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Let C be a nonempty closed convex subset of a smooth Banach space E and let A be an
accretive operator of C into E. We first introduce the problem of finding a point u ∈ C
such that 〈Au, J(v− u)〉 ≥ 0 for all v ∈ C, where J is the duality mapping of E. Next we
study a weak convergence theorem for accretive operators in Banach spaces. This theorem
extends the result by Gol’shteı̆n and Tret’yakov in the Euclidean space to a Banach space.
And using our theorem, we consider the problem of finding a fixed point of a strictly
pseudocontractive mapping in a Banach space and so on.
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1. Introduction

LetH be a real Hilbert space with norm ‖ · ‖ and inner product (·,·), letC be a nonempty
closed convex subset ofH and let A be a monotone operator of C intoH . The variational
inequality problem is formulated as finding a point u∈ C such that

(v−u,Au)≥ 0 (1.1)

for all v ∈ C. Such a point u∈ C is called a solution of the problem. Variational inequali-
ties were initially studied by Stampacchia [13, 17] and ever since have been widely studied.
The set of solutions of the variational inequality problem is denoted by VI(C,A). In the
case when C =H , VI(H ,A) = A−10 holds, where A−10 = {u ∈H : Au = 0}. An element
of A−10 is called a zero point of A. An operator A of C intoH is said to be inverse strongly
monotone if there exists a positive real number α such that

(x− y,Ax−Ay)≥ α‖Ax−Ay‖2 (1.2)

for all x, y ∈ C; see Browder and Petryshyn [5], Liu and Nashed [18], and Iiduka et al.
[11]. For such a case,A is said to be α-inverse stronglymonotone. LetT be a nonexpansive
mapping of C into itself. It is known that if A = I − T , then A is 1/2-inverse strongly
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2 Weak convergence of an iterative sequence

monotone and F(T)=VI(C,A), where I is the identity mapping ofH and F(T) is the set
of fixed points of T ; see [11]. In the case of C =H = RN , for finding a zero point of an
inverse strongly monotone operator, Gol’shteı̆n and Tret’yakov [8] proved the following
theorem.

Theorem 1.1 (see Gol’shteı̆n and Tret’yakov [8]). LetRN be theN-dimensional Euclidean
space and let A be an α-inverse strongly monotone operator of RN into itself with A−10 �= ∅.
Let {xn} be a sequence defined as follows: x1 = x ∈RN and

xn+1 = xn− λnAxn (1.3)

for every n= 1,2, . . . , where {λn} is a sequence in [0,2α]. If {λn} is chosen so that λn ∈ [a,b]
for some a, b with 0 < a < b < 2α, then {xn} converges to some element of A−10.

For finding a solution of the variational inequality for an inverse strongly monotone
operator, Iiduka et al. [11] proved the following weak convergence theorem.

Theorem 1.2 (see Iiduka et al. [11]). Let C be a nonempty closed convex subset of a real
Hilbert space H and let A be an α-inverse strongly monotone operator of C into H with
VI(C,A) �= ∅. Let {xn} be a sequence defined as follows: x1 = x ∈ C and

xn+1 = PC
(
αnxn +

(
1−αn

)
PC
(
xn− λnAxn

))
(1.4)

for every n= 1,2, . . . , where PC is the metric projection fromH onto C, {αn} is a sequence in
[−1,1], and {λn} is a sequence in [0,2α]. If {αn} and {λn} are chosen so that αn ∈ [a,b] for
some a, b with −1 < a < b < 1 and λn ∈ [c,d] for some c, d with 0 < c < d < 2(1+ a)α, then
{xn} converges weakly to some element of VI(C,A).

A mapping T of C into itself is said to be strictly pseudocontractive [5] if there exists k
with 0≤ k < 1 such that

‖Tx−Ty‖2 ≤ ‖x− y‖2 + k
∥
∥(I −T)x− (I −T)y

∥
∥2 (1.5)

for all x, y ∈ C. For such a case, T is said to be k-strictly pseudocontractive. For finding a
fixed point of a k-strictly pseudocontractive mapping, Browder and Petryshyn [5] proved
the following weak convergence theorem.

Theorem 1.3 (Browder and Petryshyn [5]). Let K be a nonempty bounded closed convex
subset of a real Hilbert spaceH and let T be a k-strictly pseudocontractive mapping of K into
itself. Let {xn} be a sequence defined as follows: x1 = x ∈ K and

xn+1 = αxn + (1−α)Txn (1.6)

for every n= 1,2, . . . , where α∈ (k,1). Then {xn} converges weakly to some element of F(T).

In this paper, motivated by the above three theorems, we first consider the following
generalized variational inequality problem in a Banach space.

Problem 1.4. Let E be a smooth Banach space with norm ‖ · ‖, let E∗ denote the dual of
E, and let 〈x, f 〉 denote the value of f ∈ E∗ at x ∈ E. Let C be a nonempty closed convex
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subset of E and let A be an accretive operator of C into E. Find a point u∈ C such that
〈
Au, J(v−u)

〉≥ 0, ∀ v ∈ C, (1.7)

where J is the duality mapping of E into E∗.

This problem is connected with the fixed point problem for nonlinear mappings, the
problem of finding a zero point of an accretive operator and so on. For the problem
of finding a zero point of an accretive operator by the proximal point algorithm, see
Kamimura and Takahashi [12]. Second, in order to find a solution of Problem 1.4, we
introduce the following iterative scheme for an accretive operator A in a Banach space E:
x1 = x ∈ C and

xn+1 = αnxn +
(
1−αn

)
QC
(
xn− λnAxn

)
(1.8)

for every n= 1,2, . . . , where QC is a sunny nonexpansive retraction from E onto C, {αn}
is a sequence in [0,1], and {λn} is a sequence of real numbers. Then we prove a weak con-
vergence (Theorem 3.1) in a Banach space which is generalized simultaneously Gol’shteı̆n
and Tret’yakov’s theorem (Theorem 1.1) and Browder and Petryshyn’s theorem (Theorem
1.3).

2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and let E∗ denote the dual of E. We denote
the value of f ∈ E∗ at x ∈ E by 〈x, f 〉. When {xn} is a sequence in E, we denote strong
convergence of {xn} to x ∈ E by xn→ x and weak convergence by xn⇀ x.

Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be uniformly convex if for each
ε∈ (0,2], there exists δ > 0 such that for any x, y ∈U ,

‖x− y‖ ≥ ε implies
∥
∥
∥
∥
x+ y

2

∥
∥
∥
∥≤ 1− δ. (2.1)

It is known that a uniformly convex Banach space is reflexive and strictly convex. A Ba-
nach space E is said to be smooth if the limit

lim
t→0

‖x+ ty‖−‖x‖
t

(2.2)

exists for all x, y ∈ U . It is also said to be uniformly smooth if the limit (2.2) is attained
uniformly for x, y ∈U . The norm of E is said to be Frećhet differentiable if for each x ∈U ,
the limit (2.2) is attained uniformly for y ∈ U . And we define a function ρ : [0,∞)→
[0,∞) called themodulus of smoothness of E as follows:

ρ(τ)= sup
{
1
2

(‖x+ y‖+‖x− y‖)− 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ = τ
}
. (2.3)

It is known that E is uniformly smooth if and only if limτ→0 ρ(τ)/τ = 0. Let q be a fixed
real number with 1 < q ≤ 2. Then a Banach space E is said to be q-uniformly smooth if
there exists a constant c > 0 such that ρ(τ)≤ cτq for all τ > 0. For example, see [1, 23] for
more details. We know the following lemma [1, 2].
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Lemma 2.1 [1, 2]. Let q be a real number with 1 < q ≤ 2 and let E be a Banach space. Then
E is q-uniformly smooth if and only if there exists a constant K ≥ 1 such that

1
2

(‖x+ y‖q +‖x− y‖q)≤ ‖x‖q +‖Ky‖q (2.4)

for all x, y ∈ E.

The best constant K in Lemma 2.1 is called the q-uniformly smoothness constant of E;
see [1]. Let q be a given real number with q > 1. The (generalized) duality mapping Jq
from E into 2E

∗
is defined by

Jq(x)=
{
x∗ ∈ E∗ :

〈
x,x∗

〉= ‖x‖q, ∥∥x∗∥∥= ‖x‖q−1} (2.5)

for all x ∈ E. In particular, J = J2 is called the normalized duality mapping. It is known
that

Jq(x)= ‖x‖q−2J(x) (2.6)

for all x ∈ E. If E is a Hilbert space, then J = I . The normalized duality mapping J has the
following properties:

(1) if E is smooth, then J is single-valued;
(2) if E is strictly convex, then J is one-to-one and 〈x− y,x∗ − y∗〉 > 0 holds for all

(x,x∗),(y, y∗)∈ J with x �= y;
(3) if E is reflexive, then J is surjective;
(4) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each

bounded subset of E.
See [22] for more details. It is also known that

q
〈
y− x, jx

〉≤ ‖y‖q−‖x‖q (2.7)

for all x, y ∈ E and jx ∈ Jq(x). Further we know the following result [25]. For the sake of
completeness, we give the proof; see also [1, 2].

Lemma 2.2 [25]. Let q be a given real number with 1 < q ≤ 2 and let E be a q-uniformly
smooth Banach space. Then

‖x+ y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+2‖Ky‖q (2.8)

for all x, y ∈ E, where Jq is the generalized duality mapping of E and K is the q-uniformly
smoothness constant of E.

Proof. Let x, y ∈ E be given arbitrarily. From (2.7), we have q〈y, Jq(x)〉 ≥ ‖x‖q − ‖x −
y‖q. Thus, it follows from Lemma 2.1 that

q
〈
y, Jq(x)

〉≥ ‖x‖q−‖x− y‖q
≥ ‖x‖q− (2‖x‖q +2‖Ky‖q−‖x+ y‖q)

=−‖x‖q− 2‖Ky‖q +‖x+ y‖q.
(2.9)

Hence we have ‖x+ y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+2‖Ky‖q. �
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Let E be a Banach space and let C be a subset of E. Then a mapping T of C into itself
is said to be nonexpansive if

‖Tx−Ty‖ ≤ ‖x− y‖ (2.10)

for all x, y ∈ C. We denote by F(T) the set of fixed points of T . A closed convex subset
C of a Banach space E is said to have normal structure if for each bounded closed convex
subsetD of C which contains at least two points, there exists an element ofD which is not
a diametral point ofD. It is well known that a closed convex subset of a uniformly convex
Banach space has normal structure and a compact convex subset of a Banach space has
normal structure. We know the following theorem [14] related to the existence of fixed
points of a nonexpansive mapping.

Theorem 2.3 (Kirk [14]). Let E be a reflexive Banach space and let D be a nonempty
bounded closed convex subset of E which has normal structure. Let T be a nonexpansive
mapping of D into itself. Then the set F(T) is nonempty.

To prove our main result, we also need the following theorem [4].

Theorem 2.4 (see Browder [4]). Let D be a nonempty bounded closed convex subset of a
uniformly convex Banach space E and let T be a nonexpansive mapping of D into itself. If
{uj} is a sequence of D such that uj ⇀ u0 and lim j→∞‖uj −Tuj‖ = 0, then u0 is a fixed
point of T .

Let D be a subset of C and let Q be a mapping of C into D. Then Q is said to be sunny
if

Q
(
Qx+ t(x−Qx)

)=Qx (2.11)

whenever Qx+ t(x−Qx)∈ C for x ∈ C and t ≥ 0. A mapping Q of C into itself is called a
retraction if Q2 =Q. If a mapping Q of C into itself is a retraction, then Qz = z for every
z ∈ R(Q), where R(Q) is the range of Q. A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D. We know the
following two lemmas [15, 20] concerning sunny nonexpansive retractions.

Lemma 2.5 [15]. Let C be a nonempty closed convex subset of a uniformly convex and
uniformly smooth Banach space E and let T be a nonexpansive mapping of C into itself with
F(T) �= ∅. Then the set F(T) is a sunny nonexpansive retract of C.

Lemma 2.6 (see [20]; see also [6]). Let C be a nonempty closed convex subset of a smooth
Banach space E and letQC be a retraction from E onto C. Then the following are equivalent:

(i) QC is both sunny and nonexpansive;
(ii) 〈x−QCx, J(y−QCx)〉 ≤ 0 for all x ∈ E and y ∈ C.

It is well known that if E is a Hilbert space, then a sunny nonexpansive retraction
QC is coincident with the metric projection from E onto C. Let C be a nonempty closed
convex subset of a smooth Banach space E, let x ∈ E and let x0 ∈ C. Then we have from
Lemma 2.6 that x0 =QCx if and only if 〈x− x0, J(y− x0)〉 ≤ 0 for all y ∈ C, where QC is a
sunny nonexpansive retraction from E onto C.
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Let E be a Banach space and let C be a nonempty closed convex subset of E. An oper-
ator A of C into E is said to be accretive if there exists j(x− y)∈ J(x− y) such that

〈
Ax−Ay, j(x− y)

〉≥ 0 (2.12)

for all x, y ∈ C. We can characterize the set of solutions of Problem 1.4 by using sunny
nonexpansive retractions.

Lemma 2.7. Let C be a nonempty closed convex subset of a smooth Banach space E. Let QC

be a sunny nonexpansive retraction from E onto C and let A be an accretive operator of C
into E. Then for all λ > 0,

S(C,A)= F
(
QC(I − λA)

)
, (2.13)

where S(C,A)= {u∈ C : 〈Au, J(v−u)〉 ≥ 0, ∀ v ∈ C}.
Proof. We have from Lemma 2.6 that u∈ F(QC(I − λA)) if and only if

〈
(u− λAu)−u, J(y−u)

〉≤ 0 (2.14)

for all y ∈ C and λ > 0. This inequality is equivalent to the inequality 〈−λAu, J(y−u)〉 ≤
0. Since λ > 0, we have u∈ S(C,A). This completes the proof. �

Now, we define an extension of the inverse strongly monotone operator (1.2) in Ba-
nach spaces. Let C be a subset of a smooth Banach space E. For α > 0, an operator A of C
into E is said to be α-inverse strongly accretive if

〈
Ax−Ay, J(x− y)

〉≥ α‖Ax−Ay‖2 (2.15)

for all x, y ∈ C. Evidently, the definition of the inverse strongly accretive operator is based
on that of the inverse strongly monotone operator. It is obvious from (2.15) that

‖Ax−Ay‖ ≤ 1
α
‖x− y‖ (2.16)

for all x, y ∈ C. Let q be a given real number with q ≥ 2. We also have from (2.6), (2.15),
and (2.16) that

〈
Ax−Ay, Jq(x− y)

〉= ‖x− y‖q−2〈Ax−Ay, J(x− y)
〉

≥ ‖x− y‖q−2α‖Ax−Ay‖2

≥ (α‖Ax−Ay‖)q−2α‖Ax−Ay‖2
= αq−1‖Ax−Ay‖q

(2.17)

for all x, y ∈ C. One should note that no Banach space is q-uniformly smooth for q > 2;
see [23] for more details. So, in this paper, we study a weak convergence theorem for
inverse strongly accretive operators in uniformly convex and 2-uniformly smooth Ba-
nach spaces. It is well known that Hilbert spaces and the Lebesgue Lp (p ≥ 2) spaces are
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uniformly convex and 2-uniformly smooth. Let X be a Banach space and let Lp(X) =
Lp(Ω,Σ,μ;X), 1≤ p ≤∞, be the Lebesgue-Bochner space on an arbitrary measure space
(Ω,Σ,μ). Let 1 < q ≤ 2 and let q ≤ p <∞. Then Lp(X) is q-uniformly smooth if and only
if X is q-uniformly smooth; see [23]. For convergence theorems in the Lebesgue spaces
Lp (1 < p ≤ 2), see Iiduka and Takahashi [9, 10].

We can know the following property for inverse strongly accretive operators in a 2-
uniformly smooth Banach space.

Lemma 2.8. LetC be a nonempty closed convex subset of a 2-uniformly smooth Banach space
E. Let α > 0 and let A be an α-inverse strongly accretive operator of C into E. If 0 < λ≤ α/K2,
then I − λA is a nonexpansive mapping of C into E, where K is the 2-uniformly smoothness
constant of E.

Proof. We have from Lemma 2.2 that for all x, y ∈ C,

∥
∥(I − λA)x− (I − λA)y

∥
∥2 = ∥∥(x− y)− λ(Ax−Ay)

∥
∥2

≤ ‖x− y‖2− 2λ
〈
Ax−Ay, J(x− y)

〉
+2K2λ2‖Ax−Ay‖2

≤ ‖x− y‖2− 2λα‖Ax−Ay‖2 + 2K2λ2‖Ax−Ay‖2
≤ ‖x− y‖2 + 2λ(K2λ−α)‖Ax−Ay‖2.

(2.18)

So, if 0 < λ≤ α/K2, then I − λA is a nonexpansive mapping of C into E. �

Remark 2.9. If q ≥ 2, we have from (2.17) that for x, y ∈ C,

∥
∥(I − λA)x− (I − λA)y‖q ≤ ‖x− y‖q + λ

(
2Kqλq−1− qαq−1

)‖Ax−Ay‖q. (2.19)

Since, for q > 2, there exists no Banach space which is q-uniformly smooth, we consider
only 2-uniformly smooth Banach spaces. For 1 < q < 2, the inequalities (2.17) and (2.19)
do not hold.

Applying Theorem 2.3, Lemmas 2.7 and 2.8, we have that ifD is a nonempty bounded
closed convex subset of a uniformly convex and 2-uniformly smooth Banach space E, D
is a sunny nonexpansive retract of E and A is an inverse strongly accretive operator of
D into E, then the set S(D,A) is nonempty. We know also the following theorem which
was proved by Reich [21]; see also Lau and Takahashi [16], Takahashi and Kim [24], and
Bruck [7].

Theorem 2.10 (see Reich [21]). Let C be a nonempty closed convex subset of a uniformly
convex Banach space with a Frećhet differentiable norm. Let {T1,T2, . . .} be a sequence of
nonexpansive mappings ofC into itself with

⋂∞
n=1F(Tn) �=∅. Let x∈C and Sn=TnTn−1 ···T1

for all n≥ 1. Then the set

∞⋂

n=1
co
{
Smx :m≥ n

}∩
∞⋂

n=1
F
(
Tn
)

(2.20)

consists of at most one point, where coD is the closure of the convex hull of D.
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3. Weak convergence theorem

In this section, we obtain the following weak convergence theorem for finding a solution
of Problem 1.4 for an inverse strongly accretive operator in a uniformly convex and 2-
uniformly smooth Banach space.

Theorem 3.1. Let E be a uniformly convex and 2-uniformly smooth Banach space and let
C be a nonempty closed convex subset of E. Let QC be a sunny nonexpansive retraction from
E onto C, let α > 0 and let A be an α-inverse strongly accretive operator of C into E with
S(C,A) �= ∅. Suppose x1 = x ∈ C and {xn} is given by

xn+1 = αnxn + (1−αn)QC
(
xn− λnAxn

)
(3.1)

for every n= 1,2, . . . ,where {λn} is a sequence of positive real numbers and {αn} is a sequence
in [0,1]. If {λn} and {αn} are chosen so that λn ∈ [a,α/K2] for some a > 0 and αn ∈ [b,c]
for some b,c with 0 < b < c < 1, then {xn} converges weakly to some element z of S(C,A),
where K is the 2-uniformly smoothness constant of E.

Proof. Put yn =QC(xn− λnAxn) for every n= 1,2, . . . . Let u∈ S(C,A). We first prove that
{xn} and {yn} are bounded and limn→∞‖xn− yn‖ = 0. We have from Lemmas 2.7 and 2.8
that

∥
∥yn−u

∥
∥= ∥∥QC

(
xn− λnAxn

)−QC
(
u− λnAu

)∥∥

≤ ∥∥(xn− λnAxn
)− (u− λnAu

)∥∥≤ ∥∥xn−u
∥
∥ (3.2)

for every n= 1,2, . . . . It follows from (3.2) that

∥
∥xn+1−u

∥
∥= ∥∥αn

(
xn−u

)
+
(
1−αn

)(
yn−u

)∥∥

≤ αn
∥
∥xn−u

∥
∥+

(
1−αn

)∥∥yn−u
∥
∥

≤ αn
∥
∥xn−u

∥
∥+

(
1−αn

)∥∥xn−u
∥
∥= ∥∥xn−u

∥
∥

(3.3)

for every n = 1,2, . . . . Therefore, {‖xn − u‖} is nonincreasing and hence there exists
limn→∞‖xn−u‖. So, {xn} is bounded. We also have from (3.2) and (2.16) that {yn} and
{Axn} are bounded.

Next we will show limn→∞‖xn − yn‖ = 0. Suppose that limn→∞‖xn − yn‖ �= 0. Then
there are ε > 0 and a subsequence {xni − yni} of {xn − yn} such that ‖xni − yni‖ ≥ ε for
each i= 1,2, . . . . Since E is uniformly convex, the function ‖ · ‖2 is uniformly convex on
bounded convex set B(0,‖x1−u‖), where B(0,‖x1−u‖)= {x ∈ E : ‖x‖ ≤ ‖x1−u‖}. So,
for ε, there is δ > 0 such that

‖x− y‖ ≥ ε implies
∥
∥λx+ (1− λ)y

∥
∥2 ≤ λ‖x‖2 + (1− λ)‖y‖2− λ(1− λ)δ (3.4)

whenever x, y ∈ B(0,‖x1−u‖) and λ∈ (0,1). Thus, for each i= 1,2, . . . ,

∥
∥xni+1−u

∥
∥2 = ∥∥αni

(
xni −u

)
+
(
1−αni

)(
yni −u

)∥∥2

≤ αni
∥
∥xni −u‖2 + (1−αni

)∥∥yni −u
∥
∥2−αni

(
1−αni

)
δ.

(3.5)
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Therefore, for each i= 1,2, . . . ,

0 < b(1− c)δ ≤ αni
(
1−αni

)
δ ≤ ∥∥xni −u

∥
∥2−∥∥xni+1−u

∥
∥2. (3.6)

Since the right-hand side of the inequality above converges to 0, we have a contradiction.
Hence we conclude that

lim
n→∞

∥
∥xn− yn

∥
∥= 0. (3.7)

Since {xn} is bounded, we have that a subsequence {xni} of {xn} converges weakly to z.
And since λni is in [a,α/K2] for some a > 0, it holds that {λni} is bounded. So, there exists
a subsequence {λnij } of {λni} which converges to λ0 ∈ [a,α/K2]. We may assume without
loss of generality that λni → λ0. We next prove z ∈ S(C,A). Since QC is nonexpansive, it
holds from yni =QC(xni − λniAxni) that

∥
∥QC

(
xni − λ0Axni

)− xni
∥
∥≤ ∥∥QC

(
xni − λ0Axni

)− yni
∥
∥+

∥
∥yni − xni

∥
∥

≤ ∥∥(xni − λ0Axni
)− (xni − λniAxni

)∥∥+
∥
∥yni − xni

∥
∥

≤M
∣
∣λni − λ0

∣
∣+

∥
∥yni − xni

∥
∥,

(3.8)

whereM = sup{‖Axn‖ : n= 1,2, . . .}. We obtain from the convergence of {λni}, (3.7), and
(3.8) that

lim
i→∞

∥
∥QC

(
I − λ0A

)
xni − xni

∥
∥= 0. (3.9)

On the other hand, from Lemma 2.8, we have that QC(I − λ0A) is nonexpansive. So, by
(3.9), Lemma 2.7, and Theorem 2.4, we obtain z ∈ F(QC(I − λ0A))= S(C,A).

Finally, we prove that {xn} converges weakly to some element of S(C,A). We put

Tn = αnI +
(
1−αn

)
QC
(
I − λnA

)
(3.10)

for every n= 1,2, . . . . Then we have xn+1 = TnTn−1 ···T1x and z ∈⋂∞n=1 co{xm :m ≥ n}.
We have from Lemma 2.8 that Tn is a nonexpansive mapping of C into itself for every
n= 1,2, . . . . And we also have from Lemma 2.7 that

⋂∞
n=1F(Tn)=

⋂∞
n=1F(QC(I − λnA))=

S(C,A). Applying Theorem 2.10, we obtain

∞⋂

n=1
co
{
xm :m≥ n

}∩ S(C,A)= {z}. (3.11)

Therefore, the sequence {xn} converges weakly to some element of S(C,A). This com-
pletes the proof. �

4. Applications

In this section, we prove some weak convergence theorems in a uniformly convex and
2-uniformly smooth Banach space by using Theorem 3.1. We first study the problem of
finding a zero point of an inverse strongly accretive operator. The following theorem is a
generalization of Gol’shteı̆n and Tret’yakov’s theorem (Theorem 1.1).
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Theorem 4.1. Let E be a uniformly convex and 2-uniformly smooth Banach space. Let α > 0
and let A be an α-inverse strongly accretive operator of E into itself with A−10 �= ∅, where
A−10= {u∈ E : Au= 0}. Suppose x1 = x ∈ E and {xn} is given by

xn+1 = xn− rnAxn (4.1)

for every n = 1,2, . . . , where {rn} is a sequence of positive real numbers. If {rn} is chosen
so that rn ∈ [s, t] for some s, t with 0 < s < t < α/K2, then {xn} converges weakly to some
element z of A−10, where K is the 2-uniformly smoothness constant of E.

Proof. By assumption, we note that 1− tK2/α ∈ (0,1). We define sequences {αn} and
{λn} by

αn = 1− t
K2

α
, λn = rn

1−αn
(4.2)

for every n = 1,2, . . . , respectively. Then it is easy to check that λn ∈ (0,α/K2) and S(E,
A)=A−10. It follows from the definition of {xn} that

xn+1 = xn− rnAxn = αnxn +
(
1−αn

)
(
xn− rn

1−αn
Axn

)

= αnxn +
(
1−αn

)
I
(
xn− λnAxn

)
,

(4.3)

where I is the identity mapping of E. Obviously, the identity mapping I is a sunny non-
expansive retraction from E onto itself. Therefore, by using Theorem 3.1, {xn} converges
weakly to some element z of A−10. �

We next study the problem of finding a fixed point of a strictly pseudocontractive
mapping. Let 0≤ k < 1. Let E be a Banach space and let C be a subset of E. Then a map-
ping T of C into itself is said to be k-strictly pseudocontractive [5, 19] if there exists
j(x− y)∈ J(x− y) such that

〈
Tx−Ty, j(x− y)

〉≤ ‖x− y‖2− 1− k

2

∥
∥(I −T)x− (I −T)y

∥
∥2 (4.4)

for all x, y ∈ C. Then the inequality (4.4) can be written in the form

〈
(I −T)x− (I −T)y, j(x− y)

〉≥ 1− k

2

∥
∥(I −T)x− (I −T)y

∥
∥2. (4.5)

If E is a Hilbert space, then the inequality (4.4) (and hence (4.5)) is equivalent to the
inequality (1.5). The following theorem is a generalization of Browder and Petryshyn’s
theorem (Theorem 1.3).

Theorem 4.2. Let E be a uniformly convex and 2-uniformly smooth Banach space and let
C be a nonempty closed convex subset and a sunny nonexpansive retract of E. Let T be a
k-strictly pseudocontractive mapping of C into itself with F(T) �= ∅. Suppose x1 = x ∈ C
and {xn} is given by

xn+1 =
(
1−βn

)
xn +βnTxn (4.6)
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for every n= 1,2, . . . , where {βn} is a sequence in (0,1). If {βn} is chosen so that βn ∈ [β,γ]
for some β, γ with 0 < β < γ < (1− k)/(2K2), then {xn} converges weakly to some element z
of F(T), where K is the 2-uniformly smoothness constant of E.

Proof. By assumption, note that 1− 2γK2/(1− k)∈ (0,1). We define sequences {αn} and
{λn} by

αn = 1− γ
2K2

1− k
, λn = βn

1−αn
(4.7)

for every n= 1,2, . . . , respectively. Then we can readily verify that

0 < λn ≤ 1− k

2K2
≤ 1

2
< 1 (4.8)

for every n = 1,2, . . . . Put A = I − T . We have from (4.5) that A is (1− k)/2-inverse
strongly accretive. It is easy to show that

S(C,A)= S(C,I −T)= F(T) �= ∅. (4.9)

Since C is a sunny nonexpansive retract of E and λn ∈ (0,1), there exists a sunny nonex-
pansive retraction QC such that (1− λn)xn + λnTxn = QC((1− λn)xn + λnTxn) for every
n= 1,2, . . . . It follows from the definition of {xn} that

xn+1 =
(
1−βn

)
xn +βnTxn

= (1− λn
(
1−αn

))
xn + λn

(
1−αn

)
Txn

= αnxn +
(
1−αn

)((
1− λn

)
xn + λnTxn

)

= αnxn +
(
1−αn

)
QC
((
1− λn

)
xn + λnTxn

)

= αnxn +
(
1−αn)QC

(
xn− λn(I −T)xn

)

= αnxn +
(
1−αn

)
QC
(
xn− λnAxn

)
.

(4.10)

Therefore, by using Theorem 3.1, {xn} converges weakly to some element z of F(T). �

Let C be a subset of a smooth Banach space E. Let α > 0. An operator A of C into E is
said to be α-strongly accretive if

〈
Ax−Ay, J(x− y)

〉≥ α‖x− y‖2 (4.11)

for all x, y ∈ C. Let β > 0. An operator A of C into E is said to be β-Lipschitz continuous if

‖Ax−Ay‖ ≤ β‖x− y‖ (4.12)

for all x, y ∈ C. Let C be a nonempty closed convex subset of a Hilbert space H . One
method of finding a point u∈ VI(C,A) is the projection algorithm which starts with any
x1 = x ∈ C and updates iteratively xn+1 according to the formula

xn+1 = PC
(
xn− λAxn

)
(4.13)
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for every n = 1,2, . . . , where PC is the metric projection from H onto C, A is a mono-
tone (accretive) operator of C into H , and λ is a positive real number. It is well known
that if A is an α-strongly accretive and β-Lipschitz continuous operator of C into H and
λ ∈ (0,2α/β2), then the operator PC(I − λA) is a contraction of C into itself. Hence, the
Banach contraction principle guarantees that the sequence generated by (4.13) converges
strongly to the unique solution of VI(C,A); see [3]. Motivated by this result, we prove
the following weak convergence theorem for strongly accretive and Lipschitz continuous
operators.

Theorem 4.3. Let E be a uniformly convex and 2-uniformly smooth Banach space and let
C be a nonempty closed convex subset of E. Let QC be a sunny nonexpansive retraction from
E onto C, let α > 0, let β > 0, and let A be an α-strongly accretive and β-Lipschitz continuous
operator of C into E with S(C,A) �= ∅. Suppose x1 = x ∈ C and {xn} is given by

xn+1 = αnxn +
(
1−αn

)
QC
(
xn− λnAxn

)
(4.14)

for every n= 1,2, . . . ,where {λn} is a sequence of positive real numbers and {αn} is a sequence
in [0,1]. If {λn} and {αn} are chosen so that λn ∈ [a,α/(K2β2)] for some a > 0 and αn ∈
[b,c] for some b,c with 0 < b < c < 1, then {xn} converges weakly to a unique element z of
S(C,A), where K is the 2-uniformly smoothness constant of E.

Proof. Since A is an α-strongly accretive and β-Lipschitz continuous operator of C into
E, we have

〈
Ax−Ay, J(x− y)

〉≥ α‖x− y‖2 ≥ α

β2
‖Ax−Ay‖2 (4.15)

for all x, y ∈ C. Therefore, A is α/β2-inverse strongly accretive. Since A is strongly accre-
tive and S(C,A) �= ∅, the set S(C,A) consists of one point z. Using Theorem 3.1, {xn}
converges weakly to a unique element z of S(C,A). �
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