A NOTE ON WELL-POSED NULL AND FIXED POINT PROBLEMS

SIMEON REICH AND ALEXANDER J. ZASLAVSKI

Received 16 October 2004

We establish generic well-posedness of certain null and fixed point problems for ordered Banach space-valued continuous mappings.

The notion of well-posedness is of great importance in many areas of mathematics and its applications. In this note, we consider two complete metric spaces of continuous mappings and establish generic well-posedness of certain null and fixed point problems (Theorems 1 and 2, resp.). Our results are a consequence of the variational principle established in [2]. For other recent results concerning the well-posedness of fixed point problems, see $[1,3]$.

Let $(X,\|\cdot\|, \geq)$ be a Banach space ordered by a closed convex cone $X_{+}=\{x \in X: x \geq$ $0\}$ such that $\|x\| \leq\|y\|$ for each pair of points $x, y \in X_{+}$satisfying $x \leq y$. Let (K, ρ) be a complete metric space. Denote by \mathfrak{M} the set of all continuous mappings $A: K \rightarrow X$. We equip the set \mathfrak{M} with the uniformity determined by the following base:

$$
\begin{equation*}
E(\epsilon)=\{(A, B) \in \mathfrak{M} \times \mathfrak{M}:\|A x-B x\| \leq \epsilon \forall x \in K\} \tag{1}
\end{equation*}
$$

where $\epsilon>0$. It is not difficult to see that this uniform space is metrizable (by a metric d) and complete.

Denote by \mathfrak{M}_{p} the set of all $A \in \mathfrak{M}$ such that

$$
\begin{gather*}
A x \in X_{+} \quad \forall x \in K, \\
\inf \{\|A x\|: x \in K\}=0 . \tag{2}
\end{gather*}
$$

It is not difficult to see that \mathfrak{M}_{p} is a closed subset of (\mathfrak{M}, d).
We can now state and prove our first result.
Theorem 1. There exists an everywhere dense G_{δ} subset $\mathscr{F} \subset \mathfrak{M}_{p}$ such that for each $A \in \mathscr{F}$, the following properties hold.
(1) There is a unique $\bar{x} \in K$ such that $A \bar{x}=0$.
(2) For any $\epsilon>0$, there exist $\delta>0$ and a neighborhood U of A in \mathfrak{M}_{p} such that if $B \in U$ and if $x \in K$ satisfies $\|B x\| \leq \delta$, then $\rho(x, \bar{x}) \leq \epsilon$.

Proof. We obtain this theorem as a realization of the variational principle established in [2, Theorem 2.1] with $f_{A}(x)=\|A x\|, x \in K$. In order to prove our theorem by using this variational principle, we need to prove the following assertion.
(A) For each $A \in \mathfrak{M}_{p}$ and each $\epsilon>0$, there are $\bar{A} \in \mathfrak{M}_{p}, \delta>0, \bar{x} \in K$, and a neighbor$\operatorname{hood} W$ of \bar{A} in \mathfrak{M}_{p} such that

$$
\begin{equation*}
(A, \bar{A}) \in E(\epsilon) \tag{3}
\end{equation*}
$$

and if $B \in W$ and $z \in K$ satisfy $\|B z\| \leq \delta$, then

$$
\begin{equation*}
\rho(z, \bar{x}) \leq \epsilon . \tag{4}
\end{equation*}
$$

Let $A \in \mathfrak{M}_{p}$ and $\epsilon>0$. Choose $\bar{u} \in X_{+}$such that

$$
\begin{equation*}
\|\bar{u}\|=\frac{\epsilon}{4} \tag{5}
\end{equation*}
$$

and $\bar{x} \in K$ such that

$$
\begin{equation*}
\|A \bar{x}\| \leq \frac{\epsilon}{8} . \tag{6}
\end{equation*}
$$

Since A is continuous, there is a positive number r such that

$$
\begin{gather*}
r<\min \left\{1, \frac{\epsilon}{16}\right\}, \tag{7}\\
\|A x-A \bar{x}\| \leq \frac{\epsilon}{8} \quad \text { for each } x \in K \text { satisfying } \rho(x, \bar{x}) \leq 4 r . \tag{8}
\end{gather*}
$$

By Urysohn's theorem, there is a continuous function $\phi: K \rightarrow[0,1]$ such that

$$
\begin{array}{ll}
\phi(x)=1 & \text { for each } x \in K \text { satisfying } \rho(x, \bar{x}) \leq r \\
\phi(x)=0 & \text { for each } x \in K \text { satisfying } \rho(x, \bar{x}) \geq 2 r . \tag{10}
\end{array}
$$

Define

$$
\begin{equation*}
\bar{A} x=(1-\phi(x))(A x+\bar{u}), \quad x \in K . \tag{11}
\end{equation*}
$$

It is clear that $\bar{A}: K \rightarrow X$ is continuous. Now (9), (10), and (11) imply that

$$
\begin{array}{lr}
\bar{A} x=0 \quad \text { for each } x \in K \text { satisfying } \rho(x, \bar{x}) \leq r, \\
\bar{A} x \geq \bar{u} \quad \text { for each } x \in K \text { satisfying } \rho(x, \bar{x}) \geq 2 r . \tag{13}
\end{array}
$$

It is not difficult to see that $\bar{A} \in \mathfrak{M}_{p}$. We claim that $(A, \bar{A}) \in E(\epsilon)$.

Let $x \in K$. There are two cases: either

$$
\begin{equation*}
\rho(x, \bar{x}) \geq 2 r \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
\rho(x, \bar{x})<2 r . \tag{15}
\end{equation*}
$$

Assume first that (14) holds. Then it follows from (14), (10), (11), and (5) that

$$
\begin{equation*}
\|A x-\bar{A} x\|=\|\bar{u}\|=\frac{\epsilon}{4} \tag{16}
\end{equation*}
$$

Now assume that (15) holds. Then by (15), (11), and (5),

$$
\begin{align*}
\|\bar{A} x-A x\| & =\|(1-\phi(x))(A x+\bar{u})-A x\| \\
& \leq\|\bar{u}\|+\|A x\| \leq \frac{\epsilon}{4}+\|A x\| . \tag{17}
\end{align*}
$$

It follows from this inequality, (15), (8), and (6) that

$$
\begin{equation*}
\|\bar{A} x-A x\| \leq \frac{\epsilon}{4}+\|A x\|<\frac{\epsilon}{2} . \tag{18}
\end{equation*}
$$

Therefore, in both cases, $\|\bar{A} x-A x\| \leq \epsilon / 2$. Since this inequality holds for any $x \in K$, we conclude that

$$
\begin{equation*}
(A, \bar{A}) \in E(\epsilon) . \tag{19}
\end{equation*}
$$

Consider now an open neighborhood U of \bar{A} in \mathfrak{M}_{p} such that

$$
\begin{equation*}
U \subset\left\{B \in \mathfrak{M}_{p}:(\bar{A}, B) \in E\left(\frac{\epsilon}{16}\right)\right\} . \tag{20}
\end{equation*}
$$

Let

$$
\begin{gather*}
B \in U, \quad z \in K, \tag{21}\\
\|B z\| \leq \frac{\epsilon}{16} . \tag{22}
\end{gather*}
$$

Relations (22), (21), (20), and (1) imply that

$$
\begin{equation*}
\|\bar{A} z\| \leq\|B z\|+\|\bar{A} z-B z\| \leq \frac{\epsilon}{16}+\frac{\epsilon}{16} \tag{23}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\rho(z, \bar{x}) \leq \epsilon . \tag{24}
\end{equation*}
$$

We assume the converse. Then by (7),

$$
\begin{equation*}
\rho(z, \bar{x})>\epsilon \geq 2 r . \tag{25}
\end{equation*}
$$

When combined with (13), this implies that

$$
\begin{equation*}
\bar{A} z \geq \bar{u} . \tag{26}
\end{equation*}
$$

It follows from this inequality, the monotonicity of the norm, (21), (20), (1), and (5) that

$$
\begin{align*}
\|B z\| & \geq\|\bar{A} z\|-\frac{\epsilon}{16} \geq\|\bar{u}\|-\frac{\epsilon}{16} \\
& =\frac{\epsilon}{4}-\frac{\epsilon}{16}=\frac{3 \epsilon}{16} . \tag{27}
\end{align*}
$$

This, however, contradicts (22). The contradiction we have reached proves (24) and Theorem 1 itself.

Now assume that the set K is a subset of X and

$$
\begin{equation*}
\rho(x, y)=\|x-y\|, \quad x, y \in K . \tag{28}
\end{equation*}
$$

Denote by \mathfrak{M}_{n} the set of all mappings $A \in \mathfrak{M}$ such that

$$
\begin{gather*}
A x \geq x \quad \forall x \in K, \\
\inf \{\|A x-x\|: x \in K\}=0 . \tag{29}
\end{gather*}
$$

Clearly, \mathfrak{M}_{n} is a closed subset of (\mathfrak{M}, d). Define a map $J: \mathfrak{M}_{n} \rightarrow \mathfrak{M}_{p}$ by

$$
\begin{equation*}
J(A) x=A x-x \quad \forall x \in K \tag{30}
\end{equation*}
$$

and all $A \in \mathfrak{M}_{n}$. Clearly, there exists $J^{-1}: \mathfrak{M}_{p} \rightarrow \mathfrak{M}_{n}$, and both J and its inverse J^{-1} are continuous. Therefore Theorem 1 implies the following result regarding the generic wellposedness of the fixed point problem for $A \in \mathfrak{M}_{n}$.

Theorem 2. There exists an everywhere dense G_{δ} subset $\mathscr{F} \subset \mathfrak{M}_{n}$ such that for each $A \in \mathscr{F}$, the following properties hold.
(1) There is a unique $\bar{x} \in K$ such that $A \bar{x}=\bar{x}$.
(2) For any $\epsilon>0$, there exist $\delta>0$ and a neighborhood U of A in \mathfrak{M}_{n} such that if $B \in U$ and if $x \in K$ satisfies $\|B x-x\| \leq \delta$, then $\|x-\bar{x}\| \leq \epsilon$.

Acknowledgments

The work of the first author was partially supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities (Grant 592/00), by the Fund for the Promotion of Research at the Technion, and by the Technion VPR Fund.

References

[1] F. S. De Blasi and J. Myjak, Sur la porosité de l'ensemble des contractions sans point fixe [On the porosity of the set of contractions without fixed points], C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), no. 2, 51-54 (French).
[2] A. D. Ioffe and A. J. Zaslavski, Variational principles and well-posedness in optimization and calculus of variations, SIAM J. Control Optim. 38 (2000), no. 2, 566-581.
[3] S. Reich and A. J. Zaslavski, Well-posedness offixed point problems, Far East J. Math. Sci. (FJMS), (2001), Special Volume (Functional Analysis and Its Applications), Part III, 393-401.

Simeon Reich: Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan

E-mail address: sreich@tx.technion.ac.il
Alexander J. Zaslavski: Department of Mathematics, Technion - Israel Institute of Technology, 32000 Haifa, Israel

E-mail address: ajzasl@tx.technion.ac.il

