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We obtain common fixed point results for generalized I-nonexpansive Cq-commuting
maps. As applications, various best approximation results for this class of maps are de-
rived in the setup of certain metrizable topological vector spaces.
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1. Introduction and preliminaries

Let X be a linear space. A p-norm on X is a real-valued function on X with 0 < p ≤ 1,
satisfying the following conditions:

(i) ‖x‖p ≥ 0 and ‖x‖p = 0⇔ x = 0,
(ii) ‖αx‖p = |α|p‖x‖p,
(iii) ‖x+ y‖p ≤ ‖x‖p +‖y‖p,

for all x, y ∈ X and all scalars α. The pair (X ,‖ · ‖p) is called a p-normed space. It is a
metric linear space with a translation invariant metric dp defined by dp(x, y)= ‖x− y‖p
for all x, y ∈ X . If p = 1, we obtain the concept of the usual normed space. It is well
known that the topology of every Hausdorff locally bounded topological linear space
is given by some p-norm, 0 < p ≤ 1 (see [7, 13] and references therein). The spaces lp
and Lp, 0 < p ≤ 1, are p-normed spaces. A p-normed space is not necessarily a locally
convex space. Recall that dual space X∗ (the dual of X) separates points of X if for each
nonzero x ∈ X , there exists f ∈ X∗ such that f (x) �= 0. In this case the weak topology on
X is well defined and is Hausdorff. Notice that if X is not locally convex space, then X∗

need not separate the points of X . For example, if X = Lp[0,1], 0 < p < 1, then X∗ = {0}
[17, pages 36–37]. However, there are some nonlocally convex spaces X (such as the p-
normed spaces lp, 0 < p < 1) whose dual X∗ separates the points of X . In the sequel, we
will assume that X∗ separates points of a p-normed space X whenever weak topology is
under consideration.
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2 Cq-commuting maps and invariant approximations

Let X be a metric linear space and M a nonempty subset of X . The set PM(u)=
{
x ∈

M : d(x,u)= dist(u,M)
}
is called the set of best approximations to u∈ X out ofM, where

dist(u,M)= inf
{
d(y,u) : y ∈M

}
. Let f :M →M be a mapping. A mapping T :M →M

is called an f -contraction if there exists 0 ≤ k < 1 such that d(Tx,Ty)≤ k d( f x, f y) for
any x, y ∈M. If k = 1, then T is called f -nonexpansive. The set of fixed points of T (resp.,
f ) is denoted by F(T) (resp., F( f )). A point x ∈M is a common fixed (coincidence) point
of f and T if x = f x = Tx ( f x = Tx). The set of coincidence points of f and T is denoted
by C( f ,T). A mapping T :M→M is called

(1) hemicompact if any sequence {xn} inM has a convergent subsequence whenever
d(xn,Txn)→ 0 as n→∞;

(2) completely continuous if {xn} converges weakly to x which implies that {Txn}
converges strongly to Tx;

(3) demiclosed at 0 if for every sequence {xn} ∈M such that {xn} converges weakly
to x and {Txn} converges strongly to 0, we have Tx = 0.

The pair { f ,T} is called
(4) commuting if T f x = f Tx for all x ∈M;

(5) R-weakly commuting if for all x∈M there exists R > 0 such that d( f Tx,T f x)≤
R d( f x,Tx). If R= 1, then the maps are called weakly commuting;

(6) compatible [10] if limn d(T f xn, f Txn)= 0 whenever {xn} is a sequence such that
limn Txn = limn f xn = t for some t inM;

(7) weakly compatible [2, 11] if they commute at their coincidence points, that is, if
f Tx = T f x whenever f x = Tx. The set M is called q-starshaped with q ∈M if
the segment [q,x]= {(1− k)q+ kx : 0≤ k ≤ 1} joining q to x is contained in M
for all x ∈M. Suppose thatM is q-starshaped with q ∈ F( f ) and is both T- and
f -invariant. Then T and f are called

(8) R-subcommuting onM (see [19, 20]) if for all x ∈M, there exists a real number
R > 0 such that d( f Tx,T f x)≤ (R/k)d((1− k)q+ kTx, f x) for each k ∈ (0,1];

(9) R-subweakly commuting on M (see [7, 21]) if for all x ∈M, there exists a real
number R > 0 such that d( f Tx,T f x)≤ Rdist( f x, [q,Tx]);

(10) Cq-commuting [2] if f Tx = T f x for all x ∈ Cq( f ,T), where Cq( f ,T)=∪{C( f ,
Tk) : 0 ≤ k ≤ 1} and Tkx = (1− k)q + kTx. Clearly, Cq-commuting maps are
weakly compatible but not conversely in general. R-subcommuting and R-sub-
weakly commuting maps are Cq-commuting but the converse does not hold in
general [2].

Meinardus [14] employed the Schauder fixed point theorem to prove a result regarding
invariant approximation. Singh [22] proved the following extension of “Meinardus’s”
result.

Theorem 1.1. Let T be a nonexpansive operator on a normed space X , M a T-invariant
subset of X , and u ∈ F(T). If PM(u) is nonempty compact and starshaped, then PM(u)∩
F(T) �= ∅.

Sahab et al. [18] established an invariant approximation result which contains Theo-
rem 1.1. Further generalizations of the result ofMeinardus are obtained by Al-Thagafi [1],
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Shahzad [19–21], Hussain and Berinde [7], Rhoades and Saliga [16], and O’Regan and
Shahzad [15].

The aim of this paper is to establish a general common fixed point theorem for Cq-
commuting generalized I-nonexpansive maps in the setting of locally bounded topolog-
ical vector spaces, locally convex topological vector spaces, and metric linear spaces. We
apply a new theorem to derive some results on the existence of best approximations. Our
results unify and extend the results of Al-Thagafi [1], Al-Thagafi and Shahzad [2], Dot-
son [3], Guseman and Peters [4], Habiniak [5], Hussain [6], Hussain and Berinde [7],
Hussain and Khan [8], Hussain et al. [9], Jungck and Sessa [12], Khan and Khan [13],
O’Regan and Shahzad [15], Rhoades and Saliga [16], Sahab et al. [18], Shahzad [19–21],
and Singh [22].

2. Common fixed point and approximation results

The following result extends and improves [2, Theorem 2.1], [21, Theorem 2.1], and [15,
Lemma 2.1].

Theorem 2.1. Let M be a subset of a metric space (X ,d), and let I and T be weakly com-
patible self-maps of M. Assume that cl(T(M))⊂ I(M), cl(T(M)) is complete, and T and I
satisfy for all x, y ∈M and 0≤ h < 1,

d
(
Tx,Ty

)≤ hmax
{
d
(
Ix,I y

)
,d
(
Ix,Tx

)
,d
(
I y,Ty

)
,d
(
Ix,Ty

)
,d
(
I y,Tx

)}
. (2.1)

Then F(I)∩F(T) is a singleton.

Proof. As T(M)⊂ I(M), one can choose xn inM for n∈N , such that Txn = Ixn+1. Then
following the arguments in [15, Lemma 2.1], we infer that {Txn} is a Cauchy sequence.
It follows from the completeness of cl(T(M)) that Txn → w for some w ∈M and hence
Ixn→w as n→∞. Consequently, limn Ixn = limn Txn =w ∈ cl(T(M))⊂ I(M). Thus w =
I y for some y ∈M. Notice that for all n≥ 1, we have

d
(
w,Ty

)≤ d
(
w,Txn

)
+d
(
Txn,Ty

)≤ d
(
w,Txn

)

+hmax
{
d
(
Ixn,I y

)
,d
(
Txn,Ixn

)
,d
(
Ty,I y

)
,d
(
Ty,Ixn

)
,d
(
Txn,I y

)}
.

(2.2)

Letting n→∞, we obtain I y =w = Ty. We now show that Ty is a common fixed point of
I and T . Since I and T are weakly compatible and I y = Ty, we obtain by the definition of
weak compatibility that IT y = TI y. Thus we have T2y = TI y = IT y and so by inequality
(2.1),

d(TTy,Ty)≤ hmax
{
d(IT y,I y),d(IT y,TTy),d(I y,Ty),d(IT y,Ty),d(I y,TTy)

}

≤ hd(IT y,Ty).
(2.3)

Hence TTy = Ty as h ∈ (0,1) and so Ty = TTy = IT y. This implies that Ty is a com-
mon fixed point of T and I . Inequality (2.1) further implies the uniqueness of the com-
mon fixed point Ty. Hence F(I)∩F(T) is a singleton. �

We can prove now the following.



4 Cq-commuting maps and invariant approximations

Theorem 2.2. Let I and T be self-maps on a q-starshaped subset M of a p-normed space
X . Assume that cl(T(M)) ⊂ I(M), q ∈ F(I), and I is affine. Suppose that T and I are Cq-
commuting and satisfy

‖Tx−Ty‖p ≤max

⎧
⎨

⎩

‖Ix− I y‖p, dist
(
Ix, [Tx,q]

)
, dist

(
I y, [Ty,q]

)
,

dist
(
Ix, [Ty,q]

)
, dist

(
I y, [Tx,q]

)

⎫
⎬

⎭ (2.4)

for all x, y ∈M. If T is continuous, then F(T)∩ F(I) �= ∅, provided one of the following
conditions holds:

(i) cl(T(M)) is compact and I is continuous;
(ii) M is complete, F(I) is bounded, and T is a compact map;
(iii) M is bounded, and complete, T is hemicompact and I is continuous;
(iv) X is complete,M is weakly compact, I is weakly continuous, and I −T is demiclosed

at 0;
(v) X is complete,M is weakly compact, T is completely continuous, and I is continuous.

Proof. Define Tn :M→M by

Tnx =
(
1− kn

)
q+ knTx (2.5)

for some q and all x ∈M and a fixed sequence of real numbers kn (0 < kn < 1) converging
to 1. Then, for each n, cl(Tn(M)) ⊂ I(M) as M is q-starshaped, cl(T(M)) ⊂ I(M), I is
affine, and Iq = q. As I and T are Cq-commuting and I is affine with Iq = q, then for each
x ∈ Cq(I ,T),

ITnx =
(
1− kn

)
q+ knITx =

(
1− kn

)
q+ knTIx = TnIx. (2.6)

Thus ITnx = TnIx for each x ∈ C(I ,Tn)⊂ Cq(I ,T). Hence I and Tn are weakly compatible
for all n. Also by (2.4),

∥
∥Tnx−Tny

∥
∥
p =

(
kn
)p‖Tx−Ty‖p

≤ (kn
)p
max

{‖Ix− I y‖p, dist
(
Ix, [Tx,q]

)
, dist

(
I y, [Ty,q]

)
,

dist
(
Ix, [Ty,q]

)
, dist

(
I y, [Tx,q]

)}

≤ (kn
)p
max

{
‖Ix− I y‖p,

∥
∥Ix−Tnx

∥
∥
p,
∥
∥I y−Tny

∥
∥
p,

∥
∥Ix−Tny

∥
∥
p,
∥
∥I y−Tnx

∥
∥
p

}
,

(2.7)

for each x, y ∈M.
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(i) Since cl(T(M)) is compact, cl(Tn(M)) is also compact. By Theorem 2.1, for each
n ≥ 1, there exists xn ∈M such that xn = Ixn = Tnxn. The compactness of cl(T(M))
implies that there exists a subsequence {Txm} of {Txn} such that Txm → y as m→∞.
Then the definition of Tmxm implies xm → y, so by the continuity of T and I , we have
y ∈ F(T)∩F(I). Thus F(T)∩F(I) �= ∅.

(ii) As in (i), there is a unique xn ∈M such that xn = Tnxn = Ixn. As T is compact and
{xn} being in F(I) is bounded, so {Txn} has a subsequence {Txm} such that {Txm} → y
as m→∞. Then the definition of Tmxm implies xm → y, so by the continuity of T and I ,
we have y ∈ F(T)∩F(I). Thus F(T)∩F(I) �= ∅.

(iii) As in (i), there exists xn ∈M such that xn = Ixn = Tnxn, and M is bounded, so
xn−Txn = (1− (kn)−1)(xn− q)→ 0 as n→∞ and hence dp(xn,Txn)→ 0 as n→∞. The
hemicompactness of T implies that {xn} has a subsequence {xj}which converges to some
z ∈M. By the continuity of T and I we have z ∈ F(T)∩F(I). Thus F(T)∩F(I) �= ∅.

(iv) As in (i), there exists xn ∈M such that xn = Ixn = Tnxn. Since M is weakly com-
pact, we can find a subsequence {xm} of {xn} inM converging weakly to y ∈M asm→∞
and as I is weakly continuous so I y = y. By (iii) Ixm −Txm → 0 as m→∞. The demi-
closedness of I −T at 0 implies that I y = Ty. Thus F(T)∩F(I) �= ∅.

(v) As in (iv), we can find a subsequence {xm} of {xn} in M converging weakly to
y ∈M as m→∞. Since T is completely continuous, Txm → Ty as m→∞. Since kn →
1, xm = Tmxm = kmTxm + (1− km)q→ Ty as m→∞. Thus Txm → T2y as m→∞ and
consequently T2y = Ty implies that Tw = w, where w = Ty. Also, since Ixm = xm →
Ty =w, using the continuity of I and the uniqueness of the limit, we have Iw =w. Hence
F(T)∩F(I) �= ∅. �

The following corollary improves and generalizes [2, Theorem 2.2] and [7, Theorem
2.2].

Corollary 2.3. LetM be a q-starshaped subset of a p-normed spaceX , and I and T contin-
uous self-maps ofM. Suppose that I is affine with q ∈ F(I), cl(T(M))⊂ I(M), and cl(T(M))
is compact. If the pair {I ,T} is R-subweakly commuting and satisfies (2.4) for all x, y ∈M,
then F(T)∩F(I) �= ∅.

Remark 2.4. Theorem 2.2 extends and improves Al-Thagafi’s [1, Theorem 2.2], Dotson’s
[3, Theorem 1], Habiniak’s [5, Theorem 4], Hussain and Berinde’s [7, Theorem 2.2],
O’Regan and Shahzad’s [15, Theorem 2.2], Shahzad’s [21, Theorem 2.2], and the main
result of Rhoades and Saliga [16].

The following provides the conclusion of [13, Theorem 2] without the closedness of
M.

Corollary 2.5. Let M be a nonempty q-starshaped subset of a p-normed space X . If T is
nonexpansive self-map ofM and cl(T(M)) is compact, then F(T) �= ∅.

The following result contains properly Theorem 1.1, [18, Theorem 3], and improves
and extends [2, Theorem 3.1], [5, Theorem 8], [13, Theorem 4], and [19, Theorem 6].
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Theorem 2.6. Let M be a subset of a p-normed space X and let I ,T : X → X be mappings
such that u∈ F(T)∩F(I) for some u∈ X and T(∂M∩M)⊂M. Assume that I(PM(u))=
PM(u) and the pair {I ,T} is Cq-commuting and continuous on PM(u) and satisfies for all
x ∈ PM(u)∪{u},

‖Tx−Ty‖p ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖Ix− Iu‖p if y = u,

max
{‖Ix− I y‖p, dist

(
Ix, [q,Tx]

)
, dist

(
I y, [q,Ty]

)
,

dist
(
Ix, [q,Ty]

)
, dist

(
I y, [q,Tx]

)}
if y ∈ PM(u).

(2.8)

Suppose that PM(u) is closed, q-starshaped with q ∈ F(I), I is affine, and cl(T(PM(u))) is
compact. Then PM(u)∩F(I)∩F(T) �= ∅.

Proof. Let x ∈ PM(u). Then ‖x−u‖p = dist(u,M). Note that for any k ∈ (0,1), ‖ku+ (1−
k)x−u‖p = (1− k)p‖x−u‖p < dist(u,M).

It follows that the line segment {ku+ (1− k)x : 0 < k < 1} and the set M are disjoint.
Thus x is not in the interior of M and so x ∈ ∂M∩M. Since T(∂M∩M)⊂M, Tx must
be inM. Also since Ix ∈ PM(u), u∈ F(T)∩F(I) and T , and I satisfy (2.8), we have

‖Tx−u‖p = ‖Tx−Tu‖p ≤ ‖Ix− Iu‖p = ‖Ix−u‖p = dist(u,M). (2.9)

ThusTx ∈ PM(u). Theorem 2.2(i) further guarantees that PM(u)∩F(I)∩F(T) �= ∅. �

Let D = PM(u)∩CI
M(u), where C

I
M(u)=

{
x ∈M : Ix ∈ PM(u)

}
.

The following result contains [1, Theorem 3.2], extends [2, Theorem 3.2], and pro-
vides a nonlocally convex space analogue of [8, Theorem 3.3] for more general class of
maps.

Theorem 2.7. Let M be a subset of a p-normed space X , and I and T : X → X mappings
such that u∈ F(T)∩ F(I) for some u∈ X and T(∂M∩M)⊂M. Suppose that D is closed
q-starshaped with q ∈ F(I), I is affine, cl(T(D)) is compact, I(D)=D, and the pair {T ,I}
is Cq-commuting and continuous on D and, for all x ∈ D∪{u}, satisfies the following in-
equality:

‖Tx−Ty‖p ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖Ix− Iu‖p if y = u,

max
{‖Ix− I y‖p, dist

(
Ix, [q,Tx]

)
, dist

(
I y, [q,Ty]

)
,

dist
(
Ix, [q,Ty]

)
, dist

(
I y, [q,Tx]

)}
if y ∈D.

(2.10)

If I is nonexpansive on PM(u)∪{u}, then PM(u)∩F(I)∩F(T) �= ∅.

Proof. Let x ∈D, then proceeding as in the proof of Theorem 2.6, we obtain Tx ∈ PM(u).
Moreover, since I is nonexpansive on PM(u)∪{u} and T satisfies (2.10), we obtain

‖ITx−u‖p ≤ ‖Tx−Tu‖p ≤ ‖Ix− Iu‖p = dist(u,M). (2.11)

Thus ITx ∈ PM(u) and so Tx ∈ CI
M(u). Hence Tx ∈ D. Consequently, cl(T(D)) ⊂ D =

I(D). Now Theorem 2.2(i) guarantees that PM(u)∩F(I)∩F(T) �= ∅. �
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Remark 2.8. Notice that approximation results similar to Theorems 2.6–2.7 can be ob-
tained, using Theorem 2.2(ii)–(v).

3. Further remarks

(1) All results of the paper (Theorem 2.2–Remark 2.8) remain valid in the setup of a
metrizable locally convex topological vector space (TVS) (X ,d), where d is translation
invariant and d(αx,αy)≤ αd(x, y), for each α with 0 < α < 1 and x, y ∈ X (recall that dp
is translation invariant and satisfies dp(αx,αy)≤ αpdp(x, y) for any scalar α≥ 0).

Consequently, Hussain and Khan’s [8, Theorems 2.2–3.3] are improved and extended.
(2) Following the arguments as above, we can obtain all of the recent best approxi-

mation results due to Hussain and Berinde’s [7, Theorem 3.2–Corollary 3.4] for more
general class of Cq-commuting maps I and T .

(3) A subsetM of a linear space X is said to have property (N) with respect to T [7, 9]
if

(i) T :M→M,
(ii) (1− kn)q+ knTx ∈M, for some q ∈M and a fixed sequence of real numbers kn

(0 < kn < 1) converging to 1 and for each x ∈M.
A mapping I is said to have property (C) on a set M with property (N) if I((1− kn)q +
knTx)= (1− kn)Iq+ knITx for each x ∈M and n∈N .

All of the results of the paper (Theorem 2.2–Remark 2.8) remain valid, provided I is
assumed to be surjective and the q-starshapedness of the set M and affineness of I are
replaced by the property (N) and property (C), respectively, in the setup of p-normed
spaces and metrizable locally convex topological vector spaces (TVS) (X ,d) where d is
translation invariant and d(αx,αy) ≤ αd(x, y), for each α with 0 < α < 1 and x, y ∈ X .
Consequently, recent results due to Hussain [6], Hussain and Berinde [7], and Hussain et
al. [9] are extended to a more general class of Cq-commuting maps.

(4) Let (X ,d) be a metric linear space with a translation invariant metric d. We say that
the metric d is strictly monotone [4] if x �= 0 and 0 < t < 1 imply d(0, tx) < d(0,x). Each
p-norm generates a translation invariant metric, which is strictly monotone [4, 7].

Using [10, Theorem 3.2], we establish the following generalization of Al-Thagafi and
Shahzad’s [2, Theorem 2.2 ], Dotson’s [3, Theorem 1], Guseman and Peters’s [4, Theorem
2], and Hussain and Berinde’s [7, Theorem 3.6].

Theorem 3.1. LetT and I be self-maps on a compact subsetM of ametric linear space (X ,d)
with translation invariant and strictly monotone metric d. Assume that M is q-starshaped,
cl(T(M))⊂ I(M), q ∈ F(I), and I is affine (orM has the property (N)with q ∈ F(I), I satis-
fies the condition (C), andM = I(M)). Suppose that T and I are continuous, Cq-commuting
and satisfy

d
(
Tx,Ty

)≤max

⎧
⎪⎨

⎪⎩

d
(
Ix,I y

)
, dist

(
Ix, [Tx,q]

)
, dist

(
I y, [Ty,q]

)
,

1
2

[
dist

(
Ix, [Ty,q]

)
+dist

(
I y, [Tx,q]

)]

⎫
⎪⎬

⎪⎭
(3.1)

for all x, y ∈M. Then F(T)∩F(I) �= ∅.
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Proof. Two continuous maps defined on a compact domain are compatible if and only if
they are weakly compatible (cf. [10, Corollary 2.3]). To obtain the result, use an argument
similar to that in Theorem 2.2(i) and apply [10, Theorem 3.2] instead of Theorem 2.1.

�

(5) Similarly, all other results of Section 2 (Corollary 2.3–Theorem 2.7) hold in the
setting of metric linear space (X ,d) with translation invariant and strictly monotone
metric d provided we replace compactness of cl(T(M)) by compactness of M and using
Theorem 3.1 instead of Theorem 2.2(i).
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