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We will consider the number of fixed points of homeomorphisms composed of finitely
many slide homeomorphisms on closed oriented nonprime 3-manifolds. By isotoping
such homeomorphisms, we try to reduce their fixed point numbers. The numbers ob-
tained are determined by the intersection information of sliding spheres and sliding paths
of the slide homeomorphisms involved.
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1. Introduction

Nielsen fixed point theory (see [1, 4]) deals with the estimation of the number of fixed
points of maps in the homotopy class of any given map f : X → X . The Nielsen number
N( f ) provides a lower bound. A classical result in Nielsen fixed point theory is: any map
f : X → X is homotopic to a map with exactly N( f ) fixed points if the compact polyhe-
dron X has no local cut point and is not a 2-manifold. This includes all smoothmanifolds
with dimension greater than 2.

It is also an interesting question whether the Nielsen number can be realized as the
number of fixed points of a homeomorphism in the isotopy class of a given homeomor-
phism. In fact, it is just what J. Nielsen expected when he introduced the invariant N( f ).
Assume that X is a closed manifold. The answer to this question is obviously positive
for the unique closed 1-manifold. A positive answer was given by Jiang and Guo [5] for
2-manifolds, and was given by Kelly [7] for manifolds of dimension at least 5.

In [6], Jiang, Wang and Wu proved that for any closed oriented 3-manifold X which
is either Haken or geometric, any orientation-preserving homeomorphism f : X → X is
isotopic to a homeomorphism with N( f ) fixed points ([6, Theorem 9.1]). If Thurston’s
geometric conjecture is true, all nonprime 3-manifolds are of this type.

In this paper, we will consider a certain class of homeomorphisms of closed, oriented
3-manifolds that have a connected sum decomposition into prime factors, namely irre-
ducible manifolds and copies of S2 × S1, and at least two factors (nonprime manifolds).
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2 Fixed points of slide homeomorphisms

It is known from work of Kneser and Milnor that in the oriented setting, the prime and
irreducible factors of the decomposition are unique. We examine homeomorphisms that
can be expressed as the composition of finitely many slide homeomorphisms. A so-called
slide homeomorphism is the identity away from a certain stratified open neighborhood,
the sliding set, of a torus, and is defined by a family of rotation-like transformations on
this set. According toMcCullough’s result (see [8]), an arbitrary homeomorphism of a re-
ducible 3-manifold can be expressed as the composition of homeomorphisms that comes
in four types, one of which is that of slide homeomorphisms.

In [9], the author considered the Nielsen numbers and fixed points of homeomor-
phisms which are compositions of m slide homeomorphisms on nonprime 3-manifolds.
The fixed point index of the complement of the union of the sliding sets was proved to be
zero. When m = 2, we found presentations that are in some sense “standard,” for which
the fixed point numbers, the fixed point class coordinates and the fixed point indices for
all fixed points can be determined. Thus, we were able to give some estimating bounds on
the Nielsen numbers of such kinds of homeomorphisms. The present paper is a continu-
ation of [9]. We will generalize the results for m= 2 there to the case where m can be an
arbitrary positive integer. We will focus on a geometrical method to reduce the number of
fixed points in any given isotopy class of such a homeomorphism. The lower bound prop-
erty of Nielsen number implies that our number of fixed points yields an upper bound
for Nielsen number.

The remaining sections are organized as follows. In Section 2, we will fix notation
which will be used throughout this paper, and recall the definition of slide homeomor-
phism. In Section 3, we will show (Lemma 3.4) that away from the sliding set, f can be
isotoped to a fixed point free homeomorphism by an arbitrary small isotopy. Although
each component of this set has zero fixed point index ([9, Theorem 3.2]), the result
here is not very obvious because we are considering fixed points up to isotopy rather
than homotopy. In Section 4, fixed points over the sliding set are considered. It is ar-
gued that f is isotopic to a homeomorphism with finitely many fixed points, and that
the size of this fixed point set is expressible in terms self-intersection data for the slid-
ing set (Proposition 4.6). Reducing the number of fixed points for homeomorphisms in
the isotopy class of f then involves controlling in some sense the number of self inter-
sections; our main result (Theorem 4.11) gives a lower bound for this number. Finally, a
short Section 5 shows that in some cases, one may simplify and “optimize” the sliding set
so that the bound in Section 4 can be further lowered, that is, the number of fixed points
can be further reduced.

2. Conventions and notations

In this section, we will make necessary conventions in notation, which will be used in
later sections.

(1) The underlying manifoldM. In this paper, the manifoldM is assumed to be a closed
oriented 3-manifold, which is nonprime. It is known thatM can be written as a connected
sum of finitely many prime 3-manifolds, that is, M =M1#M2#···#Mn′#···#Mn′+n′′ , in
whichMi is irreducible for 1≤ i≤ n′ andMi = S2× S1 for n′ +1≤ i≤ n′ +n′′. The non-
prime property implies that n′ +n′′ > 1.
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Take a 3-sphere and remove n′ +2n′′ open discs to obtain a punctured 3-cell W with
n′ + 2n′′ boundary components. We then have that M =W ∪ (∪n′+n′′

i=1 M′
i ), where M

′
i =

Mi − Int(Di) for 1 ≤ i ≤ n′ and M′
i = S2 × I for n′ + 1 ≤ i ≤ n′ + n′′ (see [8]). Each M′

i

admits the orientation coincident with that of M, and each ∂M′
i inherits the orientation

ofM′
i .

(2) Slide homeomorphisms. Let S be an oriented essential 2-sphere in M, which is
orientation-preservingly isotopic to a boundary component of ∂M′

j . Let α : I →M be
a path without self intersection in M such that α∩M′

j = α∩ S = {α(0),α(1)}. Take two
regular neighborhoodsN ′ andN ′′ (N ′ ⊂ Int(N ′′)) of α∪ S inM. Then Int(N ′′ −N ′) has
two components which are homeomorphic to S2× (0,1) and T2× (0,1) respectively. We
write the latter as T(S,α).

Pick a coordinate function c : T(S,α)→ T2× (0,1), where the points in T2× (0,1) are
labeled by (θ,ϕ, t), such that the θ-line, c−1(θ,∗,∗), is parallel to the oriented path α and
the t-line c−1(∗,∗, t) moves radially away from the path αwhen the value of t is increased.

A slide homeomorphism s :M→M determined by α and S is defined by

s(x)=
⎧
⎨

⎩

c−1(θ +2πt,ϕ, t) if x = c−1(θ,ϕ, t)∈ T(S,α),

x otherwise,
(2.1)

denoted by s(S,α). The sets T(S,α), S and α are said to be respectively the sliding set,
sliding sphere and sliding path of s(S,α).

(3) Orientations and isotopies. Since all manifolds under consideration are oriented,
including sliding spheres and sliding paths, isotopies here are considered to be ambient
and orientation-preserving. For example, ifM =M1#M2 is a connected sum of two prime
manifolds, ∂M′

1 and ∂M′
2 are not regarded as isotopic.

(4) Fundamental groups and path classes. Consider the constructionM=W∪(∪n′+n′′
i=1 M′

i )
ofM. We choose a point x0 inW as its base point. To any path γ with ending points inW
there corresponds uniquely an element 〈γ∗γγ−1∗∗〉 in π1(M,x0), where γ∗ and γ∗∗ are path
from x0 to γ(0) and γ(1) in W respectively. By abuse of notation, we write it simply as
〈γ〉. Choose xj ∈ ∂M′

j as base point ofM
′
j for j = 1,2, . . . ,n′ +n′′. Thus, each π1(M′

j ,xj) is
embedded into π1(M,x0) in a natural way as above, and hence π1(M,x0) is the free prod-
uct of π1(M′

j ,xj), j = 1,2, . . . ,n′ +n′′. We write simply as π1(M,x0)= π1(M′
1)∗π1(M′

2)∗
···∗π1(M′

n′+n′′), which is also equal to π1(M1)∗π1(M2)∗···∗π1(Mn′+n′′).
(5) The homeomorphism f . From now on, f is assumed to be a homeomorphism com-

posed of finitely many slide homeomorphisms, that is, f = s(Sm,αm) ◦ s(Sm−1,αm−1) ◦
··· ◦ s(S1,α1). The union ∪m

j=1T(Sj ,αj) of all sliding sets is said to the sliding set of f . For
a simplification in notation, we write sm′′···m′ for the composition s(Sm′′ ,αm′′) ◦ s(Sm′′−1,
αm′′−1)◦ ··· ◦ s(Sm′ ,αm′) for anym′ andm′′ (1≤m′ <m′′ ≤m). In particular, s(Sj ,αj) is
simply written as s j .

(6)General position. Consider the slide homeomorphisms whose composition is f . We
can ensure the sliding paths α1,α2, . . . ,αm, and sliding spheres S1,S2, . . . ,Sm are in general
position relative to the set ∪m

j=1{αj(0),αj(1)}. Thus, these sliding paths have no intersec-
tion, and αi intersects with Sj transversally for i = j. Since each sliding sphere is isotopic
to a component of −∂W , we can arrange these sliding spheres to be disjoint. In this sit-
uation, if each sliding set T(Sj ,αj) is in a small neighborhood of αj ∪ Sj , the number
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αi

q(i, j;1)

q(i, j;2)

Sj

· · · · · ·

Figure 2.1

of components of intersection of two sliding sets T(Sj′ ,αj′) and T(Sj′′ ,αj′′) is equal to
the number of points in (αj′ ∪ Sj′)∩ (αj′′ ∪ Sj′′) for all j′ and j′′ with j′ = j′′. In this
situation, we say that the sliding set ∪m

j=1T(Sj ,αj) of f is in general position.
(7) Components B(∗,∗;∗) of the intersection of sliding sets. If the sliding set∪m

j=1T(Sj ,αj)
is in general position, the points in αi ∩ Sj (i = j) are denoted by q(i, j;1),q(i, j;2), . . . ,
q(i, j;|αi∩Sj |) (see Figure 2.1), where the last subscript indicates the order in αi ∩ Sj along
the direction of αi, that is, α−1i (q(i, j;k′)) < α−1i (q(i, j;k′′)) in I = [0,1] if and only if k′ <
k′′. The corresponding components of T(Si,αi)∩T(Sj ,αj) nearby are written as B(i, j;1),
B(i, j;2), . . . ,B(i, j;|αi∩Sj |). Obviously, we have

Proposition 2.1. If the sliding set∪m
j=1T(Sj ,αj) is in general position, then each B(∗,∗;∗) is

homeomorphic to a solid torus, and T(Si,αi)∩T(Sj ,αj)= (�|αi∩Sj |k=1 B(i, j;k))� (�|αj∩Si|
l=1 B( j,i;l))

for any i and j, where i, j = 1,2, . . . ,m with i = j.

3. Removing fixed points on the complement of sliding set

Consider our homeomorphism f . Since the fixed point set of each slide homeomorphsim
si is justM−T(Si,αi), the points in the complementM−∪m

j=1T(Sj ,αj) of the sliding set
of f are totally contained in the fixed point set of f . In [9], we proved that this isolated
fixed point set has zero fixed point index. In this section, we will show that this fixed point
set can be removed by arbitrary small isotopy.

The following definition is originally from [2].

Definition 3.1. Let Γ : N → TN be a vector field on a compact smooth n-manifold N .
The manifold N is said to be a manifold with corners for the vector field Γ if Γ has no
singular points on ∂N and if ∂N can be considered a union of (n− 1)-manifolds (with
boundaries) ∂oN , ∂+N and ∂−N with ∂+N ∩ ∂−N =∅ such that Γ(x) is tangent to ∂oN
for x ∈ ∂oN , points inward to N for x ∈ ∂−N and points outward from N for x ∈ ∂+N .

Clearly, for an n-manifold N with corners, both of ∂+N ∩ ∂oN and ∂−N ∩ ∂oN are
(n− 2)-dimensional closed manifolds. A simple example is the following.
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Example 3.2. A constant vector field on R2 is given by Γ(x, y) = (1,0). Then the subset
N = [0,1]× [0,1] is a manifold with corners for such a vector field Γ, with ∂oN = [0,1]×
{0,1}, ∂−N = {0}× [0,1] and ∂+N = {1}× [0,1].

The next lemma is a kind of generalization of the Poincaré-Hopf vector field index
theorem. There are some similar statements in dynamical system theory, see for example
[3, Lemma A.1.3].

Lemma 3.3. Let N be a 3-manifold with corners for a vector field Γ. If the boundary ∂N is
a disjoint union of m-copies of a sphere such that ∂oN is a disjoint union of m-copies of an
annulus, and either ∂+N or ∂−N is a disjoint union ofm-copies of a disc, then we can change
Γ relative to a neighborhood of ∂N in N into a nonsingular vector field Γ′.

Proof. Through a coordinate function, each component of ∂N can be regarded as one of
the following:

Ck =
{
(x, y,z) : |x| ≤ 4, (y− 8k)2 + z2 = 4 or x =±4, (y− 8k)2 + z2 ≤ 4

}
, (3.1)

where k = 1,2, . . . ,m. Since ∂+N ∩ ∂−N =∅, we may assume that

∂oN =∪m
k=1
{
(x, y,z) : |x| ≤ 4, (y− 8k)2 + z2 = 4

}
,

∂−N =∪m
k=1
{
(x, y,z) : x = 4, (y− 8k)2 + z2 ≤ 4

}
,

∂+N =∪m
k=1
{
(x, y,z) : x =−4, (y− 8k)2 + z2 ≤ 4

}
.

(3.2)

Regard a neighborhood of ∂N as a subset outside of the cylinders:

Dk =
{
(x, y,z) : |x| ≤ 4, (y− 8k)2 + z2 ≤ 4

}
, k = 1,2, . . . ,m. (3.3)

Since N is a manifold with corners for the vector field Γ, Γ points inward for the cylinders
(outward for N) at ∂+N and points outward for the cylinders (inward for N) at ∂−N . We
have that Γ(p)∈ {(x, y,z) : x > 0} for p ∈ ∂+N ∪ ∂−N . It is not difficult to prove that the
restriction of Γ at each component of ∂N , as a map from a sphere to R3 −{0}, has zero
degree. Hence, we can extend Γ to the union ∪m

k=1Dk such that there is no singular point
on ∪m

k=1Dk.
Since N ∪ (∪m

k=1Dk) is a closed 3-manifold, its Euler characteristic number is zero.
Using standard methods in differential topology, we can deform Γ into a nonsingular Γ′

relative to a neighborhood of ∪m
k=1Dk. Then Γ′ |N is our desired vector field. �

Using this lemma, we can prove the following lemma.
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Lemma 3.4. Assume that the sliding set of f is in general position. Given any positive number
ε, there is an isotopy F :M× I →M from f to f ′ satisfying:

(i) d(F(x, t), f (x)) < ε for any x ∈M and any t ∈ I ,
(ii) the support set {x ∈M : F(x, t) = f (x) for some t ∈ I} of F is contained in the ε-

neighborhood Nε(M − ∪m
j=1T(Sj ,αj)) of the complement of the sliding set

∪m
j=1T(Sj ,αj) inM,

(iii) Fix( f ′)= Fix( f )− (M−∪m
j=1T(Sj ,αj)).

Proof. Clearly, we can regard a neighborhood N(∂W) of ∂W in M as a subset of R3 so
that ∂W =−∪n′+2n′′

j=1 Cj , where

Cj =
{
(x, y,z)∈ R3 : (x, y,z) : |x| ≤ 4, (y− 8 j)2 + z2 = 4

or x =±4, (y− 8 j)2 + z2 ≤ 4
}
,

(3.4)

having the orientation induced from R3. Since ∂W = −∪n′+n′′
j=1 ∂M′

j , we may arrange so
that ∂M′

j = Cj for 1≤ j ≤ n′; ∂M′
n′+ j = Cn′+2 j−1∪Cn′+2 j . The set W is located outside of

these Cj ’s with respect to the given orientation of Cj ’s.
Clearly, we can construct a vector field Γ0 :M→ TM onM so that Γ0(p)= {1,0,0} for

any p in the neighborhood N(∂W) of ∂W inM, where

N(∂W)=∪n′+2n′′
k=1

{
(x, y,z)∈ R3 : (x, y,z) : |x| ≤ 3, 1≤ (y− 8k)2 + z2 ≤ 9

or 3≤ |x| ≤ 5, (y− 8k)2 + z2 ≤ 9
}
.

(3.5)

Thus, W and all M′
j ’s are manifolds with corners for Γ0. Apply Lemma 3.3 to W and all

M′
j ’s, we will get a nonsingular vector field Γ :M → TM onM so that Γ(p)= {1,0,0} for

any p ∈N(∂W).
By definition of slide homeomorphism, each sliding sphere Sk is isotopic to a Cj inM.

We then have a well-defined correspondence μ : {1,2, . . . ,m} → {1,2, . . . ,n′ + 2n′′} such
that Sk is isotopic to Cμ(k) inM for any k = 1,2, . . . ,m.

We take Sk to be the sphere outside of Cμ(k) by a distance of νk (0 < νk < 1). Moreover,
we can arrange these ν1,ν2, . . . ,νm to have distinct values. Each sliding path αk attaches the
corresponding sliding sphere Sk at “top” and “bottom” perpendicularly. More precisely,
αk(u) = (νk,8μ(k),2 + νk + u) and αk(1− u) = (νk,8μ(k),−2− νk + 1− u) for small u ∈
I . Each point q( j,k;∗) in αj ∩ Sk lies on (x(q( j,k;∗)),8μ(k) + 2 + νk,0), where all possible
x(q( j,k;∗)) are distinct numbers in (−1,1) (see Figure 3.1).

We can make such an arrangement because any two sliding spheres and any two slid-
ing paths have no intersection by the general position assumption. We then arrange the
sliding set to lie in a sufficiently small neighborhood of ∪m

j=1(αj ∪ Sj).
Let ξ :M×R→M be the flow generated by Γ. We will show that ξ( f (p), t) = p for all

points p in a small η-neighborhood Nη of M −∪m
j=1T(Sj ,αj) in M provided t is small

enough.
Case 1. If p ∈M−∪m

i=1T(Si,αi), then f (p)= p. Since Γ has no zero, we have that ξ( f (p),
t)= ξ(p, t) = p when t is small enough.
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αj′
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αk(0)

Figure 3.1

Case 2. If p ∈∪m
i=1T(Si,αi), then there is a unique smallest number j with p ∈ T(Sj ,αj).

There are two subcases.
Subcase 2.1. If s j(p) ∈ ∪m

i= j+1T(Si,αi), then f (p)= s j(p). By general position, we can ar-
range αj so that Γ(αj(u)) does not parallel to the tangent vector of αj(u) at u for all u∈ I .
Thus, ξ(·, t) will not push along (or opposite) to the direction that s j does. It follows that
ξ( f (p), t) = p when p is closed to the boundary ∂T(Sj ,αj) of T(Sj ,αj) (see Figure 3.2).
Subcase 2.2. If s j(p) ∈ ∪m

i= j+1T(Si,αi), then there is a unique smallest number k with
k > j such that s j(p) ∈ T(Sk,αk). Notice that p is close to ∂(∪m

i=1T(Si,αi)). We have that
s j(p) is also close to ∂T(Sk,αk) because the difference between p and s j(p) is small, so
sk ◦ s j(p) will not meet any sliding set other than T(Sk,αk) and T(Sj ,αj). It follows that
f (p)= sk ◦ s j(p).

The component of T(Sk,αk)∩T(Sj ,αj) around p and f (p) have two types: B(k, j;∗) and
B( j,k;∗). In the first type, we explain the behavior of ξ( f (p), t) in two parts of Figure 3.3.
The first two stages from p to sk ◦ s j(p) is shown on the left part. The last stage is illus-
trated in the right part, where s j(p) is behind f (p) = sk ◦ s j(p). Let p = (xp, yp,zp), we
have

(
xp, yp,zp

) s j (
xp, y′p,z′p

) sk (
xp, y′′p ,z′p

) ξ(·, t) (
x′′′p , y′′p ,z′p

)
. (3.6)

This implies that in R3, p and ξ( f (p), t) will have different x-values when t is small
enough. It follows that ξ( f (p), t) = p. The proof for the type B( j,k;∗) is the same.

Define an isotopy Fδ,η :M× I →M by

Fδ,η(p, t)=
⎧
⎪⎨

⎪⎩

ξ(p,δt) if p ∈M−∪m
j=1T

(
Sj ,αj

)
,

ξ
(
p,max

{
η−d

(
p,∪m

j=1∂T
(
Sj ,αj

))
,0
}
δt
)

if p ∈∪m
j=1T

(
Sj ,αj

)
.

(3.7)
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p sj(p) = f (p)

T(Sj , αj)ξ( f (p), t)

αj

ξ(·, t)

Figure 3.2
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z

y
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T(Sj , αj)
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ξ( f (p), t)

sk◦s j(p)

T(Sk, αk)

z

x

Figure 3.3

Note that the arguments for ξ still work for Fδ,η, so we can prove that Fδ,η( f (p), t) = p
for all t ∈ I and p in the η-neighborhood Nη of M −∪m

j=1T(Sj ,αj) in M. Thus, when δ
and η are small enough, Fδ,η will be a desired isotopy. �

Corollary 3.5. Any slide homeomorphism is isotopic to a fixed point free map.

4. Fixed points on sliding sets

In this section, we try to reduce the fixed points of the homeomorphism f on its slid-
ing set ∪m

j=1T(Sj ,αj). For an arbitrary fixed point x of f on its sliding set, we exam-
ine its “trace” x,s1(x),s21(x), . . . ,sm···1(x) under the sliding homeomorphisms composing
f . Lemma 4.1 will show that the sliding sets of individual slide homeomorphism meet-
ing this trace is totally determined by x itself provided that each sliding set T(Sj ,αj) is
small enough. Hence, a fixed point x will determine a unique sequence consisting of the
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components of the intersection of sliding sets, which we call the accompanying sequence
(Proposition 4.2). All the possible accompanying sequence will be given in Lemma 4.3.
Next, we will isotope the given homeomorphism f so that different fixed points on slid-
ing set of f have different accompanying sequences (Lemma 4.4). When the sliding set
of f is in general position, there is a unique point (αi∪ Si)∩ (αj ∪ Sj) near an arbitrary
component of T(Si,αi)∩ T(Sj ,αj). Thus, in some sense, reducing the number of fixed
points is equivalent to reducing the number of intersection points between the sliding
paths and sliding spheres. The minimal number MI({α1, . . . ,αm},{S1, . . . ,Sm}) of the in-
tersection of sliding paths and sliding spheres gives a possible number of fixed points for
homeomorphisms in the isotopy class of f (Theorem 4.11). Since the Nielsen number
N( f ) is a lower bound of the number of fixed points for maps in the homotopy class of
f , the minimal number MI({α1, . . . ,αm},{S1, . . . ,Sm}) also provides an upper bound of
N( f ).

Lemma 4.1. If any three of these sliding sets T(Sj ,αj)’s have no common points, then to each
fixed point x of f there is associated a unique sub-sequence {i1, i2, . . . , ik} of {1,2, . . . ,m} with
k ≥ 2 such that sik ◦ ··· ◦ si2 ◦ si1 (x)= x ∈ T(Si1 ,αi1 ), and such that si j−1 ◦ ··· ◦ si2 ◦ si1 (x)∈
T(Sij ,αij ) for j = 2,3, . . . ,k.

Proof. Let x be a fixed point of f in ∪m
i=1T(Si,αi). There is a unique minimal i such that

x ∈ T(Si,αi). We write this number as i1. A sequence {i1, i2, . . . , ik} will be defined induc-
tively:

i j =min
{
n : n > ij−1, si j−1 ◦ ··· ◦ si1 (x)∈ T

(
Sj ,αj

)}
. (4.1)

Since x ∈ T(Si1 ,αi1 ), we have si1 (x) = x. If there was no such a number i2, si1 (x) ∈ T(Si,αi)
for all i > i1. Thus, f (x) = sm···1(x) = sm···i1 (x) = si1 (x). This would contradict the fact
that x is a fixed point of f , so we always have that k ≥ 2.

By definition of i j , we have that sn···1(x) = si1 (x) if i1 ≤ n < i2, and that sn···1(x) =
si2 ◦ si1 (x) if i2 ≤ n < i3. Inductively, we will get that sn···1(x) = sip−1 ◦ ··· ◦ si2 ◦ si1 (x) if
ip−1 ≤ n < ip.

When our induction stops at a stage ip, we have that sip···1(x) = sip ◦ ··· ◦ si2 ◦ si1 (x)
does not lie in any sliding set T(Sn,αn) with n > ip, so sm···ip ◦ sip−1 ◦ ··· ◦ si1 (x) = sip ◦
sip−1 ◦ ··· ◦ si1 (x). It follows that f (x) = sm···1(x) = sip ◦ sip−1 ◦ ··· ◦ si1 (x). This point is
just x because x is a fixed point of f . Thus, this ip is the final number, say ik, in our
subsequence of {1,2, . . . ,m}.

Let us prove the uniqueness of such a subsequence. If there is another subsequence
{ j1, j2, . . . , jl} satisfying the same conditions as {i1, i2, . . . , ik}, then we will get that x ∈
T(Sj1 ,αj1 ). Since any three of the sliding sets have no common points, j1 is equal to either
i1 or ik. If the last case happens, that is, j1 = ik, by the choice of ik, we have that s j(x)= x
for all j > ik. Thus, there would be no j2. It follows that i1 = j1.

Assume that jp = ip for p = 1,2, . . . ,n− 1. By the property of the subsequence {i1, i2, . . . ,
ik}, we have sin−1 ◦ . . .◦ si1 (x)∈T(Sin ,αin); by the property of the subsequence { j1, j2, . . . , jl},
we have s jn−1 ◦ . . . ◦ s j1 (x)∈ T(Sjn ,αjn). Our assumption implies that sin−1 ◦ . . . ◦ si1 (x) and
s jn−1 ◦ . . . ◦ s j1 (x) are the same point. Since this point lies in the image of T(Sin−1 ,αin−1 ) =
T(Sjn−1 ,αjn−1 ) under homeomorphism sin−1 = s jn−1 . It also lies in T(Sin−1 ,αin−1 ). Since any
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three of the sliding sets have no common points, T(Sin ,αin), T(Sjn ,αjn) and T(Sin−1 ,αin−1 )
are at most two different sets. Because in = in−1 and jn = jn−1 = in−1, the unique possibil-
ity is that jn = in. Thus, we can prove by induction that jn = in for n= 1,2, . . . ,min{k, l}.

It remains to show that k = l. If k < l, then from the property of the subsequence
{ j1, j2, . . . , jl}, we have that s jk ◦ ··· ◦ s j1 (x) ∈ T(Sjk+1 ,αjk+1 ). Since we have proved that
jn = in for n= 1,2, . . . ,k, s jk ◦ ··· ◦ s j1 (x)= sik ◦ ··· ◦ si1 (x)= x. Thus, x lies inT(Si1 ,αi1 )∩
T(Sik ,αik )∩T(Sjk+1 ,αjk+1 ). Since ik > i1, jk+1 is equal to either i1 = j1 or ik = jk. This is a
contradiction. Symmetrically, the case k > l cannot happen. �

For such a fixed point x, we write B1 for the component of T(Sik ,αik )∩T(Si1 ,αi1 ) con-
taining x, and write Bj , j = 2,3, . . . ,k, for the component of T(Sij−1 ,αij−1 )∩ T(Sij ,αij )
containing si j−1 ◦ ··· ◦ si2 ◦ si1 (x). The sequence {B1,B2, . . . ,Bk} is said to be the accom-
panying sequence of x in the components of the intersection of sliding sets. Clearly, the set
{B1,B2, . . . ,Bk} itself is just the set of all components of the intersection of sliding sets
containing sn···1(x) for some n. In other words, we have

Proposition 4.2. Let x be a fixed point of f and {i1, i2, . . . , ik} be its associated sub-sequence
of {1,2, . . . ,m}. Let {B1,B2, . . . ,Bk} be a set consisting of some components of the intersection
of sliding sets such that B1 is a component of T(Sik ,αik )∩T(Si1 ,αi1 ), and such that Bj , j =
2,3, . . . ,k, is a component of T(Sij−1 ,αij−1 )∩T(Sij ,αij ). Assume that any three of these sliding
sets have no common points. Then, {B1,B2, . . . ,Bk} is the accompanying sequence of the fixed
point x of f if and only if x belongs to the following set:

sik ◦ sik−1 ◦ ··· ◦ si1 (B1)∩ sik ◦ sik−1 ◦ ··· ◦ si2 (B2)∩···∩ sik (Bk)∩B1. (4.2)

Lemma 4.3. Assume that the sliding set∪m
j=1T(Sj ,αj) of f is in general position. If s j(B(i, j;k))

∩B(i′, j;k′) =∅ unless i= i′ and k = k′, then the accompanying sequence of each fixed point
of f in sliding sets has either one of the following forms:

{
B(ik ,i1;∗),B(i1,i2;∗),B(i2,i3;∗), . . . ,B(ik−1,ik ;∗)

}
,

{
B(i1,ik ;∗),B(i2,i1;∗),B(i3,i2;∗), . . . ,B(ik ,ik−1;∗)

}
,

(4.3)

where 1≤ i1 < i2 < ··· < ik ≤m (see Figure 4.1).

Proof. Let x be a fixed point of f in the sliding set with accompanying sequence {B1,
B2, . . . ,Bk}. Then, by definition, there is a set {i1, i2, . . . , ik} with 1≤ i1 < i2 < ··· < ik ≤m
such that B1 is the component of T(Sik ,αik )∩T(Si1 ,αi1 ) containing x, and such that Bj ,
j = 2,3, . . . ,k is the component of T(Sij−1 ,αij−1 )∩T(Sij ,αij ) containing si j−1 ◦ si2 ◦ si1 (x). If
there is a Bj is of the form B(∗,i j ;∗), that is, a component which is not near to αij , then
Bj = B(ik ,i1;∗) for j = 1; Bj = B(i j−1,i j ;∗) for j = 1.

When j < k, we have that si j ◦ si j−1 ◦ ··· ◦ si1 (x)∈ si j (Bj)∈ Bj+1. Since si j (B(∗,i j ;∗)) does
not meet any component of the form B(∗,i j ;∗) but itself, Bj+1 = B(i j ,∗;∗). Because Bj+1

lies in T(Sij+1 ,αij+1 ), we have Bj+1 = B(i j ,i j+1;∗). Similarly, we can prove that B1 = B(ik ,ii;∗) if
Bk = B(ik−1,ik ;∗).

Notice that each Bj is only one of two types: either Bj = B(i j−1,i j ;∗) or B(i j ,i j+1;∗). The
above arguments have shown that if one component Bj in an accompanying sequence is
of the first type, the others are the same as it. Thus, we are done. �
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T(Sij−1 , αi j−1 )

Bj

B(i j−1 ,i j;∗)

si j (Bj)

B(l,i j;∗)

T(Sij , αi j )
B(i j,∗;∗)

T(Sl, α∗)

Figure 4.1

This lemma in fact implies that the components in one accompanying sequence are
distinct. The next lemma will show that after some suitable isotopies on the slide home-
omorphism, there is a one-to-one correspondence between the fixed point set on the
sliding set and the set consisting of the above accompanying sequences.

Lemma 4.4. If the sliding set ∪m
j=1T(Sj ,αj) is in general position, we can isotope the slide

homeomorphisms s(Si,αi), relative to a neighborhood of M − T(Si,αi), to s′i , where i = 1,
2, . . . ,m, so that for each sequence � of components of the intersection of sliding sets of the
form given in Lemma 4.3, there is unique fixed point of f ′ = s′m ◦ s′m−1 ◦ ··· ◦ s′1 with � as
its accompanying sequence.

Moreover, the fixed point index of the fixed point of f ′ having
{
B(ik ,i1; j1),B(i1,i2; j2),B(i2,i3; j3), . . . ,B(ik−1,ik ; jk)

}
(4.4)

as its accompanying sequence is −I(ik ,i1; j1)I(i1,i2; j2) ··· I(ik−1,ik ; jk); the fixed point index of the
fixed point of f ′ having

{
B(i1,il ; j1),B(i2,i1; j2),B(i3,i2; j3), . . . ,B(il ,il−1; jl)

}
(4.5)

as its accompanying sequence is (−1)lI(i1,il ; j1)I(i2,i1; j2) ··· I(il ,il−1; jl), where I(i, j;k) is the intersec-
tion number of the oriented path αi and the oriented sphere Sj in M at the kth point q(i, j;k)
of αi∩ Sj .

Remark 4.5. Although f ′ = s′m ◦ s′m−1 ◦ ··· ◦ s′1 is no longer a composition of standard
slide homeomorphisms s′j , we still say that {B1,B2, . . . ,Bk} is the “accompanying sequence”
of x in the following sense: B1 is the component of T(Sik ,αik )∩T(Si1 ,αi1 ) containing x,
Bj , j = 2,3, . . . ,k is the component of T(Sij−1 ,αij−1 )∩T(Sij ,αij ) containing s

′
i j−1 ◦ ··· ◦ s′i2 ◦

s′i1 (x). The proof of Lemma 4.1 still works as long as s j and s′j have the same support set
T(Sj ,αj) for each j.

Proof of Lemma 4.4. We will give the proof in three steps.
Step 1. Isotope each s(Sj ,αj).
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Consider an arbitrary component B(i, j;k) of the intersection of the sliding sets. Since it
is a component near the kth point in αi∩ Sj , we can assume that

B(i, j;k) ⊂ c−1i
({
(θ,ϕ, t) :

∣
∣θ− θ̂(i, j;k;i)

∣
∣ < δ, 0≤ ϕ < 2π, 0 < t < 1

})

⊂ c−1j
({
(θ,ϕ, t) :

∣
∣θ− θ̂(i, j;k; j)

∣
∣ < δ,

∣
∣ϕ− ϕ̂(i, j;k; j)

∣
∣ < δ, 0 < t < 1

})
,

(4.6)

where δ > 0, and all θ̂(i, j;k;∗) and ϕ̂(i, j;k;∗) are constant. Note that the “length” of B(i, j;k) in
T(Si,αi) and the “area” of B(i, j;k) in T(Sj ,αj) can be arbitrary small. The range of ci(B(i, j;k))
in θ-coordinate, the range of cj(B(i, j;k)) in θ-coordinate and the range of cj(B(i, j;k)) in ϕ-
coordinate can be arbitrarily small. All of B(∗,∗;∗)’s share the same δ.

By a small perturbation, we assume that the intervals [θ̂(i, j;k;∗) − δ, θ̂(i, j;k;∗) + δ] and
[ϕ̂(i, j;k;∗)− δ, ϕ̂(i, j;k;∗) + δ] are disjoint for all possible i, j, k, ∗. Moreover, we can assume
that

[

θ̂(i, j;k;i)− δ, θ̂(i, j;k;i) + δ
]

⊂
(

π,
7π
6

)

,
[

θ̂(i, j;k; j)− δ, θ̂(i, j;k; j) + δ
]

⊂
(

0,
π

6

)

. (4.7)

For i= 1,2, . . . ,m, we isotope s(Si,αi) to s′i so that

cis
′
i c
−1
i (θ,ϕ, t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

2πt+
π

6
,ϕ,− θ

2π
+

7
12

)

if 0 < θ <
π

3
,
5
12

< t <
7
12

,

(

2πt− 5π
6
,ϕ,− θ

2π
+
13
12

)

if π < θ <
4π
3
,
5
12

< t <
7
12

,

(θ +2πt,ϕ, t) if 0 < t <
1
6
or

5
6
< t < 1,

(4.8)

and so that s′i (x) = si(x) for x ∈ T(Si,αi). Thus s′i is isotopic to si relative to M −
c−1i ({(θ,ϕ, t) : 1/6 < t < 5/6}). Thus, f ′ = s′m ◦ s′m−1 ◦ ··· ◦ s′1 is isotopic to f relative to
M −∪m

i=1c
−1
i ({(θ,ϕ, t) : 1/6 < t < 5/6}) which is a neighborhood of M −∪m

i=1T(Si,αi) in
M.

Since cj ◦ s′j c−1j preserves ϕ-levels, the condition that all possible intervals [ϕ̂(i, j;k;∗) −
δ, ϕ̂(i, j;k;∗) + δ] are disjoint implies that s′j(B(i, j;k))∩B(i′, j;k′) =∅ unless i = i′ and k = k′.
Clearly, the sliding set here is in general position when δ is small enough. By Lemma 4.3,
the accompanying sequence of each fixed point of f ′ is of one of two types listed there.
Step 2. Fixed points having accompanying sequences of the first type.

Consider a sequence {B(ik ,i1; j1),B(i1,i2; j2),B(i2,i3; j3), . . . ,B(ik−1,ik ; jk)} of the components of
the intersection of sliding sets.

Since B(ik ,i1; j1) ranges in t-direction from one component of ∂T(Si1 ,αi1 ) to the other
component of ∂T(Si1 ,αi1 ), its image under s′i1 will form a circle “parallel” to αi1 . Thus,
s′i1 (B(ik ,i1; j1)) meets any component of the form B(i1,∗;∗). Note that B(i1,i2; j2) ∈ ci1 ({(θ,ϕ, t) :
π < θ < 7π/6}). The behavior of s′i1 on B(ik ,i1; j1) (see (4.6), (4.7), and (4.8)) implies that
s′i1 (B(ik ,i1; j1)) will be parallel to B(i1,i2; j2) in θ-direction of T(Si1 ,αi1 ). Thus, s

′
i1 (B(ik ,i1; j1))∩

B(i1,i2; j2), which is a solid torus, also ranges in t-direction from one component of ∂T(Si2 ,
αi2 ) to the other component of ∂T(Si2 ,αi2 ). Its image under si2 meets B(i2,i3; j3). We then
get a solid torus s′i2 (s

′
i1 (B(ik ,i1; j1))∩ B(i1,i2; j2))∩ B(i2,i3; j3) = s′i2 ◦ s′i1 (B(ik ,i1; j1))∩ s′i2 (B(i1,i2; j2))∩

B(i2,i3; j3) in B(i2,i3; j3) (see Figure 4.2).
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B(ik ,i1; j1) B(i1 ,i2; j2)

s′i1 (B(ik ,i1; j1))

B(i2 ,i3; j3)

s′i2 (B(i1 ,i2; j2))

s′i2◦s′i1 (B(ik ,i1; j1))

Figure 4.2

Repeating the above argument, we will get a solid torus in B(ik ,i1; j1):

s′ik ◦ s′ik−1 ◦ ··· ◦ s′i1
(
B(ik ,i1; j1)

)∩ s′ik ◦ s′ik−1 ◦ ··· ◦ s′i2
(
B(i1,i2; j2)

)∩···∩s′ik
(
B(ik−1,ik ; jk)

)∩B(ik ,i1; j1).
(4.9)

By Proposition 4.2 and the Remark 4.5 following the present lemma, a fixed point x of f ′

will be contained in this set if x has {B1,B2, . . . ,Bk} as its accompanying sequence. Note
that f ′ has unique fixed point on above set. Thus, the fixed point of f ′ with accompany-
ing sequence {B1,B2, . . . ,Bk} is unique.

Let x∗ be the unique fixed point of f ′ in the set in (4.9). Then ci1 (x∗) is a fixed point
of ci1 ◦ f ′ ◦ c−1i1 : U → ci1 (T(Si1 ,αi1 )), where U is the ci1 image of the set in (4.9). Using
the coordinates of T2× I , the three eigenvalues λ1, λ2, λ3 of the derivative of ci1 ◦ f ′ ◦ c−1i1
at ci1 (x∗) will satisfy the condition: one eigenvalue has absolute value greater than 1, the
other two have absolute values less than 1. We assume that |λ1| > 1, |λ2| < 1 and |λ3| < 1.

From Figure 4.3, we know that the θ-direction of B(i, j;k) is mapped by s′j into the θ-
direction of B( j,∗;∗) if I(i, j;k) > 0; the θ-direction of B(i, j;k′) is mapped by s′j into opposition
of the θ-direction of B( j,∗;∗) if I(i, j;k′) < 0. Thus, the eigenvalue λ1 > 1 if I(ik ,i1; j1)I(i1,i2; j2) ···
I(ik−1,ik ; jk) = 1; and λ1 <−1 if I(ik ,i1; j1)I(i1,i2; j2) ··· I(ik−1,ik ; jk) =−1.

Note that the fixed point index of an isolated fixed point of a map is just (−1)κ, where
κ is the number of real eigenvalues which are greater than 1 of the derivative of this map
at this fixed point, provided that 1 is not an eigenvalue of this derivative (see [4, page12,
3.2(2)]). We have that ind(ci1 ◦ f ′ ◦ c−1i1 ,ci1 (x∗)) = −I(ik ,i1; j1)I(i1,i2; j2) ··· I(ik−1,ik ; jk), which is
also the fixed point index ind( f ′,x∗) by the commutativity of fixed point index.
Step 3. Fixed points having accompanying sequences of the second type.
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αi

αj

S j
q(i, j;k′)

q(i, j;k)

B( j,∗;∗)
αj

s j(B(i, j;k))

B(i, j;k)

αi

Figure 4.3

Note that the inverse ( f ′)−1 = s̄′1 ◦ s̄′2 ◦ ··· ◦ s̄′m of f ′ is also a homeomorphism com-
posed of finite isotoped slide homeomorphisms, where each s̄′j is isotopic to the slide
homeomorphism s(Sj ,−αj) determined by Sj and the inverse −αj of path αj . Clearly,
the fixed point sets of f ′ and ( f ′)−1 are the same. Moreover, a fixed point of f ′ having
{B(i1,il ;∗),B(i2,i1;∗),B(i3,i2;∗), . . . ,B(il ,il−1;∗)} as its accompanying sequence is also a fixed point
of ( f ′)−1 have an accompanying sequence of the first type discussed in last step.

Using the same argument as above, we can prove that there is a unique fixed point y∗
of f ′ having {B(i1,il ;∗),B(i2,i1;∗),B(i3,i2;∗), . . . ,B(il ,il−1;∗)} as its accompanying sequence. The
only difference is in the fixed point index. Because the three eigenvalues λ1, λ2, λ3 of
the derivative of ci1 ◦ ( f ′)−1 ◦ c−1i1 at ci1 (y∗) satisfy the conditions: |λ1| > 1, |λ2| < 1 and
|λ3| < 1, the three eigenvalues μ1, μ2, μ3 of the derivative of ci1 ◦ f ′ ◦ c−1i1 at ci1 (y∗) will
satisfy the conditions: |μ1| = |1/λ1| < 1, |μ2| = |1/λ2| > 1 and |μ3| = |1/λ3| > 1. Since both
of f ′ and f are orientation-preserving, we have that λ1λ2λ3 > 0 and μ1μ2μ3 > 0.

Note that at a point in αi ∩ Sj , the algebraic intersection number of αi with Sj is op-
posite to the algebraic intersection number of −αi with Sj . If (−I(i1,il ; j1))(−I(i2,i1; j2))···
(−I(il ,il−1; jl)) = (−1)lI(i1,il ; j1)I(i2,i1; j2) ··· I(il ,il−1; jl) > 0, by using the proof of the last step, we
have that λ1 > 1, and therefore 0 < μ1 = 1/λ1 < 1. Thus, μ2μ3 > 0. There are three possibil-
ities: (1) μ2,μ3 > 1, (2) μ2,μ3 <−1 and (3) μ2 and μ3 are conjugate complex numbers. In
each case, the number of real eigenvalues which are greater than 1 is even. We have that
ind( f ′, y∗)= ind(ci1 ◦ f ′ ◦ c−1i1 ,ci1 (y∗))= 1.

If (−1)lI(i1,il ; j1)I(i2,i1; j2) ··· I(il ,il−1; jl) < 0, by using the proof of last step, we have that λ1 <
−1, and therefore −1 < μ1 = 1/λ1 < 0. Thus, μ2μ3 < 0. Hence, either μ2 < −1, μ3 > 1 or
μ2 > 1, μ3 <−1. It follows that there is only one real eigenvalue which is greater than 1, so
ind( f ′, y∗)= ind(ci1 ◦ f ′ ◦ c−1i1 ,ci1 (y∗))=−1.

Combining these two cases, we have that ind( f ′, y∗)= (−1)lI(i1,il ; j1)I(i2,i1; j2) ··· I(il ,il−1; jl).
�

This lemma is a generalization of [9, Lemma 4.2]. The proof here is more descriptive
than the direct computation there. The fixed point class coordinates of these fixed points
can be computed in the same way.

Proposition 4.6. Let f = s(Sm,αm) ◦ s(Sm−1,αm−1) ◦ ··· ◦ s(S1,α1) be a homeomorphism
composed of finitely many slide homeomorphisms. Assume that the Sj ’s are pairwise disjoint,
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and that any αi and any Sj , i, j = 1,2, . . . ,m (i = j), intersect transversally. Then f is isotopic
to a homeomorphism with

∑

1≤ j1<···<jk≤m

(∣
∣αjk ∩ Sj1

∣
∣
∣
∣αj1 ∩ Sj2

∣
∣···∣∣αjk−1 ∩ Sjk

∣
∣

+
∣
∣αj1 ∩ Sjk

∣
∣
∣
∣αj2 ∩ Sj1

∣
∣···∣∣αjk ∩ Sjk−1

∣
∣
)

(4.10)

fixed points.

Proof. The assumptions on αi’s and Sk’s imply that we can arrange the union of all sliding
stes in general position provided T(Si,αi) is close to αi∪ Si for each i. Using above lemma
and Lemma 3.4, we get immediately our conclusion. �

By this proposition, the number |αi ∩ Sj| determines in some sense the number of
fixed points. In order to reduce the number of fixed points of such homeomorphisms,
the intersection numbers (|αi∩ Sj|’s) should be reduced. In [9, page 184], we defined

MI
(
αi,Sj

)=: min
{∣
∣α∩ Sj

∣
∣ : α� αj rel{0,1}, α has no self intersection

}
. (4.11)

From this definition, we have

Proposition 4.7. Let Sj be an oriented sphere isotopic to a component of the boundary
∂M′

k( j) of a summandM′
k( j), and let 〈αi〉 = a1b1a2b2 ···anbnan+1 where bl consists of words

in π1(M′
k( j)), al does not contain any word in π1(M′

k( j)) and all al’s and bl’s are non-trivial
except possibly for a1 and an+1. Then MI(αi,Sj) = 2n if M′

k( j) ∼= S2 × I ; MI(αi,Sj) = n if
M′

k( j)
∼= S2× I . Here, the number n is just the number of word “groups” of 〈αi〉, consisting of

the words from π1(M′
k( j)).

In particular, we haveMI(αi,Sj)= 0 if Sj is isotopic to Si.

Proof. See [9, Proposition 4.4].
It should be noticed that allMI ’s can not be minimized at same time if any two Si’s are

disjoint and if there are isotopic sliding spheres.

Example 4.8. Let M = T3
1 #T

3
2#T

3
3 be the connected sum of three 3-dimensional tori. For

j = 1,2,3, we write gj1, gj2 and gj3 for the generators of the free abelian group π1(T3
j ).

Let S1 and S3 be oriented spheres isotopic to the boundary of the summand T3
1 −

Int(D3), and S2 an oriented sphere isotopic to the boundary of the summand T3
2 −

Int(D3). Three paths are given by 〈α1〉 = g21, 〈α2〉 = g32g12g33, and 〈α3〉 = g31g22g33g23
(see Figure 4.4).

The numbers of |αi∩ Sj|’s in two cases are listed as follows:

α1 α2 α3
S1 — 2 2
S2 2 — 4
S3 0 2 —

α1 α2 α3
S1 — 2 0
S2 2 — 4
S3 2 2 —
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S1

T3
3

T3
1

S3

α2

α3

α1

T3
2

S2

S1

T3
3

T3
1

S3

α2

α3

α1

T3
2

S2

Figure 4.4

Thus, the sum in Proposition 4.6 is

(∣
∣α3∩ S1

∣
∣
∣
∣α1∩ S2

∣
∣
∣
∣α2∩ S3

∣
∣+

∣
∣α1∩ S3

∣
∣
∣
∣α2∩ S1

∣
∣
∣
∣α3∩ S2

∣
∣
)

+
(∣
∣α2∩ S1

∣
∣
∣
∣α1∩ S2

∣
∣+

∣
∣α1∩ S2

∣
∣
∣
∣α2∩ S1

∣
∣
)

+
(∣
∣α3∩ S1

∣
∣
∣
∣α1∩ S3

∣
∣+

∣
∣α1∩ S3

∣
∣
∣
∣α3∩ S1

∣
∣
)

+
(∣
∣α3∩ S2

∣
∣
∣
∣α2∩ S3

∣
∣+

∣
∣α2∩ S3

∣
∣
∣
∣α3∩ S2

∣
∣
)
.

(4.12)

In the case shown on the left, it is (8 + 0) + (4 + 4) + (0 + 0) + (8 + 8) = 32; in the other
case, it is (0+ 16)+ (4+4)+ (0+0)+ (8+8)= 40.

Note that in both cases |αi∩ Sj| =MI(αi,Sj) except for (i, j)= (1,3) or (3,1). Since S3
and S1 are isotopic, we have thatMI(α1,S3)=MI(α3,S1)= 0. But, these two numbers can
not be realized simultaneously if the intersection of S1 and S3 is assumed to be empty. �

Thus, we need the following.

Definition 4.9. Given slide homeomorphisms s(S1,α1),s(S1,α1), . . . ,s(Sm,αm) whose com-
position is f , we defineMI({α1, . . . ,αm},{S1, . . . ,Sm}) to be:

min
α′j ,S

′
j

∑

1≤ j1<···<jk≤m

(∣
∣α′jk ∩ S′j1

∣
∣
∣
∣α′j1 ∩ S′j2

∣
∣···∣∣α′jk−1 ∩ S′jk

∣
∣

+
∣
∣α′j1 ∩ S′jk

∣
∣|α′j2 ∩ S′j1

∣
∣···∣∣α′jk ∩ S′jk−1

∣
∣
)
,

(4.13)

where each α′j and S′j , j = 1,2, . . . ,m, range over all oriented paths and spheres such that
α′j and S′j are isotopic to αj and Sj , respectively, with α′j ∩ S′j = {α′j(0),α′j(1)}, and such
that any two α′i ’s and any two S′j ’s have empty intersection.

In Example 4.8, we have MI({α1,α2,α3},{S1,S2,S3}) = 32. The relation between this
“totally” minimal intersection number and the individualMI ’s is given by the following
proposition.
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Proposition 4.10. The number MI({α1, . . . ,αm},{S1, . . . ,Sm}) is greater or equal to the
following sum:

∑

1≤ j1<···<jk≤m

(
MI
(
αjk ,Sj1

)
MI
(
αj1 ,Sj2

)···MI
(
αjk−1 ,Sjk

)

+MI
(
αj1 ,Sjk

)
MI
(
αj2 ,Sj1

)···MI
(
αjk ,Sjk−1

))
.

(4.14)

If any two sliding spheres are not isotopic, then the above two numbers are the same.

Now, we can state our main theorem.

Theorem 4.11. Let f = s(Sm,αm) ◦ s(Sm−1,αm−1) ◦ ··· ◦ s(S1,α1) be a homeomorphism
which is composed of finitely many slide homeomorphisms. Then, f is isotopic to a homeo-
morphism withMI({α1, . . . ,αm},{S1, . . . ,Sm}) fixed points.
Proof. By definition,MI({α1, . . . ,αm},{S1, . . . ,Sm}) can be realized as

∑

1≤ j1<···<jk≤m

(∣
∣α′jk ∩ S′j1

∣
∣
∣
∣α′j1 ∩ S′j2

∣
∣···∣∣α′jk−1 ∩ S′jk

∣
∣

+
∣
∣α′j1 ∩ S′jk

∣
∣
∣
∣α′j2 ∩ S′j1

∣
∣···∣∣α′jk ∩ S′jk−1

∣
∣
)
,

(4.15)

where for each j = 1,2, . . . ,m, α′j and S′j are isotopic to αj and Sj , respectively with α′j ∩
S′j = {α′j(0),α′j(1)}, and that any two α′i ’s and any two S′j ’s have no intersections. Thus,
s(S′j ,α

′
j) is isotopic to s(Sj ,αj). Applying Proposition 4.6 to the homeomorphism

s(S′m,α′m)◦ s(S′m−1,α′m−1)◦ ··· ◦ s(S′1,α′1), we will obtain our conclusion. �

By the lower bound property of Nielsen number, we immediately get the following
corollary.

Corollary 4.12.

0≤N( f )≤MI
({
α1, . . . ,αm

}
,
{
S1, . . . ,Sm

})
. (4.16)

5. Some remarks

In this final section, we will show that in some cases, the fixed point numbers can be
further reduced.

Consider our homeomorphism f . If some successive sliding spheres, say Sn,Sn+1, . . . ,
Sn+p, are isotopic, we have

s
(
Sn+p,αn+p

)◦ ··· ◦ s(Sn+1,αn+1
)◦ s(Sn,αn

)= s
(
Sn,βn

)
, (5.1)

where 〈βn〉 = 〈αnαn+1 ···αn+p〉.
Combine all possible slide homeomorphisms which are in succession and have the

same sliding spheres. We will get a shorter expression for f , denoted as follows:

f = s
(
Smp ,βmp

)◦ ··· ◦ s(Sm2 ,βm2

)◦ s(Sm1 ,βm1

)
, mp ≤m. (5.2)



18 Fixed points of slide homeomorphisms

Using the main theorem (Theorem 4.11), we can isotope f to a homeomorphism with

MI
({
βm1 ,βm2 , . . . ,βmp

}
,
{
Sm1 ,Sm2 , . . . ,Smp

})
(5.3)

fixed points. This number is no more thanMI({α1, . . . ,αm},{S1, . . . ,Sm}).
In some cases, the two sliding spheres on two ends of the original expression of f are

isotopic, that is, Sm is isotopic to S1. This implies that Smp is isotopic to Sm1 . Consider the
homeomorphism

g = s
(
Sm1 ,βm1

)◦ s(Smp ,βmp

)◦ s(Smp−1 ,βmp−1
)◦ ··· ◦ s(Sm2 ,βm2

)

= s
(
Smp ,βmpβm1

)◦ s(Smp−1 ,βmp−1
)◦ ··· ◦ s(Sm2 ,βm2

)
.

(5.4)

Here, βmpβm1 can be considered as a path satisfying 〈βmpβm1〉 = 〈βmp〉〈βm1〉. Notice that
g = s(Sm1 ,βm1 ) ◦ f ◦ (s(Sm1 ,βm1 ))

−1, that is, g is conjugate to f . The fixed point set of f
and g are the same. Such a relation is preserved under isotopy. Thus, using the main the-
orem (Theorem 4.11) again, we can isotope f to a homeomorphism with MI({βm2 , . . . ,
βmp−1 ,βmpβm1},{Sm2 , . . . ,Smp}) fixed points.

Furthermore, if 〈βmpβm1〉 = 1 ∈ π1(M), we get that g = s(Smp−1 ,βmp−1 ) ◦ ··· ◦ s(Sm2 ,
βm2 ), and therefore the resulting fixed point number is justMI({βm2 , . . . ,βmp−1 ,},{Sm2 , . . . ,
Smp−1}), so we can repeat the above procedure if Smp−1 is isotopic to Sm2 .

Apply this method to Example 4.8, we will get a new homeomorphism

g = s
(
S3,α3α1

)◦ s(S2,α2
)= s

(
S3,
〈
g31g22g33g23g21

〉)◦ s(S2,
〈
g32g12g33

〉)
. (5.5)

Thus, the homeomorphism is isotopic to one with MI({α2,α3α1},{S2,S3}) = 16 fixed
points, and so is the homeomorphism s(S3,α3)◦ s(S2,α2)◦ s(S1,α1).
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