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We introduce and study some new Ishikawa-type iterative algorithms with variable coefficients
for multivalued generalized Φ-hemicontractive mappings. Several new fixed-point theorems for
multivalued generalized Φ-hemicontractive mappings without generalized Lipschitz assumption
are established in p-uniformly smooth real Banach spaces. A result for multivalued generalized
Φ-hemicontractive mappings with bounded range is obtained in uniformly smooth real Banach
spaces. As applications, several theorems for multivalued generalized Φ-hemiaccretive mapping
equations are given.

1. Introduction

Let X be a real Banach space and X∗ the dual space of X. 〈∗, ∗〉 denotes the generalized
duality pairing between X and X∗. J is the normalized duality mapping from X to 2X∗ given
by J(x)

J(x) :=
{
f ∈ X∗ :

〈
x, f

〉
=
∥∥f

∥∥ · ‖x‖, ∥∥f
∥∥ = ‖x‖}, x ∈ X. (1.1)

Let D be a nonempty convex subset of X and CB(D) the family of all nonempty bounded
closed subsets of D.H(·, ·) denotes the Hausdorff metric on CB(D) defined by

H(A,B) := max

{

sup
y∈B

inf
x∈A

∥∥x − y
∥∥, sup

y∈B
inf
x∈A

∥∥x − y
∥∥
}

, A, B ∈ CB(D). (1.2)
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We use F(T) to denote the fixed-point set of T , that is, F(T) := {x : x ∈ Tx}. N denotes the
set of nonnegative integers.

Recall that a mapping T : D → D is called to be a generalized Lipschitz mapping [1],
if there exists a constant L > 0 such that

∥
∥Tx − Ty

∥
∥ ≤ L

(
1 +

∥
∥x − y

∥
∥), ∀x, y ∈ D. (1.3)

Similarly, a multivalued mapping T : D → CB(D) is said to be a generalized Lipschitz
mapping, if there exists a constant L > 0 such that

H
(
Tx, Ty

) ≤ L
(
1 + ‖x − y‖), ∀x, y ∈ D. (1.4)

A multivalued mapping T : D → 2D is said to be a bounded mapping if for any bounded
subset A of D,

T(A) :=
{
x : x ∈ T

(
y
)
, ∃y ∈ A

}
(1.5)

is a bounded subset of D.
Clearly, every mapping with bounded range is a generalized Lipschitz mapping[1,

Example]. Furthermore, every generalized Lipschitz mapping is a bounded mapping. The
following example shows that the class of generalized Lipschitz mappings is a proper subset
of the class of bounded mappings.

Example 1.1. Take D = (0,∞) and define T : D → D by

Tx = exp(x) + x sgn(sinx), (1.6)

where sgn(·) denotes sign function. Then, T is a bounded mapping but not a generalized
Lipschitz mapping.

Definition 1.2 (see [2]). Let D be a nonempty subset of X. T : D → 2D is said to be a
multivalued Φ-hemicontractive mapping if the fixed point set F(T) of T is nonempty, and
there exists a strictly increasing functionΦ : [0,∞) → [0,∞)withΦ(0) = 0 such that for each
x ∈ D and x∗ ∈ F(T), there exists a j(x − x∗) ∈ J(x − x∗) such that

〈
u − x∗, j(x − x∗)

〉 ≤ ‖x − x∗‖2 −Φ(‖x − x∗‖) · ‖x − x∗‖, (1.7)

for all u ∈ Tx.
T is said to be a multivalued Φ-hemiaccretive mapping if I − T is a multivalued Φ-

hemicontractive mapping.

Definition 1.3. Let D be a nonempty subset of X. T :D → 2D is said to be a multivalued
generalized Φ-hemicontractive mapping if the fixed point set F(T) of T is nonempty,
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and there exists a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that for
each x ∈ D and x∗ ∈ F(T), there exists a j(x − x∗) ∈ J(x − x∗) such that

〈
u − x∗, j(x − x∗)

〉 ≤ ‖x − x∗‖2 −Φ(‖x − x∗‖), (1.8)

for all u ∈ Tx.
T is said to be a multivalued generalized Φ-hemiaccretive mapping if I − T is a

multivalued generalized Φ-hemicontractive mapping.

The following example shows that the class ofΦ-hemicontractivemappings is a proper
subset of the class of generalized Φ-hemicontractive mappings.

Example 1.4. Let X = R
2 with the Euclidean norm ‖ · ‖, where R denotes the set of the real

numbers. Define T : X → X by

Tx =
‖x‖2

1 + ‖x‖2
x. (1.9)

Thus, F(T) = {(0, 0)}/= ∅. It is easy to verify that T is a generalized Φ-hemicontractive
mapping with Φ(t) = t2/(1 + t2). However, T is not Φ-hemicontractive. Indeed, if there exists
a strictly increasing function φ : [0,∞) → [0,∞) with φ(0) = 0 such that for each x ∈ X and
x∗ = (0, 0) ∈ F(T),

〈Tx − x∗, J(x − x∗)〉 ≤ ‖x − x∗‖2 − φ(‖x − x∗‖) · ‖x − x∗‖, (1.10)

then we get φ(t) ≤ t/(1 + t2) for all t ∈ (0,∞). Thus, limt→∞φ(t) = 0. This is in contradiction
with the hypotheses that φ(t) is strictly increasing and φ(0) = 0.

In the last twenty years or so, numerous papers have been written on the existence
and convergence of fixed points for nonlinear mappings, and strong and weak convergence
theorems have been obtained by using some well-known iterative algorithms (see, e.g., [1–9]
and the references therein).

For multivalued φ-hemicontractive mappings, Hirano and Huang [2] obtained the
following result.

Theorem HH (See [2, Theorem 1]). Let E be a uniformly smooth Banach space and T : E → 2E

be a multivalued φ- hemicontractive operator with bounded range. Suppose{an}, {bn}, {cn}and{a′
n},

{b′n}, {c′n}are real sequences in [0, 1) satisfying the following conditions:

(i) an + bn + cn = a′
n + b′n + c′n = 1, for all n ∈ N,

(ii) limn→∞bn = limn→∞b′n = limn→∞cn = 0,

(iii)
∑∞

n=1 bn = ∞,

(iv) cn = o(bn).
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For arbitrary x1, u1, v1 ∈ E, define the sequence {xn}∞n=1 by

xn+1 = an xn + bn ηn + cn un, ∃ηn ∈ Tyn, n ∈ N,

yn = a′
n xn + b′n ξn + c′n vn, ∃ξn ∈ Txn, n ∈ N,

(1.11)

where {un}∞n=1, {vn}∞n=1 are arbitrary bounded sequences in E. Then, {xn}∞n=1 converges strongly to
the unique fixed point of T .

Further, for general multivalued generalized Φ-hemicontractive mappings, C. E.
Chidume and C. O. Chidume [1] gave the following interesting result.

Theorem CC (see [1, Theorem 3.8]). Let E be a uniformly smooth real Banach space. Let F(T) :=
{x ∈ E : x ∈ Tx}/= ∅. Suppose T : E → 2E is a multivalued generalized Lipschitz and generalized
Φ-hemicontractive mapping. Let {an}, {bn}and{cn}be real sequences in[0, 1) satisfying the following
conditions: (i) an + bn + cn = 1, (ii)

∑
(bn + cn) = ∞, (iii)

∑
cn < ∞, and (iv) lim bn = 0. Let {xn}

be generated iteratively from arbitrary x0 ∈ E by

xn+1 = anxn + bnηn + cnun, ∃ηn ∈ Txn n ≥ 0, (1.12)

where {un} is an arbitray bounded sequence in E. Then, there exists γ0 ∈ R such that if bn + cn ≤ γ0
for all n ≥ 0, the sequence {xn} converges strongly to the unique fixed point of T .

Remark 1.5. (1) Theorem CC [1, Theorem 3.8] is a multivalued version of Theorem 3.2 of [1].
Theorem 3.2 of [1] was obtained directly from Theorem 3.1 of [1]. However, it seems that
there exists a gap in the proof of Theorem 3.1 in [1]. Indeed, the following inequality in the
proof of Theorem 3.1 in [1].

a0

n∑

j=0

αj ≤
n∑

j=0

(
‖xj − x∗‖2 − ‖xj+1 − x∗‖2

)
+M

n∑

j=0

cj < ∞ (∗)

was obtained by using implicitly the following conditions:

∥∥xj − x∗∥∥ ≤ 2Φ−1(a0),
∥∥xj+1 − x∗∥∥ > 2Φ−1(a0), j = 0, 1, . . . , n. (1.13)

Thus, (∗) is dubious in the remainder of [1, Theorem 3.1]. Hence, Theorem 3.1 of [1] is
dubious, as is Theorem CC [1, Theorem 3.8].

(2) The real number γ0 in Theorem CC is not easy to get.

It is our purpose in this paper to try to obtain some fixed-point theorems
for multivalued generalized Φ-hemicontractive mappings without generalized Lipschitz
assumption as in Theorem CC. Motivated and inspired by [1, 2, 5, 7], we introduce
and study some new Ishikawa-type iterative algorithms with variable coefficients for
multivalued generalized Φ-hemicontractive mappings. Our results improve essentially the
corresponding results of [1] in the framework of p-uniformly smooth real Banach spaces and
the corresponding results of [2] in uniformly smooth real Banach spaces.
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2. Preliminaries

Let X be a real Banach space of dimension dimX ≥ 2. The modulus of smoothness of X is the
function ρX : [0,∞) → [0,∞) defined by

ρX(τ) := sup
{
2−1

(∥∥x + y
∥
∥ +

∥
∥x − y

∥
∥) − 1 : ‖x‖ = 1,

∥
∥y

∥
∥ ≤ τ

}
, τ > 0. (2.1)

The function ρX(τ) is convex, continuous, and increasing, and ρX(0) = 0.
The space X is called uniformly smooth if and only if

lim
τ → 0+

ρX(τ)
τ

= 0. (2.2)

The space X is called p-uniformly smooth if and only if there exist a constant Cp and
a real number 1 < p ≤ 2, such that

ρX(τ) ≤ Cpτ
p. (2.3)

Typical examples of uniformly smooth spaces are the Lebesgue Lp, the sequence 	p,
and Sobolev Wm

p spaces for 1 < p < ∞. In particular, for 1 < p ≤ 2, these spaces are p-
uniformly smooth and for 2 ≤ p < ∞, they are 2-uniformly smooth.

It is well known that if X is uniformly smooth, then the normalized duality mapping
J is single-valued and uniformly continuous on any bounded subset of X.

Lemma 2.1 (see [3, 9]). If X is a uniformly smooth Banach space, then for all x, y ∈ X with ‖x‖ ≤
R,‖y‖ ≤ R,

〈
x − y, Jx − Jy

〉 ≤ 2LFR
2ρX

(
4
∥∥x − y

∥∥

R

)

,

∥∥Jx − Jy
∥∥ ≤ 8RhX

(
16LF

∥∥x − y
∥∥

R

)

,

(2.4)

where hX(τ) := ρX(τ)/τ , LF is the Figiel s constant, 1 < LF < 1.7.

Lemma 2.2 (see [1]). Let X be a real Banach space and J be the normalized duality mapping. Then,
for any given x, y ∈ X, we have

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉
, ∀j(x + y

) ∈ J
(
x + y

)
. (2.5)

Lemma 2.3 (see [8]). Let {αn}n≥1, {βn}n≥1 and {γn}n≥1 be nonnegative sequences satisfying

αn+1 ≤
(
1 + γn

)
αn + βn, n ≥ 1,

∞∑

n=1

βn < ∞,
∞∑

n=1

γn < ∞. (2.6)

Then, limn→∞αn exists. Moreover, if lim infn→∞ αn = 0, then limn→∞αn = 0.
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Lemma 2.4 (see [4]). Let f, g : N → [0,∞) be sequences and suppose that

g(n) ≤ 1, ∀n ∈ N, g(n) −→ 0, as n −→ ∞,
∞∑

n=1

g(n) = ∞. (2.7)

Then,
∞∑

n=1

f(n) < ∞ ⇒ f = o
(
g
)
, as n −→ ∞. (2.8)

The converse is false.

3. Main Results and Their Proofs

Theorem 3.1. Let X be a p-uniformly smooth real Banach space and D a nonempty convex subset of
X. Suppose T : D → 2D is a multivalued generalized Φ-hemicontractive and bounded mapping. For
any given x0, u0, v0 ∈ D, let {xn} be the sequence generated by the following Ishikawa-type iterative
algorithm with variable coefficients:

yn = ân xn + b̂n ξn + ĉn vn, ∃ξn ∈ Txn,

xn+1 = α̂n xn + β̂n ηn + γ̂n un, ∃ηn ∈ Tyn,
n ∈ N, (3.1)

where {un} and {vn} are arbitrary bounded sequences in D,

ân = 1 − b̂n − ĉn, b̂n =
bn

r2n
, ĉn =

cn

r2n
, rn = 2 + ‖xn‖ + ‖ξn‖ + ‖vn‖,

α̂n = 1 − β̂n − γ̂n, β̂n =
βn

R2
n

, γ̂n =
γn

R2
n

, Rn = rn +
∥∥ηn

∥∥ + ‖un‖,
(3.2)

{βn}, {γn}, {bn} and {cn} are four sequences in [0, 1] satisfying the following conditions:

∞∑

n=0

βn = ∞,
∞∑

n=0

β
p
n < ∞,

∞∑

n=0

γn < ∞, bn ≤ O
(
βn
)
, cn ≤ O

(
βn
)
. (3.3)

Then, {xn} converges strongly to the unique fixed point of T .

Proof. Since T is generalized Φ-hemicontractive, then the fixed-point set F(T) of T is
nonempty and there exists a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0
such that for each x ∈ D and x∗ ∈ F(T), the following inequality holds:

〈ξ − x∗, J(x − x∗)〉 ≤ ‖x − x∗‖2 −Φ(‖x − x∗‖), ∀ξ ∈ Tx. (3.4)

If z ∈ F(T), that is, z ∈ Tz, then, by (3.4), we have

‖z − x∗‖2 = 〈z − x∗, J(z − x∗)〉 ≤ ‖z − x∗‖2 −Φ(‖z − x∗‖). (3.5)

So, T has a unique fixed point, say x∗.
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From (3.1) and (3.2), we have ‖xn − x∗‖ ≤ rn + ‖x∗‖, ‖yn − x∗‖ ≤ rn + ‖x∗‖, ‖ξn − x∗‖ ≤
rn + ‖x∗‖, ‖ηn − x∗‖ ≤ Rn + ‖x∗‖ and ‖xn+1 − x∗‖ ≤ Rn + ‖x∗‖.

By Lemma 2.4 and (3.3), we know γn = o(βn). Since D is a convex subset of X and
T : D → 2D, it follows from (3.1), (3.2), and (3.3) that

∥
∥xn+1 − yn

∥
∥ =

∥
∥(xn+1 − x∗) − (

yn − x∗)∥∥

=
∥
∥
∥
(
1 − β̂n − γ̂n

)
(xn − x∗) + β̂n

(
ηn − x∗) + γ̂n (un − x∗)

−
(
1 − b̂n − ĉn

)
(xn − x∗) + b̂n (ξn − x∗) + ĉn (vn − x∗)

∥
∥
∥

≤ O
(
βn
)

r2n
(rn + ‖x∗‖) + O

(
βn
)

R2
n

(Rn + ‖x∗‖)

≤ O
(
βn
)

rn
−→ 0 (n −→ ∞).

(3.6)

From (3.6) and ‖yn − x∗‖ ≤ rn + ‖x∗‖, we have ‖xn+1 − x∗‖ ≤ rn + ‖x∗‖ + (O(βn)/rn).

Considering 1 < p ≤ 2 and rn ≥ 2, by Lemma 2.1, we have

∥∥J(xn+1 − x∗) − J
(
yn − x∗)∥∥ ≤ 8

(

rn + ‖x∗‖ + O
(
βn
)

rn

)

Cp ·
(

16LF

∥∥xn+1 − yn

∥∥

rn + ‖x∗‖ +O
(
βn
)
/rn

)p−1

≤
(

rn + ‖x∗‖ + O
(
βn
)

rn

)2−p O
(
β
p−1
n

)

r
p−1
n

≤
(
r2n + rn‖x∗‖ +O

(
βn
))2−p O

(
β
p−1
n

)

rn

≤ rn ·O
(
β
p−1
n

)
.

(3.7)

By (3.1), (3.2), (3.3) and Lemma 2.2, we have

∥∥yn − x∗∥∥2 ≤
∥∥∥ân (xn − x∗) + b̂n

(
ηn − x∗) + ĉn (vn − x∗)

∥∥∥
2

≤ â2
n ‖xn − x∗‖2 + 2

〈
b̂n(ξn − x∗) + ĉn(vn − x∗), J

(
yn − x∗)

〉

≤ ‖xn − x∗‖2 +O
(
βn
)
.

(3.8)
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From (3.1), (3.2), (3.7), and (3.8) and Lemma 2.2, it can be concluded that

‖xn+1 − x∗‖2=
∥
∥
∥α̂n(xn − x∗) + β̂n

(
ηn − x∗) + γ̂n(un − x∗)

∥
∥
∥
2

≤ α̂2
n‖xn − x∗‖2 + 2β̂n

〈
ηn − x∗, J(xn+1 − x∗) − J

(
yn − x∗)〉

+ 2β̂n
〈
ηn − x∗, J

(
yn − x∗)〉 + 2γ̂n〈un − x∗, J(xn+1 − x∗)〉

≤ α̂2
n‖xn − x∗‖2 + 2β̂n

∥
∥ηn − x∗∥∥ · ∥∥J(xn+1 − x∗) − J

(
yn − x∗)∥∥

+ 2β̂n
(∥
∥yn − x∗∥∥2 −Φ

(∥∥yn − x∗∥∥)
)

+ 2γ̂n‖un − x∗‖ · ‖J(xn+1 − x∗)‖

≤
(
1 − β̂n − γ̂n

)2
‖xn − x∗‖2 + 2β̂n(Rn + ‖x∗‖) · rn ·O

(
β
p−1
n

)

+ 2β̂n
(
‖xn − x∗‖2 +O

(
βn
)) − 2β̂nΦ

(∥∥yn − x∗∥∥) + 2γ̂n · (Rn + ‖x∗‖)2

≤ ‖xn − x∗‖2 +
(
β̂n + γ̂n

)2
‖xn − x∗‖2 +O

(
β
p
n

)
+O

(
β2n

)
+O

(
γn
)

− 2β̂nΦ
(∥∥yn − x∗∥∥)

≤ ‖xn − x∗‖2 +O
(
β2n

)
‖xn − x∗‖2 +O

(
β
p
n

)
+O

(
γn
) − 2β̂nΦ

(∥∥yn − x∗∥∥).

(3.9)

From (3.3) and (3.9), we have

‖xn+1 − x∗‖2 ≤
(
1 +O

(
β2n

))
‖xn − x∗‖2 +O

(
β
p
n

)
+O

(
γn
)
. (3.10)

Thus, by (3.3), (3.10) and Lemma 2.3, we have {‖xn − x∗‖} bounded. It implies the sequences
{xn} and {yn} are bounded. Since T is a bounded mapping, we have T{xn} and T{yn}
bounded. Since ηn ∈ Tyn and ξn ∈ Txn, {Rn} is bounded. Let its bound be R > 0. From
(3.9), there exists a number M > 0 such that

‖xn+1 − x∗‖2 ≤
(
1 +Mβ2n

)
‖xn − x∗‖2 +M

(
β
p
n + γn

)
− 2βn

R2
Φ
(∥∥yn − x∗∥∥). (3.11)

Next, we will show

lim inf
n→∞

Φ
(∥∥yn − x∗∥∥) = 0. (3.12)

If it is not true, then there exist a n0 ∈ N and a positive constant m0 such that for any
positive integer n ≥ n0

Φ
(∥∥yn − x∗∥∥) ≥ m0. (3.13)
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In view of (3.11) and (3.13), for any positive integer n ≥ n0, we have

‖xn+1 − x∗‖2 ≤
(
1 +Mβ2n

)
‖xn − x∗‖2 +M

(
β
p
n + γn

)
− 2m0βn

R2
. (3.14)

Taking n = n0, n0 + 1, . . . , k in (3.14) above, we have

k∑

n=n0

‖xn+1 − x∗‖2 ≤
k∑

n=n0

‖xn − x∗‖2 +
k∑

n=n0

Mβ2n(R + ‖x∗‖)2

+
k∑

n=n0

M
(
β
p
n + γn

)
−

k∑

n=n0

2m0βn

R2
.

(3.15)

So,

2m0

R2

k∑

n=n0

βn ≤ M(R + ‖x∗‖)2
k∑

n=n0

β2n +M

(
k∑

n=n0

β
p
n +

k∑

n=n0

γn

)

. (3.16)

This leads to a contradiction as k → ∞. Hence, lim infn→∞ Φ(‖yn − x∗‖) = 0.
By the definition of Φ and (3.12), there exists a subsequence {yni} of {yn} such that

{yni} → x∗ as i → ∞. Thus, by (3.6), we have lim infn→∞ ‖xn − x∗‖ = 0. Further, Using
Lemma 2.3 and (3.11), we obtain limn→∞‖xn − x∗‖ = 0. It means that {xn} converges strongly
to the unique fixed point of T . The proof is finished.

From Theorem 3.1, we can obtain the following theorems.

Theorem 3.2. Let X be a p-uniformly smooth Banach space, D be a nonempty convex subset of X,
and T : D → 2D a multivalued generalized Φ-hemicontractive and bounded mapping. For any given
x0, u0 ∈ D, let {xn} be the sequence generated by the following Mann-type iterative algorithm with
variable coefficients:

xn+1 = α̂nxn + β̂nηn + γ̂nun, ∃ ηn ∈ Txn, n ∈ N, (3.17)

where {un} is an arbitrary bounded sequence in D,

α̂n = 1 − β̂n − γ̂n, β̂n =
βn

R2
n

, γ̂n =
γn

R2
n

, Rn = 2 + ‖xn‖ +
∥∥ηn

∥∥ + ‖un‖, (3.18)

{βn} and {γn} are sequences in [0, 1] satisfying the following conditions:

∞∑

n=0

βn = ∞,
∞∑

n=0

β
p
n < ∞,

∞∑

n=0

γn < ∞. (3.19)

Then, {xn} converges strongly to the unique fixed point of T .
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Remark 3.3. Theorems 3.1 and 3.2 improve Theorem CC [1, Theorem 3.8] in p-uniformly
smooth real Banach spaces since the class of multivalued generalized Lipschitz mappings
is a proper subset of the class of bounded mappings and the number γ0 in Theorem CC [1,
Theorem 3.8] is dropped off.

In uniformly smooth real Banach spaces, we have the following theorem.

Theorem 3.4. Let X be a uniformly smooth real Banach space and D a nonempty convex subset of
X. Suppose T : D → 2D is a multivalued generalized Φ-hemicontractive mapping with bounded
range. For any given x0, u0, v0 ∈ D, let {xn} be the sequence generated by the following Ishikawa-type
iterative algorithm with variable coefficients:

yn = ân xn + b̂n ξn + ĉn vn, ∃ξn ∈ Txn,

xn+1 = α̂n xn + β̂n ηn + γ̂n un, ∃ηn ∈ Tyn,
n ∈ N, (3.20)

where {un} and {vn} are arbitrary bounded sequences in D,

ân = 1 − b̂n − ĉn, b̂n =
bn

r2n
, ĉn =

cn

r2n
, rn = 2 + ‖xn‖ + ‖ξn‖ + ‖vn‖,

α̂n = 1 − β̂n − γ̂n, β̂n =
βn

R2
n

, γ̂n =
γn

R2
n

, Rn = rn +
∥∥ηn

∥∥ + ‖un‖,
(3.21)

{βn}, {γn}, {bn} and {cn} are four sequences in [0, 1] satisfying the following conditions:

∞∑

n=0

βn = ∞,
∞∑

n=0

β2n < ∞,
∞∑

n=0

γn < ∞, bn ≤ O
(
βn
)
, cn ≤ O

(
βn
)
. (3.22)

Then, {xn} converges strongly to the unique fixed point of T .

Proof. From Theorem 3.1, T has a unique fixed point, say x∗. Let {xn}, {yn} be the sequences
generated by the algorithm (3.20). Since T has a bounded range, we set

d : = sup
{∥∥ξ − η

∥∥ : x, y ∈ D, ξ ∈ Tx, η ∈ Ty
}
+ sup{‖un − x∗‖, n ∈ N}

+ sup{‖vn − x∗‖ , n ∈ N}.
(3.23)

Obviously, d < ∞. Next, we will prove that for n ≥ 0, ‖xn − x∗‖ ≤ d + ‖x0 − x∗‖. In fact, for
n = 0, the above inequality holds. Assume the inequality is true for n = k. Then, for n = k + 1,
there exists a ηk ∈ Tyk such that

‖xk+1 − x∗‖ ≤ α̂k‖xn − x∗‖ + β̂k
∥∥ηk − x∗∥∥ + γ̂k‖uk − x∗‖

≤ α̂k(d + ‖x0 − x∗‖) + β̂kd + γ̂kd

≤ d + ‖x0 − x∗‖.

(3.24)
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By induction, we have the sequence {xn} bounded. Similarly, we have the sequence {yn} also
bounded.

From the proof of Theorem 3.1, we have ‖xn+1 − yn‖ → 0 as n → ∞. Since X is a real
uniformly smooth Banach space, so that the normalized duality mapping J is single valued
and uniformly continuous on any bounded subset of X, thus

dn :=
∥
∥J(xn+1 − x∗) − J

(
yn − x∗)∥∥ −→ 0 (3.25)

as n → ∞.
Next, following the reasoning in the proof of Theorem 3.1, we deduce the conclusion

of Theorem 3.4.

Remark 3.5. In view of Example 1.4, the class of Φ-hemicontractive mappings is a proper
subset of the class of generalizedΦ-hemicontractivemappings. Hence, Theorem 3.4 improves
essentially the result of [2, Theorem 2].

As applications, we give the following theorems.

Theorem 3.6. Let X be a p-uniformly smooth Banach space T : X → 2X , a multivalued generalized
Φ-hemiaccretive and bounded mapping. For any given f ∈ X, define S : X → 2X by Sx := x−Tx+f
for all x ∈ X. For any given x0, u0, v0 ∈ X, let {xn} be the Ishikawa-type iterative sequence with
variable coefficients, defined by

yn = ân xn + b̂n ξn + ĉn vn, ∃ξn ∈ Sxn,

xn+1 = α̂n xn + β̂n ηn + γ̂n un, ∃ηn ∈ Syn,
n ∈ N, (3.26)

where {un}, {vn} are bounded sequences in X,

ân = 1 − b̂n − ĉn, b̂n =
bn

r2n
, ĉn =

cn

r2n
, rn = 2 + ‖xn‖ + ‖ξn‖ + ‖vn‖,

α̂n = 1 − β̂n − γ̂n, β̂n =
βn

R2
n

, γ̂n =
γn

R2
n

, Rn = rn +
∥∥ηn

∥∥ + ‖un‖,
(3.27)

{βn}, {γn}, {bn}, and {cn} are four sequences in [0, 1] satisfying the following conditions:

∞∑

n=0

βn = ∞,
∞∑

n=0

β
p
n < ∞,

∞∑

n=0

γn < ∞, bn ≤ O
(
βn
)
, cn ≤ O

(
βn
)
. (3.28)

Then, {xn} converges strongly to the unique solution of the generalized Φ-hemiaccretive mapping
equation f ∈ Tx.
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Theorem 3.7. Let X be a uniformly smooth Banach space and T : X → 2X a generalized Φ-
hemiaccretive with bounded range. For any given f ∈ X, define S : X → 2X by Sx := x − Tx + f
for all x ∈ X. For any given x0, u0, v0 ∈ X, let {xn} be the Ishikawa-type iterative sequence with
variable coefficients, defined by

yn = ân xn + b̂n ξn + ĉn vn, ∃ξn ∈ Sxn,

xn+1 = α̂n xn + β̂n ηn + γ̂n un, ∃ηn ∈ Syn,
n = 0, 1, 2, . . . , (3.29)

where {un}, {vn} are bounded sequences in X,

ân = 1 − b̂n − ĉn, b̂n =
bn

r2n
, ĉn =

cn

r2n
, rn = 2 + ‖xn‖ + ‖ξn‖ + ‖vn‖,

α̂n = 1 − β̂n − γ̂n, β̂n =
βn

R2
n

, γ̂n =
γn

R2
n

, Rn = rn +
∥∥ηn

∥∥ + ‖un‖,
(3.30)

{βn}, {γn}, {bn} and {cn} are four sequences in [0, 1] satisfying the following conditions:

∞∑

n=0

βn = ∞,
∞∑

n=0

β2n < ∞,
∞∑

n=0

γn < ∞, bn ≤ O
(
βn
)
, cn ≤ O

(
βn
)
. (3.31)

Then, {xn} converges strongly to the unique solution of the generalized Φ-hemiaccretive mapping
equation f ∈ Tx.

Remark 3.8. (1) Theorem 3.6 improves some recent results, for example, [1, Theorem 3.7] and
[2, Theorem 2] in p-uniformly smooth real Banach spaces since the multivalued generalized
Φ-hemiaccretive mapping within the equation has no generalized Lipschitz assumption.

(2) In view of Example 1.4, the class of Φ-hemicontractive mappings is a proper
subset of the class of generalizedΦ-hemicontractivemappings. Hence, Theorem 3.7 improves
essentially the result of [2, Theorem 2] in uniformly smooth real Banach spaces.
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