A FIXED POINT THEOREM FOR ANALYTIC FUNCTIONS

VALENTIN MATACHE

Received 4 August 2004

We prove that each analytic self-map of the open unit disk which interpolates between certain *n*-tuples must have a fixed point.

1. Introduction

Let \mathbb{U} denote the open unit disk centered at the origin and \mathbb{T} its boundary. For any pair of distinct complex numbers z and w and any positive constant k, we consider the locus of all points ζ in the complex plane \mathbb{C} having the ratio of the distances to w and z equal to k, that is, we consider the solution set of the equation

$$\frac{|\zeta - w|}{|\zeta - z|} = k. \tag{1.1}$$

We denote that set by A(z, w, k) and (following [1]) call it the Apollonius circle of constant k associated to the points z and w. The set A(z, w, k) is a circle for all values of k other than 1 when it is a line.

In this paper, we consider $z, w \in \mathbb{U}$, show that if $z \neq w$, then necessarily A(z, w, y) $\sqrt{(1-|w|^2)/(1-|z|^2)}$) meets the unit circle twice, consider the arc on the unit circle with those endpoints, situated in the same connected component of $\mathbb{C} \setminus A(z, w, z)$ $\sqrt{(1-|w|^2)/(1-|z|^2)}$) as z, and denote it by $\Gamma_{z,w}$. We prove that if $Z=(z_1,\ldots,z_N)$ and $W = (w_1, ..., w_N)$ are N-tuples with entries in \mathbb{U} such that $z_i \neq w_j$ for all j = 1, ..., Nand

$$\mathbb{T} = \bigcup_{j=1}^{N} \Gamma_{z_j, w_j},\tag{1.2}$$

then each analytic self-map of \mathbb{U} interpolating between Z and W must have a fixed point. The next section contains the announced fixed point theorem (Theorem 2.2).

Copyright © 2005 Hindawi Publishing Corporation Fixed Point Theory and Applications 2005:1 (2005) 87-91

DOI: 10.1155/FPTA.2005.87

2. The fixed point theorem

For each $e^{i\theta} \in \mathbb{T}$ and k > 0, the set

$$HD(e^{i\theta}, k) := \{ z \in \mathbb{U} : |e^{i\theta} - z|^2 < k(1 - |z|^2) \}$$
 (2.1)

called *the horodisk with constant k tangent at* $e^{i\theta}$ is an open disk internally tangent to \mathbb{T} at $e^{i\theta}$ whose boundary $HC(e^{i\theta},k):=\{z\in\mathbb{U}:|e^{i\theta}-z|^2=k(1-|z|^2)\}$ is called *the horocycle with constant k tangent at* $e^{i\theta}$.

The center and radius of $HC(e^{i\theta}, k)$ are given by

$$C = \frac{e^{i\theta}}{1+k}, \qquad R = \frac{k}{1+k}, \tag{2.2}$$

respectively. One should note that HD $(e^{i\theta}, k)$ extends to exhaust \mathbb{U} as $k \to \infty$.

Let φ be a self-map of \mathbb{U} . For each positive integer n, $\varphi^{[n]} = \varphi \circ \varphi \circ \cdots \circ \varphi$, n times. The following is a combination of results due to Denjoy, Julia, and Wolff.

Theorem 2.1. Let φ be an analytic self-map of $\mathbb U$. If φ has no fixed point, then there is a remarkable point w on the unit circle such that the sequence $\{\varphi^{[n]}\}$ converges to w uniformly on compact subsets of $\mathbb U$ and

$$\varphi(HD(w,k)) \subseteq HD(w,k) \quad k > 0.$$
 (2.3)

The remarkable point w is called the Denjoy-Wolff point of φ . Relation (2.3) is a consequence of a geometric function-theoretic result known as Julia's lemma. In case φ has a fixed point, but is not the identity or an elliptic disk automorphism, one can use Schwarz's lemma in classical complex analysis to show that $\{\varphi^{[n]}\}$ tends to that fixed point, (which is also regarded as a constant function), uniformly on compact subsets of $\mathbb U$. These facts show that if φ is not the identity, then it may have at most a fixed point in $\mathbb U$. Good accounts on all the results summarized above can be found in [2, Section 2.3] and [4, Sections 4.4–5.3].

In the sequel, φ will always denote an analytic self-map of $\mathbb U$ other than the identity. For each $z \in \mathbb U$ such that $\varphi(z) \neq z$, we consider the intersection of the unit circle $\mathbb T$ and $A(z, \varphi(z), \sqrt{(1-|\varphi(z)|^2)/(1-|z|^2)})$. It necessarily consists of two points.

Indeed, it cannot be a singleton. If one assumes that the aforementioned intersection is the singleton $\{e^{i\theta}\}$, then the relation

$$\frac{|e^{i\theta} - \varphi(z)|^2}{1 - |\varphi(z)|^2} = \frac{|e^{i\theta} - z|^2}{1 - |z|^2}$$
(2.4)

must be satisfied, and this means that both z and $\varphi(z)$ are on a horocycle tangent to $\mathbb T$ at $e^{i\theta}$, which is contradictory due to the fact of, under our assumptions, $A(z,\varphi(z),\sqrt{(1-|\varphi(z)|^2)/(1-|z|^2)})$ is also such a horocycle and hence fails to separate z and $\varphi(z)$ (the points z and $\varphi(z)$ should be in different connected components of $\mathbb C\setminus A(z,\varphi(z),\sqrt{(1-|\varphi(z)|^2)/(1-|z|^2)})$).

On the other hand, $\mathbb{T} \cap A(z, \varphi(z), \sqrt{(1-|\varphi(z)|^2)/(1-|z|^2)})$ cannot be empty. Indeed, for any $z, w \in \mathbb{U}$, $z \neq w$, $A(z, w, \sqrt{(1-|w|^2)/(1-|z|^2)})$ meets \mathbb{T} . To prove that, one can assume without loss of generality that $(1-|w|^2)/(1-|z|^2) > 1$. If, arguing by contradiction, we assume that $A(z, w, \sqrt{(1-|w|^2)/(1-|z|^2)}) \cap \mathbb{T} = \emptyset$, then \mathbb{T} must be exterior to $A(z, w, (1-|w|^2)/(1-|z|^2))$, that is,

$$\left|\frac{e^{i\theta}-w}{e^{i\theta}-z}\right|^2 < \frac{1-|w|^2}{1-|z|^2} \quad \text{or, equivalently,} \quad \frac{\left|e^{i\theta}-w\right|^2}{1-|w|^2} < \frac{\left|e^{i\theta}-z\right|^2}{1-|z|^2} \quad e^{i\theta} \in \mathbb{T}. \quad (2.5)$$

The last inequality implies that, for each $e^{i\theta} \in \mathbb{T}$, w is interior to the horocycle H tangent to \mathbb{T} at $e^{i\theta}$ that passes through z. This leads to a contradiction since there exist horocycles that are exteriorly tangent to each other at z.

Thus $\mathbb{T} \cap A(z, \varphi(z), \sqrt{(1-|\varphi(z)|^2)/(1-|z|^2)})$ necessarily consists of two points. Let $\Gamma_{z,\varphi(z)}$ denote the open arc of \mathbb{T} with those endpoints, situated in the same connected component of $\mathbb{C} \setminus A(z, \varphi(z), \sqrt{(1-|\varphi(z)|^2)/(1-|z|^2)})$ as z.

By straightforward computations, one can obtain the following formulas for the endpoints $e^{i\theta_1}$ and $e^{i\theta_2}$ of $\Gamma_{z,\varphi(z)}$:

$$e^{i\theta_{1,2}} = \frac{-\mu \pm i\sqrt{|\Lambda|^2 - \mu^2}}{\Lambda},$$
 (2.6)

where

$$\Lambda = \overline{z}(1 - |\varphi(z)|^2) - \overline{\varphi(z)}(1 - |z|^2), \qquad \mu = |\varphi(z)|^2 - |z|^2. \tag{2.7}$$

It is always true that $\Lambda \neq 0$ and $|\Lambda| > |\mu|$, as the reader can readily check.

We are now ready to state and prove the main result of this mathematical note.

Theorem 2.2. If there exist $z_1, z_2, ..., z_N$ such that $\varphi(z_i) \neq z_j$, j = 1, ..., N, and

$$\mathbb{T} = \bigcup_{j=1}^{N} \Gamma_{z_j, \varphi(z_j)},\tag{2.8}$$

then φ has a fixed point in \mathbb{U} . In particular, if $z_1, z_2, ..., z_N \in \mathbb{C} \setminus \{0\}$ are zeros of φ and

$$\mathbb{T} = \bigcup_{j=1}^{N} \left\{ e^{i\theta} : \left| \theta - \arg(z_j) \right| < \arccos|z_j| \right\}, \tag{2.9}$$

then φ has a fixed point in \mathbb{U} . Conversely, if φ is an analytic self-map of \mathbb{U} other than the identity and φ has a fixed point, then there exist finitely many points z_1, \ldots, z_k in \mathbb{U} such that condition (2.8) is satisfied.

Proof. Observe that if $e^{i\theta} \in \Gamma_{z,\varphi(z)}$, then $e^{i\theta}$ cannot be the Denjoy-Wolff point of φ . Indeed, arguing by contradiction, assume $e^{i\theta}$ is the Denjoy-Wolff point of φ . Note that one can consider a horodisk $\mathrm{HD}(e^{i\theta},k)$ for which z is interior and $\varphi(z)$ exterior, since $|e^{i\theta}-z|^2/(1-|z|^2)<|e^{i\theta}-\varphi(z)|^2/(1-|\varphi(z)|^2)$. This leads to a contradiction by (2.3).

Figure 2.1

Thus if (2.8) holds, then φ does not have a Denjoy-Wolff point, that is, it has a fixed point in \mathbb{U} . Finally, observe that if $z \neq 0$ and $\varphi(z) = 0$, a simple computation leads to $\Gamma_{z,\varphi(z)} = \{e^{i\theta} : |\theta - \arg(z)| < \arccos|z|\}$, which takes care of (2.9).

To prove the necessity of condition (2.8) now, assume φ is not the identity and has a fixed point $\omega \in \mathbb{U}$. Let $\rho(z,w) := |z-w|/|1-\overline{w}z|, z,w \in \mathbb{U}$, denote the pseudohyperbolic distance on \mathbb{U} . For each $z_0 \in \mathbb{U}$ and r > 0, let $K(z_0,r) := \{z \in \mathbb{U} : \rho(z,z_0) < r\}$ be the pseudohyperbolic disk of center z_0 and radius r. Pseudohyperbolic disks are also Euclidean disks inside \mathbb{U} (see [3, page 3]), and if r < 1, then $K(z_0,r) \neq \mathbb{U}$. By the invariant Schwarz lemma, (see [3, Lemma 1.2]), one has that $\rho(\varphi(z),\omega) \leq \rho(z,\omega), z \in \mathbb{U}$. This means that φ maps closed pseudohyperbolic disks with pseudohyperbolic center ω into themselves. We record this fact for later use and proceed by noting that condition (2.8) is satisfied for some finite set of points in \mathbb{U} if and only if

$$\mathbb{T} = \bigcup_{z \in \mathbb{U} \setminus \{\omega\}} \Gamma_{z, \varphi(z)},\tag{2.10}$$

which is a direct consequence of the compactness of \mathbb{T} . Thus, arguing by contradiction, one should assume that there exists $e^{i\theta} \in \mathbb{T}$ such that, for each $z \neq \omega$, one has that $e^{i\theta} \notin \Gamma_{z,\varphi(z)}$, that is, $|e^{i\theta} - z|^2/(1 - |z|^2) > |e^{i\theta} - \varphi(z)|^2/(1 - |\varphi(z)|^2)$. One deduces that, for each $z \neq \omega$, $\varphi(z)$ is interior to the horocycle H tangent to \mathbb{T} at $e^{i\theta}$ that passes through z. This generates a contradiction. Indeed, consider some 0 < r < 1 and the pseudohyperbolic disk $K(\omega, r)$. Let H be the horocycle tangent at $e^{i\theta}$ to \mathbb{T} which is also exteriorly tangent to $\partial K(\omega, r)$. Denote this tangence point by z. Since $\omega \in K(\omega, r)$, $z \neq \omega$. On the other hand, it is impossible that $\varphi(z)$ be simultaneously interior to H and in the closure of $K(\omega, r)$. \square

Example 2.3. Any holomorphic self-map of \mathbb{U} interpolating between the triples (0.34, 0.5i, -0.5i) and (0.335, 0.25 + 0.125i, 0.25 - 0.125i) has a fixed point in \mathbb{U} , because

$$\mathbb{T} = \Gamma_{0.34,0.335} \cup \Gamma_{0.5i,0.25+0.125i} \cup \Gamma_{-0.5i,0.25-0.125i}$$
(2.11)

as one can readily check by using relations (2.6) and (2.7) (see also Figure 2.1 which illustrates the equality above). The fact that such holomorphic self-maps exist can be checked by using Pick's interpolation theorem, (see [3, Theorem 2.2]) or (much easier) by noting that $\varphi(z) = (z+1)/4$ is such a map.

References

- L. V. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, New York, 1978.
- C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Florida, 1995.
- J. B. Garnett, Bounded Analytic Functions, Pure and Applied Mathematics, vol. 96, Academic Press, New York, 1981.
- [4] J. H. Shapiro, Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993.

Valentin Matache: Department of Mathematics, University of Nebraska, Omaha, NE 68182, USA E-mail address: vmatache@mail.unomaha.edu