Asian Studies, vol. 4, pp. 53-60, 1966 (Chinese).
[3] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, vol. 5 of Notes and Reports in Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1988.
[4] D. Guo, Nonlinear Functional Analysis, Science and Technology Press, Shandong, China, 1985.
[5] Jingxian Sun, Nonlinear Functional Analysis and Applications, Science Press, Beijing, China, 2007.
[6] M. A. Krasnosel'skii et al., Approximate Solution of Operator Equations, Wolters-Noordhoff, 1972.
[7] M. A. Krasnosel'skiř and P. P. Zabrě̌ko, Geometrical Methods of Nonlinear Analysis, vol. 263 of Fundamental Principles of Mathematical Sciences, Springer, Berlin, Germany, 1984.
[8] D. Guo, The partial order in non-linear analysis, Shandong Science and Technology Press, Ji'nan, China, 2000.
[9] Z. Zhao, "Uniqueness and existence of fixed point on some mixed monotone mappings in ordered linear spaces," Journal of Systems Science and Complexity, vol. 19, no. 4, pp. 217-224, 1999 (Chinese).
[10] J. X. Sun and L. S. Liu, "An iterative solution method for nonlinear operator equations and its applications," Acta Mathematica Scientia. Series A, vol. 13, no. 2, pp. 141-145, 1993.
[11] J. X. Sun, "Some new fixed point theorems of increasing operators and applications," Applicable Analysis, vol. 42, no. 3-4, pp. 263-273, 1991.
[12] W. X. Wang and Z. D. Liang, "Fixed point theorems for a class of nonlinear operators and their applications," Acta Mathematica Sinica. Chinese Series, vol. 48, no. 4, pp. 789-800, 2005.
[13] Z. D. Liang, W. X. Wang, and S. J. Li, "On concave operators," Acta Mathematica Sinica (English Series), vol. 22, no. 2, pp. 577-582, 2006.
[14] M. A. Krasnosel'skii, Positive Solution of Operators Equations, Noordoff, Groningen, The Netherlands, 1964.
[15] C. B. Zhai and Y. J. Li, "Fixed point theorems for u_{0}-concave operators and their applications," Acta Mathematica Scientia. Series A, vol. 28, no. 6, pp. 1023-1028, 2008.

