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The purpose of this paper is to present some fixed-point results for single-valued ϕ-contractions
on ordered and complete gauge space. Our theorems generalize and extend some recent results in
the literature. As an application, existence results for some integral equations on the positive real
axis are given.

1. Introduction

Throughout this paper � will denote a nonempty set E endowed with a separating gauge
structure D = {dα}α∈Λ, where Λ is a directed set (see [1] for definitions). Let � := {0, 1, 2, . . .}
and �

∗ := � \ {0}. We also denote by � the set of all real numbers and by �+ := [0,+∞).
A sequence (xn) of elements in E is said to be Cauchy if for every ε > 0 and α ∈ Λ,

there is an N with dα(xn, xn+p) ≤ ε for all n ≥ N and p ∈ �
∗ . The sequence (xn) is called

convergent if there exists an x0 ∈ X such that for every ε > 0 and α ∈ Λ, there is an N ∈ �
∗

with dα(x0, xn) ≤ ε, for all n ≥ N.
A gauge space � is called complete if any Cauchy sequence is convergent. A subset of

X is said to be closed if it contains the limit of any convergent sequence of its elements. See
also Dugundji [1] for other definitions and details.

If f : E → E is an operator, then x ∈ E is called fixed point for f if and only if x = f(x).
The set Ff := {x ∈ E | x = f(x)} denotes the fixed-point set of f .

On the other hand, Ran and Reurings [2] proved the following Banach-Caccioppoli
type principle in ordered metric spaces.

Theorem 1.1 (Ran and Reurings [2]). Let X be a partially ordered set such that every pair x, y ∈ X
has a lower and an upper bound. Let d be a metric on X such that the metric space (X, d) is complete.
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Let f : X → X be a continuous and monotone (i.e., either decreasing or increasing) operator. Suppose
that the following two assertions hold:

(1) there exists a ∈ ]0, 1[ such that d(f(x), f(y)) ≤ a · d(x, y), for each x, y ∈ X with x ≥ y;

(2) there exists x0 ∈ X such that x0 ≤ f(x0) or x0 ≥ f(x0).

Then f has an unique fixed point x∗ ∈ X, that is, f(x∗) = x∗, and for each x ∈ X the sequence
(fn(x))n∈� of successive approximations of f starting from x converges to x∗ ∈ X.

Since then, several authors considered the problem of existence (and uniqueness) of a
fixed point for contraction-type operators on partially ordered sets.

In 2005, Nieto and Rodrguez-López proved a modified variant of Theorem 1.1, by
removing the continuity of f . The case of decreasing operators is treated in Nieto and
Rodrguez-López [3], where some interesting applications to ordinary differential equations
with periodic boundary conditions are also given. Nieto, Pouso, and Rodrguez-López, in a
very recent paper, improve some results given by Petruşel and Rus in [4] in the setting of
abstract L-spaces in the sense of Fréchet, see, for example, [5, Theorems 3.3 and 3.5]. Another
fixed-point result of this type was given by O’Regan and Petruşel in [6] for the case of ϕ-
contractions in ordered complete metric spaces.

The aim of this paper is to present some fixed-point theorems for ϕ-contractions on
ordered and complete gauge space. As an application, existence results for some integral
equations on the positive real axis are given. Our theorems generalize the above-mentioned
theorems as well as some other ones in the recent literature (see; Ran and Reurings [2], Nieto
and Rodrguez-López [3, 7], Nieto et al. [5], Petruşel and Rus [4], Agarwal et al. [8], O’Regan
and Petruşel [6], etc.).

2. Preliminaries

Let X be a nonempty set and f : X → X be an operator. Then, f0 := 1X , f1 := f, . . . , fn+1 =
f ◦ fn, n ∈ � denote the iterate operators of f . Let X be a nonempty set and let s(X) :=
{(xn)n∈N | xn ∈ X, n ∈ N}. Let c(X) ⊂ s(X) a subset of s(X) and Lim : c(X) → X
an operator. By definition the triple (X, c(X),Lim) is called an L-space (Fréchet [9]) if the
following conditions are satisfied.

(i) If xn = x, for all n ∈ N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.

(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences, (xni)i∈N , of
(xn)n∈N we have that (xni)i∈N ∈ c(X) and Lim(xni)i∈N = x.

By definition, an element of c(X) is a convergent sequence, x := Lim(xn)n∈N is the
limit of this sequence and we also write xn → x as n → +∞.

In what follow we denote an L-space by (X, → ).
In this setting, if U ⊂ X × X, then an operator f : X → X is called orbitally U-

continuous (see [5]) if [x ∈ X and fn(i)(x) → a ∈ X, as i → +∞ and (fn(i)(x), a) ∈ U for
any i ∈ �] imply [fn(i)+1(x) → f(a), as i → +∞]. In particular, ifU = X ×X, then f is called
orbitally continuous.

Let (X,≤) be a partially ordered set, that is, X is a nonempty set and ≤ is a reflexive,
transitive, and antisymmetric relation on X. Denote

X≤ :=
{(
x, y

) ∈ X ×X | x ≤ y or y ≤ x
}
. (2.1)
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Also, if x, y ∈ X, with x ≤ y then by [x, y]≤ we will denote the ordered segment joining x
and y, that is, [x, y]≤ := {z ∈ X | x ≤ z ≤ y}. In the same setting, consider f : X → X. Then,
(LF)f := {x ∈ X | x ≤ f(x)} is the lower fixed-point set of f , while (UF)f := {x ∈ X | x ≥ f(x)}
is the upper fixed-point set of f . Also, if f : X → X and g : Y → Y , then the cartesian product
of f and g is denoted by f × g, and it is defined in the following way: f × g : X × Y → X × Y ,
(f × g)(x, y) := (f(x), g(y)).

Definition 2.1. Let X be a nonempty set. By definition (X, → ,≤) is an ordered L-space if and
only if

(i) (X, → ) is an L-space;

(ii) (X,≤) is a partially ordered set;

(iii) (xn)n∈� → x, (yn)n∈� → y and xn ≤ yn, for each n ∈ � ⇒ x ≤ y.

If � := (E,D) is a gauge space, then the convergence structure is given by the family of
gauges D = {dα}α∈Λ. Hence, (E,D,≤) is an ordered L-space, and it will be called an ordered
gauge space, see also [10, 11].

Recall that ϕ : �+ → �+ is said to be a comparison function if it is increasing and
ϕk(t) → 0, as k → +∞. As a consequence, we also have ϕ(t) < t, for each t > 0, ϕ(0) = 0
and ϕ is right continuous at 0. For example, ϕ(t) = at (where a ∈ [0, 1[ ), ϕ(t) = t/(1 + t) and
ϕ(t) = ln(1 + t), t ∈ �+ are comparison functions.

Recall now the following important abstract concept.

Definition 2.2 (Rus [12]). Let (X, → ) be an L-space. An operator f : X → X is, by definition,
a Picard operator if

(i) Ff = {x∗};
(ii) (fn(x))n∈� → x∗ as n → ∞, for all x ∈ X.

Several classical results in fixed-point theory can be easily transcribed in terms of the
Picard operators, see [4, 13, 14]. In Rus [12] the basic theory of Picard operators is presented.

3. Fixed-Point Results

Our first main result is the following existence, uniqueness, and approximation fixed-point
theorem.

Theorem 3.1. Let (E,D,≤) be an ordered complete gauge space and f : E → E be an operator.
Suppose that

(i) for each x, y ∈ E with (x, y) /∈ X≤ there exists c(x, y) ∈ E such that (x, c(x, y)) ∈ X≤
and (y, c(x, y)) ∈ X≤;

(ii) X≤ ∈ I(f × f);

(iii) if (x, y) ∈ X≤ and (y, z) ∈ X≤, then (x, z) ∈ X≤;

(iv) there exists x0 ∈ X≤ such that (x0, f(x0)) ∈ X≤;
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(v) f is orbitally continuous;

(vi) there exists a comparison function ϕ : �+ → �+ such that, for each α ∈ Λ one has

dα

(
f(x), f

(
y
)) ≤ ϕ

(
dα

(
x, y

))
, for each

(
x, y

) ∈ X≤. (3.1)

Then, f is a Picard operator.

Proof. Let x0 ∈ E be such that (x0, f(x0)) ∈ X≤. Suppose first that x0 /= f(x0). Then, from (ii)
we obtain

(
f(x0), f2(x0)

)
,
(
f2(x0), f3(x0)

)
, . . . ,

(
fn(x0), fn+1(x0)

)
, . . . ,∈ X≤. (3.2)

From (vi), by induction, we get, for each α ∈ Λ, that

dα

(
fn(x0), fn+1(x0)

)
≤ ϕn(dα

(
x0, f(x0)

)
, for each n ∈ �. (3.3)

Since ϕn(dα(x0, f(x0)) → 0 as n → +∞, for an arbitrary ε > 0 we can choose N ∈ �
∗ such

that dα(fn(x0), fn+1(x0)) < ε−ϕ(ε), for each n ≥ N. Since (fn(x0), fn+1(x0)) ∈ X≤ for all n ∈ �,
we have for all n ≥ N that

dα

(
fn(x0), fn+2(x0)

)
≤ dα

(
fn(x0), fn+1(x0)

)
+ dα

(
fn+1(x0), fn+2(x0)

)

< ε − ϕ(ε) + ϕ
(
dα

(
fn(x0), fn+1(x0)

)
≤ ε.

(3.4)

Now since (fn(x0), fn+2(x0)) ∈ X≤ (see (iii)) we have for any n ≥ N that

dα

(
fn(x0), fn+3(x0)

)
≤ dα

(
fn(x0), fn+1(x0)

)
+ d

(
fn+1(x0), fn+3(x0)

)

< ε − ϕ(ε) + ϕ
(
dα

(
fn(x0), fn+2(x0)

)
≤ ε.

(3.5)

By induction, for each α ∈ Λ, we have

dα

(
fn(x0), fn+k(x0)

)
< ε, for any k ∈ �

∗ , n ≥ N. (3.6)

Hence (fn(x0))n∈� is a Cauchy sequence in � . From the completeness of the gauge space we
have (fn(x0))n∈� → x∗, as n → +∞.

Let x ∈ E be arbitrarily chosen. Then;

(1) If (x, x0) ∈ X≤ then (fn(x), fn(x0)) ∈ X≤ and thus, for each α ∈ Λ, we have
dα(fn(x), fn(x0)) ≤ ϕn(dα(x, x0)), for each n ∈ �. Letting n → +∞ we obtain that
(fn(x))n∈� → x∗.
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(2) If (x, x0) /∈ X≤ then, by (i), there exists c(x, x0) ∈ E such that (x, c(x, x0)) ∈ X≤
and (x0, c(x, x0)) ∈ X≤. From the second relation, as before, we get, for each α ∈
Λ, that dα(fn(x0), fn(c(x, x0))) ≤ ϕn(dα(x0, c(x, x0))), for each n ∈ � and hence
(fn(c(x, x0)))n∈� → x∗, as n → +∞. Then, using the first relation we infer that, for
each α ∈ Λ, we have dα(fn(x), fn(c(x, x0))) ≤ ϕn(dα(x, c(x, x0))), for each n ∈ �.
Letting again n → +∞, we conclude (fn(x))n∈� → x∗.

By the orbital continuity of f we get that x∗ ∈ Ff . Thus x∗ = f(x∗). If we have f(y) = y
for some y ∈ E, then from above, we must have fn(y) → x∗, so y = x∗.

If f(x0) = x0, then x0 plays the role of x∗.

Remark 3.2. Equivalent representation of condition (iv) are as follows.

(iv)’ There exists x0 ∈ E such that x0 ≤ f(x0) or x0 ≥ f(x0)

(iv)” (LF)f ∪ (UF)f /= ∅.

Remark 3.3. Condition (ii) can be replaced by each of the following assertions:

(ii)’ f : (E,≤) → (E,≤) is increasing,
(ii)” f : (E,≤) → (E,≤) is decreasing.

However, it is easy to see that assertion (ii) in Theorem 3.1. is more general.

As a consequence of Theorem 3.1, we have the following result very useful for
applications.

Theorem 3.4. Let (E,D,≤) be an ordered complete gauge space and f : E → E be an operator. One
supposes that

(i) for each x, y ∈ E with (x, y) /∈ X≤ there exists c(x, y) ∈ E such that (x, c(x, y)) ∈ X≤
and (y, c(x, y)) ∈ X≤;

(ii) f : (E,≤) → (E,≤) is increasing;
(iii) there exists x0 ∈ E such that x0 ≤ f(x0);

(iv)

(a) f is orbitally continuous or

(b) if an increasing sequence (xn)n∈� converges to x in E, then xn ≤ x for all n ∈ �;

(v) there exists a comparison function ϕ : �+ → �+ such that

dα

(
f(x), f

(
y
)) ≤ ϕ

(
dα

(
x, y

))
, for each

(
x, y

) ∈ X≤, α ∈ Λ; (3.7)

(vi) if (x, y) ∈ X≤ and (y, z) ∈ X≤, then (x, z) ∈ X≤.

Then f is a Picard operator.
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Proof. Since f : (E,≤) → (E,≤) is increasing and x0 ≤ f(x0) we immediately have
x0 ≤ f(x0) ≤ f2(x0) ≤ · · · fn(x0) ≤ · · · . Hence from (v) we obtain dα(fn(x0), fn+1(x0)) ≤
ϕn(dα(x0, f(x0)), for each n ∈ �. By a similar approach as in the proof of Theorem 3.1 we
obtain

dα

(
fn(x0), fn+k(x0)

)
< ε, for any k ∈ �

∗ , n ≥ N, (3.8)

Hence (fn(x0))n∈� is a Cauchy sequence in � . From the completeness of the gauge space we
have that (fn(x0))n∈� → x∗ as n → +∞.

By the orbital continuity of the operator f we get that x∗ ∈ Ff . If (iv)(b) takes place,
then, since (fn(x0))n∈� → x∗, given any ε > 0 there exists Nε ∈ �

∗ such that for each n ≥ Nε

we have dα(fn(x0), x∗) < ε. On the other hand, for each n ≥ Nε, since fn(x0) ≤ x∗, we have,
for each α ∈ Λ that

dα

(
x∗, f(x∗)

) ≤ dα

(
x∗, fn+1(x0)

)
+ dα

(
f
(
fn(x0)

)
, f(x∗)

)

≤ dα

(
x∗, fn+1(x0)

)
+ ϕ

(
dα

(
fn(x0), x∗)) < 2ε.

(3.9)

Thus x∗ ∈ Ff .
The uniqueness of the fixed point follows by contradiction. Suppose there exists y∗ ∈

Ff , with x∗ /=y∗. There are two possible cases.

(a) If (x∗, y∗) ∈ X≤, then we have 0 < dα(y∗, x∗) = dα(fn(y∗), fn(x∗)) ≤
ϕn(dα(y∗, x∗)) → 0 as n → +∞, which is a contradiction. Hence x∗ = y∗.

(b) If (x∗, y∗) /∈ X≤ then there exists c∗ ∈ E such that (x∗, c∗) ∈ X≤ and (y∗, c∗) ∈ X≤.
The monotonicity condition implies that fn(x∗) and fn(c∗) are comparable
as well as fn(c∗) and fn(y∗). Hence 0 < dα(y∗, x∗) = dα(fn(y∗), fn(x∗)) ≤
dα(fn(y∗), fn(c∗)) + dα(fn(c∗), fn(x∗)) ≤ ϕn(dα(y∗, c∗)) + ϕn(dα(c∗, x∗)) → 0 as
n → +∞, which is again a contradiction. Thus x∗ = y∗.

4. Applications

We will apply the above result to nonlinear integral equations on the real axis

x(t) =
∫ t

0
K(t, s, x(s))ds + g(t), t ∈ �+ . (4.1)

Theorem 4.1. Consider (4.1). Suppose that

(i) K : �+ × �+ × �n → �
n and g : �+ → �

n are continuous;

(ii) K(t, s, ·) : �n → �
n is increasing for each t, s ∈ �+ ;

(iii) there exists a comparison function ϕ : �+ → �+ , with ϕ(λt) ≤ λϕ(t) for each t ∈ �+ and
any λ ≥ 1, such that

|K(t, s, u) −K(t, s, v)| ≤ ϕ(|u − v|), for each t, s ∈ �+ , u, v ∈ �
n , u ≤ v; (4.2)
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(iv) there exists x0 ∈ C(�+ ,�n) such that

x0(t) ≤
∫ t

0
K(t, s, x0(s))ds + g(t), for any t ∈ �+ . (4.3)

Then the integral equation (4.1) has a unique solution x∗ in C([0,+∞),�n).

Proof. Let E := C([0,+∞),�n ) and the family of pseudonorms

‖x‖n := max
t∈[0,n]

|x(t)|e−τt, where τ > 0. (4.4)

Define now dn(x, y) := ‖x − y‖n for x, y ∈ E.
Then D := (dn)n∈�∗ is family of gauges on E. Consider on E the partial order defined

by

x ≤ y if and only if x(t) ≤ y(t) for any t ∈ �+ . (4.5)

Then (E,D,≤) is an ordered and complete gauge space. Moreover, for any increasing
sequence (xn)n∈� in E converging to some x∗ ∈ E we have xn(t) ≤ x∗(t), for any t ∈ [0,+∞).
Also, for every x, y ∈ E there exists c(x, y) ∈ E which is comparable to x and y.

Define A : C([0,+∞),�n) → C([0,+∞),�n ), by the formula

Ax(t) :=
∫ t

0
K(t, s, x(s))ds + g(t), t ∈ �+ . (4.6)

First observe that from (ii) A is increasing. Also, for each x, y ∈ E with x ≤ y and for
t ∈ [0, n], we have

∣∣Ax(t) −Ay(t)
∣∣ ≤

∫ t

0

∣∣K(t, s, x(s)) −K
(
t, s, y(s)

)∣∣ds ≤
∫ t

0
ϕ
(∣∣x(s) − y(s)

∣∣)ds

=
∫ t

0
ϕ
(∣∣x(s) − y(s)

∣∣e−τseτs
)
ds ≤

∫ t

0
eτsϕ

(∣∣x(s) − y(s)
∣∣e−τs

)
ds

≤ ϕ
(
dn

(
x, y

))
∫ t

0
eτsds ≤ 1

τ
ϕ
(
dn

(
x, y

))
eτt.

(4.7)

Hence, for τ ≥ 1 we obtain

dn

(
Ax,Ay

) ≤ ϕ
(
dn

(
x, y

))
, for each x, y ∈ X, x ≤ y. (4.8)

From (iv) we have that x0 ≤ Ax0. The conclusion follows now from Theorem 3.4.
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Consider now the following equation:

x(t) =
∫ t

−t
K(t, s, x(s))ds + g(t), t ∈ �. (4.9)

Theorem 4.2. Consider (4.9). Suppose that

(i) K : � × � × �n → �
n and g : � → �

n are continuous;

(ii) K(t, s, ·) : �n → �
n is increasing for each t, s ∈ �;

(iii) there exists a comparison function ϕ : �+ → �+ , with ϕ(λt) ≤ λϕ(t) for each t ∈ �+ and
any λ ≥ 1, such that

|K(t, s, u) −K(t, s, v)| ≤ ϕ(|u − v|), for each t, s ∈ �, u, v ∈ �
n , u ≤ v; (4.10)

(iv) there exists x0 ∈ C(�,�n ) such that

x0(t) ≤
∫ t

−t
K(t, s, x0(s))ds + g(t), for any t ∈ �. (4.11)

Then the integral equation (4.9) has a unique solution x∗ in C(�,�n).

Proof. We consider the gauge space E := (C(�,�n ),D := (dn)n∈�) where

dn

(
x, y

)
= max

−n≤t≤n

(∣∣x(t) − y(t)
∣∣ · e−τ |t|

)
, τ > 0, (4.12)

and the operator B : E → E defined by

Bx(t) =
∫ t

−t
K(t, s, x(s))ds + g(t). (4.13)

As before, consider on E the partial order defined by

x ≤ y iff x(t) ≤ y(t) for any t ∈ �. (4.14)

Then (E,D,≤) is an ordered and complete gauge space. Moreover, for any increasing
sequence (xn)n∈� in E converging to a certain x∗ ∈ E we have xn(t) ≤ x∗(t), for any t ∈ �.
Also, for every x, y ∈ E there exists c(x, y) ∈ E which is comparable to x and y. Notice that
(ii) implies that B is increasing.
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From condition (iii), for x, y ∈ E with x ≤ y, we have

∣
∣Bx(t) − By(t)

∣
∣ ≤

∫ t

−t
ϕ
(∣
∣x(s) − y(s)

∣
∣e−τ |s|eτ |s|

)
ds

≤
∫ t

−t
eτ |s|ϕ

(∣∣x(s) − y(s)
∣∣e−τ |s|

)
ds ≤ ϕ

(
dn

(
x, y

))
∣∣∣
∣∣

∫ t

−t
eτ |s|ds

∣∣∣
∣∣

≤ ϕ
(
dn

(
x, y

))
∫ |t|

−|t|
eτ |s|ds ≤ 2

τ
ϕ
(
dn

(
x, y

))
eτ |t|, t ∈ [−n;n].

(4.15)

Thus, for any τ ≥ 2, we obtain

dn

(
B(x), B

(
y
)) ≤ ϕ

(
dn

(
x, y

))
, ∀ x, y ∈ E, x ≤ y, for n ∈ �. (4.16)

As before, from (iv)we have that x0 ≤ Bx0. The conclusion follows again by Theorem 3.4.

Remark 4.3. It is worth mentioning that it could be of interest to extend the above technique
for other metrical fixed-point theorems, see [15, 16], and so forth.
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