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The present paper establishes some coincidence and common fixed point theorems for
a sequence of hybrid-type nonself-mappings defined on a closed subset of a metrically
convex metric space. Our results generalize some earlier results due to Khan et al. (2000),
Itoh (1977), Khan (1981), Ahmad and Imdad (1992 and 1998), and several others. Some
related results are also discussed.

1. Introduction

In recent years several fixed point theorems for hybrid pairs of mappings are proved and
by now there exists considerable literature in this direction. Tomention a few, one can cite
Imdad and Ahmad [10], Pathak [19], Popa [20] and references cited therein. On the other
hand Assad and Kirk [4] gave a sufficient condition enunciating fixed point of set-valued
mappings enjoying specific boundary condition in metrically convex metric spaces. In
the current years the work due to Assad and Kirk [4] has inspired extensive activities
which includes Itoh [12], Khan [14], Ahmad and Imdad [1, 2], Imdad et al. [11] and
some others.

Most recently, Huang and Cho [9] and Dhage et al. [6] proved some fixed point theo-
rems for a sequence of set-valued mappings which generalize several results due to Itoh
[12], Khan [14], Ahmad and Khan [3] and others. The purpose of this paper is to prove
some coincidence and common fixed point theorems for a sequence of hybrid type non-
self mappings satisfying certain contraction type condition which is essentially patterned
after Khan et al. [15]. Our results either partially or completely generalize earlier results
due to Khan et al. [15], Itoh [12], Khan [14], Ahmad and Imdad [1, 2], Ahmad and Khan
[3] and several others.

2. Preliminaries

Before proving our results, we collect the relevant definitions and results for our future
use.
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Let (X ,d) be a metric space. Then following Nadler [17], we recall
(i) CB(X)= {A : A is nonempty closed and bounded subset of X}.
(ii) C(X)= {A : A is nonempty compact subset of X}.
(iii) For nonempty subsets A, B of X and x ∈ X ,

d(x,A)= inf
{
d(x,a) : a∈A

}
,

H(A,B)=max
[{
supd(a,B) : a∈A

}
,
{
supd(A,b) : b ∈ B

}]
.

(2.1)

It is well known (cf. Kuratowski [16]) that CB(X) is a metric space with the distance
H which is known as Hausdorff-Pompeiu metric on X .

The following definitions and lemmas will be frequently used in the sequel.

Definition 2.1. Let K be a nonempty subset of a metric space (X ,d), T : K → X and F :
K → CB(X). The pair (F,T) is said to be pointwise R-weakly commuting onK if for given
x ∈ K and Tx ∈ K , there exists some R= R(x) > 0 such that

d(Ty,FTx)≤ R ·d(Tx,Fx) for each y ∈ K ∩Fx. (2.2)

Moreover, the pair (F,T) will be called R-weakly commuting on K if (2.2) holds for
each x ∈ K , Tx ∈ K with some R > 0.

If R = 1, we get the definition of weak commutativity of (F,T) on K due to Hadzic
and Gajic [8]. For K = X Definition 2.1 reduces to “pointwise R-weak commutativity
and R-weak commutativity” for single valued self mappings due to Pant [18].

Definition 2.2 [7, 8]. Let K be a nonempty subset of a metric space (X ,d), T : K → X
and F : K → CB(X). The pair (F,T) is said to be weakly commuting (cf. [7]) if for every
x, y ∈ K with x ∈ Fy and Ty ∈ K , we have

d(Tx,FTy)≤ d(Ty,Fy), (2.3)

whereas the pair (F,T) is said to be compatible (cf. [8]) if for every sequence {xn} ⊂ K ,
from the relation

lim
n→∞d

(
Fxn,Txn

)= 0 (2.4)

and Txn ∈ K (for every n ∈ N) it follows that limn→∞d(Tyn,FTxn) = 0, for every se-
quence {yn} ⊂ K such that yn ∈ Fxn, n∈N .

For hybrid pairs of self type mappings these definitions were introduced by Kaneko
and Sessa [13].

Definition 2.3 [11]. Let K be a nonempty subset of a metric space (X ,d), T : K → X and
F : K → CB(X). The pair (F,T) is said to be quasi-coincidentally commuting if for all
coincidence points “x” of (T ,F), TFx ⊂ FTx whenever Fx ⊂ K and Tx ∈ K for all x ∈ K .
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Definition 2.4 [11]. A mapping T : K → X is said to be coincidentally idempotent w.r.t
mapping F : K → CB(X), if T is idempotent at the coincidence points of the pair (F,T).

Definition 2.5 [4]. A metric space (X ,d) is said to be metrically convex if for any x, y ∈ X
with x �= y there exists a point z ∈ X , x �= z �= y such that

d(x,z) +d(z, y)= d(x, y). (2.5)

Lemma 2.6 [4]. Let K be a nonempty closed subset of a metrically convex metric space
(X ,d). If x ∈ K and y /∈ K then there exists a point z ∈ δK (the boundary of K) such that
d(x,z) +d(z, y)= d(x, y).

Lemma 2.7 [17]. Let A,B ∈ CB(X) and a ∈ A, then for any positive number q < 1 there
exists b = b(a) in B such that q ·d(a,b)≤H(A,B).

3. Main results

Our main result runs as follows.

Theorem 3.1. Let (X ,d) be a complete metrically convex metric space and K a nonempty
closed subset of X . Let {Fn}∞n=1 : K → CB(X) and S,T : K → X satisfying

(iv) δK ⊆ SK ∩TK , Fi(K)∩K ⊆ SK , Fj(K)∩K ⊆ TK ,
(v) Tx ∈ δK ⇒ Fi(x)⊆ K , Sx ∈ δK ⇒ Fj(x)⊆ K , and

H
(
Fi(x),Fj(y)

)≤ a ·max
{
1
2
d(Tx,Sy),d

(
Tx,Fi(x)

)
,d
(
Sy,Fj(y)

)}

+ b
{
d
(
Tx,Fj(y)

)
+d
(
Sy,Fi(x)

)}
,

(3.1)

where i = 2n− 1, j = 2n, (n ∈ N), i �= j for all x, y ∈ K with x �= y, a,b ≥ 0, and
2b < a, 2a+3b < q < 1,

(vi) (Fi,T) and (Fj ,S) are compatible pairs,
(vii) {Fn}, S and T are continuous on K .

Then (Fi,T) as well as (Fj ,S) has a point of coincidence.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the following way.
Let x ∈ δK . Then (due to δK ⊆ TK) there exists a point x0 ∈ K such that x = Tx0.

From the implication Tx ∈ δK which implies F1(x0) ⊆ F1(K)∩K ⊆ SK , let x1 ∈ K be
such that y1 = Sx1 ∈ F1(x0)⊆ K . Since y1 ∈ F1(x0), there exists a point y2 ∈ F2(x1) such
that

q ·d(y1, y2)≤H
(
F1
(
x0
)
,F2
(
x1
))
. (3.2)

Suppose y2 ∈ K . Then y2 ∈ F2(K)∩K ⊆ TK implies that there exists a point x2 ∈ K such
that y2 = Tx2. Otherwise, if y2 /∈ K , then there exists a point p ∈ δK such that

d
(
Sx1, p

)
+d
(
p, y2

)= d
(
Sx1, y2

)
. (3.3)
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Since p ∈ δK ⊆ TK , there exists a point x2 ∈ K with p = Tx2 so that

d
(
Sx1,Tx2

)
+d
(
Tx2, y2

)= d
(
Sx1, y2

)
. (3.4)

Let y3 ∈ F3(x2) be such that q ·d(y2, y3)≤H(F2(x1),F3(x2)).
Thus, repeating the foregoing arguments, we obtain two sequences {xn} and {yn} such

that
(viii) y2n ∈ F2n(x2n−1), y2n+1 ∈ F2n+1(x2n),
(ix) y2n ∈ K ⇒ y2n = Tx2n or y2n /∈ K ⇒ Tx2n ∈ δK and

d
(
Sx2n−1,Tx2n

)
+d
(
Tx2n, y2n

)= d
(
Sx2n−1, y2n

)
, (3.5)

(x) y2n+1 ∈ K ⇒ y2n+1 = Sx2n+1 or y2n+1 /∈ K ⇒ Sx2n+1 ∈ δK and

d
(
Tx2n,Sx2n+1

)
+d
(
Sx2n+1, y2n+1

)= d
(
Tx2n, y2n+1

)
. (3.6)

We denote

P◦ =
{
Tx2i ∈

{
Tx2n

}
: Tx2i = y2i

}
,

P1 =
{
Tx2i ∈

{
Tx2n

}
: Tx2i �= y2i

}
,

Q◦ =
{
Sx2i+1 ∈

{
Sx2n+1

}
: Sx2i+1 = y2i+1

}
,

Q1 =
{
Sx2i+1 ∈

{
Sx2n+1

}
: Sx2i+1 �= y2i+1

}
.

(3.7)

One can note that (Tx2n,Sx2n+1) �∈ P1×Q1 and (Sx2n−1,Tx2n) �∈Q1×P1. �

Now, we distinguish the following three cases.
Case 1. If (Tx2n,Sx2n+1)∈ P◦ ×Q◦, then

q ·d(Tx2n,Sx2n+1)
≤H

(
F2n+1

(
x2n
)
,F2n

(
x2n−1

))

≤ a ·max
{
1
2
d
(
Tx2n,Sx2n−1

)
,d
(
Tx2n,F2n+1

(
x2n
))
,d
(
Sx2n−1,F2n

(
x2n−1

))}

+ b · {d(Tx2n,F2n(x2n−1))+d
(
Sx2n−1,F2n+1

(
x2n
))}

≤ a ·max
{
1
2
d
(
y2n, y2n−1

)
,d
(
y2n, y2n+1

)
,d
(
y2n−1, y2n

)}

+ b · {d(y2n−1, y2n)+d
(
y2n, y2n+1

)}
,

(3.8)
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which in turn yields

d
(
Tx2n,Sx2n+1

)≤




(
a+ b

q− b

)
d
(
Sx2n−1,Tx2n

)
, if d

(
y2n−1, y2n

)≥ d
(
y2n+1, y2n

)
(

b

q− b− a

)
d
(
Sx2n−1,Tx2n

)
, if d

(
y2n−1, y2n

)≤ d
(
y2n+1, y2n

)
,

(3.9)

or

d
(
Tx2n,Sx2n+1

)≤ h ·d(Sx2n−1,Tx2n), (3.10)

where h=max{((a+ b)/(q− b)),(b/(q− b− a))} < 1, since 2a+3b < 1.
Similarly if (Sx2n−1,Tx2n)∈Q◦ ×P◦, then

d
(
Sx2n−1,Tx2n

)≤




(
a+ b

q− b

)
d(Sx2n−1,Tx2n−2), if d

(
y2n−2, y2n−1

)≥ d
(
y2n−1, y2n

)
(

b

q− b− a

)
d
(
Sx2n−1,Tx2n−2

)
, if d

(
y2n−2, y2n−1

)≤ d
(
y2n−1, y2n

)
,

(3.11)

or

d
(
Sx2n−1,Tx2n

)≤ h ·d(Sx2n−1,Tx2n−2), (3.12)

where h=max{((a+ b)/(q− b)),(b/(q− b− a))} < 1, since 2a+3b < 1.
Case 2. If (Tx2n,Sx2n+1)∈ P◦ ×Q1, then

d
(
Tx2n,Sx2n+1

)
+d
(
Sx2n+1, y2n+1

)= d
(
Tx2n, y2n+1

)
, (3.13)

which in turn yields

d
(
Tx2n,Sx2n+1

)≤ d
(
Tx2n, y2n+1

)= d
(
y2n, y2n+1

)
, (3.14)

and hence

q ·d(Tx2n,Sx2n+1)≤ q ·d(y2n, y2n+1)≤H
(
F2n+1

(
x2n
)
,F2n

(
x2n−1

))
. (3.15)
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Now, proceeding as in Case 1, we have

d
(
Tx2n,Sx2n+1

)≤




(
a+ b

q− b

)
d
(
Sx2n−1,Tx2n), if d

(
y2n−1, y2n

)≥ d
(
y2n+1, y2n

)
(

b

q− b− a

)
d
(
Sx2n−1,Tx2n

)
, if d

(
y2n−1, y2n

)≤ d
(
y2n+1, y2n

)
,

(3.16)

or

d
(
Tx2n,Sx2n+1

)≤ h ·d(Sx2n−1,Tx2n). (3.17)

In case (Sx2n−1,Tx2n)∈Q1×P◦, then as earlier, one also obtains

d
(
Sx2n−1,Tx2n

)≤




(
a+ b

q− b

)
d
(
Sx2n−1,Tx2n−2

)
, if d

(
y2n−2, y2n−1

)≥ d
(
y2n−1, y2n

)
(

b

q− b− a

)
d
(
Sx2n−1,Tx2n−2

)
, if d

(
y2n−2, y2n−1

)≤ d
(
y2n−1, y2n

)
,

(3.18)

or

d
(
Sx2n−1,Tx2n

)≤ h ·d(Sx2n−1,Tx2n−2), (3.19)

where h=max{((a+ b)/(q− b)),(b/(q− b− a))} < 1, since 2a+3b < 1.
Case 3. If (Tx2n,Sx2n+1)∈ P1×Q◦, then Sx2n−1 = y2n−1. Proceeding as in Case 1, one gets

q ·d(Tx2n,Sx2n+1)
= q ·d(Tx2n, y2n+1)≤ q ·d(Tx2n, y2n)+ q ·d(y2n, y2n+1)
≤ q ·d(Sx2n−1, y2n)+H

(
F2n+1(x2n

)
,F2n

(
x2n−1

))

≤ q ·d(Sx2n−1, y2n)+ a ·max
{
1
2
d
(
y2n, y2n−1

)
,d
(
y2n, y2n+1

)
,d
(
y2n−1, y2n

)}

+ b
{
d
(
y2n, y2n

)
+d
(
y2n−1, y2n+1

)}
,

(3.20)

which in turn yields

d
(
Tx2n,Sx2n+1

)≤




(
q+ b

q− a− b

)
d
(
Sx2n−1, y2n

)
, if d

(
y2n−1, y2n

)≤ d
(
y2n+1, y2n

)
(
q+ a+ b

q− b

)
d
(
Sx2n−1, y2n

)
, if d

(
y2n−1, y2n

)≥ d
(
y2n+1, y2n

)
.

(3.21)
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Now, proceeding as earlier, one also obtains

d
(
Sx2n−1, y2n

)≤




(
a+ b

q− b

)
d
(
Sx2n−1,Tx2n−2

)
, if d

(
y2n−2, y2n−1

)≥ d
(
y2n−1, y2n

)
(

b

q− a− b

)
d
(
Sx2n−1,Tx2n−2

)
, if d

(
y2n−2, y2n−1

)≤ d
(
y2n−1, y2n

)
.

(3.22)

Therefore combining above inequalities, we have

d
(
Tx2n,Sx2n+1

)≤ k ·d(Sx2n−1,Tx2n−2), (3.23)

where

k =max

{(
a+ b

q− b

)(
q+ b

q− a− b

)
,

(
a+ b

q− b

)(
q+ a+ b

q− b

)
,

(
b

q− a− b

)(
q+ b

q− a− b

)
,

(
b

q− a− b

)(
q+ a+ b

q− b

)}
< 1,

(3.24)

since 2a+3b < 1.
To substantiate that, the inequality 2a+ 3b < q < 1 implies all foregoing inequalities,

one may note that

2a+3b < q =⇒ 2aq+3bq < q2, (3.25)

or

aq+ ab+ bq+ b2 + aq+2bq− ab− b2 < q2, (3.26)

or

aq+ ab+ bq+ b2 < q2− aq− 2bq+ ab+ b2, (3.27)

or
(
a+ b

q− b

)(
q+ b

q− a− b

)
< 1, (3.28)

and

2a+3b < q =⇒ a+3b < q, (3.29)

or

aq+3bq < q2 =⇒ aq+ bq+ bq+ bq < q2, (3.30)
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or

bq+ ab+ b2 < q2− bq− aq+ ab− bq+ b2, (3.31)

or (
b

q− a− b

)(
q+ a+ b

q− b

)
< 1. (3.32)

Similarly one can establish the other inequalities as well. Thus in all the cases, we have

d
(
Tx2n,Sx2n+1

)≤ k ·max
{
d
(
Sx2n−1,Tx2n

)
,d
(
Tx2n−2,Sx2n−1

)}
(3.33)

whereas

d
(
Sx2n+1,Tx2n+2

)≤ k ·max
{
d
(
Sx2n−1,Tx2n

)
,d
(
Tx2n,Sx2n+1

)}
. (3.34)

Now on the lines of Assad and Kirk [4], it can be shown by induction that for n ≥ 1,
we have

d
(
Tx2n,Sx2n+1

)
< kn · δ, d

(
Sx2n+1,Tx2n+2

)
< kn+(1/2) · δ (3.35)

whereas

δ = k−1/2max
{
d
(
Tx0,Sx1

)
,d
(
Sx1,Tx2

)}
. (3.36)

Thus the sequence {Tx0,Sx1,Tx2,Sx3, . . . ,Sx2n−1,Tx2n,Sx2n+1, . . .} is Cauchy and hence
converges to the point z in X . Then as noted in [7] there exists at least one subsequence
{Tx2nk} or {Sx2nk+1} which is contained in P◦ or Q◦ respectively. Suppose that the sub-
sequence {Tx2nk} contained in P◦ for each k ∈ N converges to z. Using compatibility of
(Fj ,S), we have

lim
k→∞

d
(
Sx2nk−1,Fj

(
x2nk−1

))= 0 for any even integer j ∈N , (3.37)

which implies that limk→∞d(STx2nk ,Fj(Sx2nk−1))= 0.
Using the continuity of S and Fj , one obtains Sz ∈ Fj(z), for any even integer j ∈ N .

Similarly the continuity of T and Fi implies Tz ∈ Fi(z), for any odd integer i∈N . Now

q ·d(Tz,Sz)≤H
(
Fi(z),Fj(z)

)

≤ a ·max
{
1
2
d(Tz,Sz),d

(
Tz,Fi(z)

)
,d
(
Sz,Fj(z)

)}

+ b
{
d
(
Tz,Fj(z)

)
+d
(
Sz,Fi(z)

)}

≤ a ·max
{
1
2
d(Tz,Sz),0,0

}
+ b
{
d(Tz,Sz) +d(Tz,Sz)

}

≤
(
a

2
+2b

)
·d(Tz,Sz),

(3.38)
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yielding thereby Tz = Sz which shows that z is a common coincidence point of the maps
{Fn}, S and T .

Remark 3.2. By setting Fi = F (for any odd integer i∈N) and Fj =G (for any even integer
j ∈ N) in Theorem 3.1, one deduces a rectified and sharpened form of a result due to
Ahmad and Imdad [2].

Remark 3.3. By setting Fi = F (for any odd integer i ∈ N), Fj = G (for any even integer
j ∈ N) and S = T in Theorem 3.1, one deduces a rectified and improved version of a
result due to Ahmad and Imdad [1].

In an attempt to prove Theorem 3.1 for pointwise R-weakly commuting mappings, we
have the following.

Theorem 3.4. Let (X ,d) be a complete metrically convex metric space and K a nonempty
closed subset of X . Let {Fn}∞n=1 : K → CB(X) and S,T : K → X satisfying (3.1), (iv), (v) and
(vii). Suppose that

(xi) (Fi,T) and (Fj ,S) are pointwise R-weakly commuting pairs.
Then (Fi,T) as well as (Fj ,S) has a point of coincidence.

Proof. On the lines of the proof of Theorem 3.1, one can show that the sequence {Tx2n}
converges to a point z ∈ X . Now we assume that there exists a subsequence {Tx2nk}
of {Tx2n} which is contained in P◦. Further subsequence {Tx2nk} and {Sx2nk+1} both
converge to z ∈ K as K is a closed subset of the complete metric space (X ,d). Since
Tx2nk ∈ Fj(x2nk−1) for any even integer j ∈ N and Sx2nk−1 ∈ K . Using pointwise R-weak
commutativity of (Fj ,S), we have

d
(
SFj
(
x2nk−1

)
,Fj
(
Sx2nk−1

))≤ R1 ·d
(
Fj
(
x2nk−1

)
,Sx2nk−1

)
(3.39)

for any even integer j ∈N with some R1 > 0. Also

d
(
SFj
(
x2nk−1

)
,Fj(z)

)≤ d
(
SFj
(
x2nk−1

)
,Fj
(
Sx2nk−1

))
+H

(
Fj
(
Sx2nk−1

)
,Fj(z)

)
. (3.40)

Making k→∞ in (3.39) and (3.40) and using continuity of Fj as well as S, we get d(Sz,
Fj(z))≤ 0 yielding thereby Sz ∈ Fj(z) for any even integer j ∈N .

Since y2nk+1 ∈ Fi(x2nk ) and {Tx2nk} ∈ K , pointwise R-weak commutativity of (Fi,T)
implies

d
(
TFi

(
x2nk

)
,Fi
(
Tx2nk

))≤ R2 ·d
(
Fi
(
x2nk

)
,Tx2nk

)
(3.41)

for any odd integer i∈N with some R2 > 0, besides

d
(
TFi

(
x2nk

)
,Fi(z)

)≤ d
(
TFi

(
x2nk

)
,Fi
(
Tx2nk

))
+H

(
Fi
(
Tx2nk

)
,Fi(z)

)
. (3.42)

Therefore, as earlier the continuity of Fi as well as T implies d(Tz,Fi(z)) ≤ 0 giving
thereby Tz ∈ Fi(z) as k→∞.

If we assume that there exists a subsequence {Sx2nk+1} contained inQ◦, then analogous
arguments establish the earlier conclusions. This concludes the proof. �
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In the next theorem, we utilize the closedness of TK and SK to replace the continuity
requirements besides minimizing the commutativity requirements to merely coincidence
points.

Theorem 3.5. Let (X ,d) be a complete metrically convex metric space and K a nonempty
closed subset of X . Let {Fn}∞n=1 : K → CB(X) and S,T : K → X satisfying (3.1), (iv) and (v).
Suppose that
(xii) TK and SK are closed subspaces of X . Then

(�) (Fi,T) has a point of coincidence,
(��) (Fj ,S) has a point of coincidence.

Moreover, (Fi,T) has a common fixed point if T is quasi-coincidentally commuting and
coincidentally idempotent w.r.t Fi whereas (Fj ,S) has a common fixed point provided S is
quasi-coincidentally commuting and coincidentally idempotent w.r.t Fj .

Proof. On the lines of Theorem 3.1, one assumes that there exists a subsequence {Tx2nk}
which is contained in P◦ and TK as well as SK are closed subspaces of X . Since {Tx2nk} is
Cauchy in TK , it converges to a point u∈ TK . Let v ∈ T−1u, then Tv = u. Since {Sx2nk+1}
is a subsequence of Cauchy sequence, {Sx2nk+1} converges to u as well. Using (3.1), one
can write

q ·d(Fi(v),Tx2nk)
≤H

(
Fi(v),Fj

(
x2nk−1

))

≤ a ·max
{
1
2
d
(
Tv,Sx2nk−1

)
,d
(
Sx2nk−1,Fj

(
x2nk−1

))
,d
(
Tv,Fi(v)

)}

+ b
{
d
(
Tv,Fj

(
x2nk−1

))
+d
(
Sx2nk−1,Fi(v)

)}
,

(3.43)

which on letting k→∞, reduces to

q ·d(Fi(v),u)≤ a ·max
{
0,d
(
u,Fi(v)

)
,0
}
+ b
{
0+d

(
Fi(v),u

)}
≤ (a+ b) ·d(u,Fi(v)), (3.44)

yielding thereby u∈ Fi(v) which implies that u= Tv ∈ Fi(v) as Fi(v) is closed.
Since Cauchy sequence {Tx2n} converges to u∈ K and u∈ Fi(v), u∈ Fi(K)∩K ⊆ SK ,

there exists w ∈ K such that Sw = u. Again using (3.1), one gets

q ·d(Sw,Fj(w)
)= q ·d(Tv,Fj(w)

)≤H
(
Fi(v),Fj(w)

)

≤ a ·max
{
1
2
d(Tv,Sw),d

(
Tv,Fi(v)

)
,d
(
Sw,Fj(w)

)}

+ b
{
d
(
Tv,Fj(w)

)
+d
(
Sw,Fi(v)

)}
≤ (a+ b) ·d(Sw,Fj(w)

)
,

(3.45)

implying thereby Sw ∈ Fj(w), that is w is a coincidence point of (S,Fj).
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If one assumes that there exists a subsequence {Sx2nk+1} contained in Q◦ with TK as
well as SK are closed subspaces of X , then noting that {Sx2nk+1} is Cauchy in SK , the
foregoing arguments establish that Tv ∈ Fi(v) and Sw ∈ Fj(w).

Since v is a coincidence point of (Fi,T) therefore using quasi-coincidentally commut-
ing property of (Fi,T) and coincidentally idempotent property of T w.r.t Fi, one can have

Tv ∈ Fi(v), u= Tv =⇒ Tu= TTv = Tv = u, (3.46)

therefore u = Tu = TTv ∈ TFi(v) ⊂ Fi(Tv) = Fi(u) which shows that u is the common
fixed point of (Fi,T). Similarly using the quasi-coincidentally commuting property of
(Fj ,S) and coincidentally idempotent property of S w.r.t Fj , one can show that (Fj ,S) has
a common fixed point as well.

By setting S= T = IK in Theorem 3.5, we deduce the following corollary for a sequence
of set-valued mappings which is a partially sharpened form of Theorem 2.2 due to Ćirić
and Ume [5] as our contraction condition (below) is more general than the condition
employed in Ćirić and Ume [5] but Theorem 2.2 due to Ćirić and Ume [5] cannot be
derived completely from Theorem 3.5 as 2a + 3b < 1 does not imply 3a + 3b + ab < 1.
Note that if a= b and b = c then a+2b+3c+ ac < 1 reduces to 3a+3b+ ab < 1.

Corollary 3.6. Let (X ,d) be a complete metrically convex metric space and K a nonempty
closed subset of X . Let {Fn}∞n=1 : K → CB(X) satisfying:
(xiii) x ∈ δK ⇒ Fn(x)⊆ K , and

H
(
Fi(x),Fj(y)

)≤ a ·max
{
1
2
d(x, y),d

(
x,Fi(x)

)
,d
(
y,Fj(y)

)}

+ b
{
d
(
x,Fj(y)

)
+d
(
y,Fi(x)

)} (3.47)

for all x, y ∈ K with x �= y, i �= j, a,b ≥ 0 such that 2a+ 3b < 1, then {Fn} has a common
fixed point.

Remark 3.7. Theorem 3.5 remains true if we substitute closedness of “TK and SK” with
closedness of “Fi(K) and Fj(K).”

Remark 3.8. By setting S= T = IK in Theorem 3.5, one deduces an extension of a result
due to Khan et al. [15] to a sequence of multi-valued mappings.

Remark 3.9. By setting Fn = F (for all n∈N) and S= T = IK in Theorem 3.5, one deduces
a multi-valued version of a result due to Khan et al. [15].

Remark 3.10. By setting Fi = F (for any odd integer i∈N), Fj = G (for any even integer
j ∈N) and S= T = IK in Theorem 3.5, one deduces a sharpened and generalized form of
a result due to Khan [14].

Finally, we prove a theorem when “closedness of K” is replaced by “compactness of K .”
�
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Theorem 3.11. Let (X ,d) be a complete metrically convex metric space and K a nonempty
compact subset of X . Let {Fn}∞n=1 : K → CB(X) and T : K → X satisfying
(xiv) δK ⊆ TK , (Fi(K)∪Fj(K))∩K ⊆ TK
(xv) Tx ∈ δK ⇒ Fi(x)∪Fj(x)⊆ K with

H
(
Fi(x),Fj(y)

)
<M(x, y) (3.48)

whenM(x, y) > 0, for all x, y ∈ K where

M(x, y)= a ·max
{
1
2
d(Tx,Ty),d

(
Tx,Fi(x)

)
,d
(
Ty,Fj(y)

)}

+ b
{
d
(
Tx,Fj(y)

)
+d
(
Ty,Fi(x)

)} (3.49)

for all x, y ∈ X with x �= y, where a, b are non-negative reals such that 2a+3b ≤ q ≤ 1.
If T is compatible with {Fn} (n∈N) along with {Fn} and T are continuous on K , then

{Fn} and T have a common point of coincidence.

Proof. We assert thatM(x, y)= 0 for some x, y ∈ K . OtherwiseM(x, y) �= 0, for any x, y ∈
K implies that

f (x, y)= H
(
Fi(x),Fj(y)

)
M(x, y)

(3.50)

is continuous and satisfies f (x, y) < 1 for all (x, y) ∈ K ×K . Since K ×K is compact,
there exists (u,v) ∈ K ×K such that f (x, y)≤ f (u,v) = c < 1 for x, y ∈ K which in turn
yieldsH(Fi(x),Fj(y))≤ c ·M(x, y) for x, y ∈ K and 0 < c < 1. Therefore using (3.49), one
obtains

max

{
ca+ cb

q− cb
,

cb

q− ca− cb

}
< 1. (3.51)

Now by Theorem 3.1 (with restriction S = T), we get Tz ∈ Fi(z)∩ Fj(z) for some z ∈
K and one concludes M(z,z) = 0, contradicting the facts that M(x, y) > 0. Therefore
M(x, y) = 0 for some x, y ∈ K which implies Tx ∈ Fi(x) for any odd integer i ∈ N and
Tx = Ty ∈ Fj(y) for any even integer j ∈ N . If M(x,x) = 0 then Tx ∈ Fj(x) for any
even integer j ∈N and if M(x,x) �= 0 then using (3.49), one infers that d(Tx,Fj(x))≤ 0
yielding thereby Tx ∈ Fj(x) for any even integer j ∈ N . Similarly in either of the cases
M(y, y) = 0 or M(y, y) > 0 one concludes that Ty ∈ Fi(y) for any odd integer i ∈ N .
Thus we have shown that {Fn} and T have a common point of coincidence.

By setting Fi = F (for every odd integer i∈N), Fj = G (for every even integer j ∈N)
and T = IK in Theorem 3.11, we deduce the following corollary for a pair of set-valued
mappings which is a partial generalization of Theorem 2.3 of Ćirić and Ume [5] due to
the reasons already stated in respect of Corollary 3.6. �
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Corollary 3.12. Let (X ,d) be a complete metrically convexmetric space andK a nonempty
compact subset of X . Let F,G : K → CB(X) satisfying:
(xvi) x ∈ δK ⇒ F(x)∪G(x)⊆ K and

H(Fx,Gy)≤ a ·max
{
1
2
d(x, y),d(x,Fx),d(y,Gy)

}
+ b
{
d(x,Gy) +d(y,Fx)

}
(3.52)

for all x, y ∈ K with x �= y, a,b ≥ 0 such that 2a+3b ≤ 1, then there exists z ∈ K such that
z ∈ Fz∩Gz.

While proving Theorem 3.11 the following question remains unresolved: Does Theo-
rem 3.11 hold for {Fn}, S and T instead of {Fn} and T?
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