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Let E be an arbitrary real Banach space andK a nonempty, closed, convex (not necessarily
bounded) subset of E. If T is a member of the class of Lipschitz, strongly pseudocontrac-
tive maps with Lipschitz constant L ≥ 1, then it is shown that to each Mann iteration
there is a Krasnosleskij iteration which converges faster than the Mann iteration. It is also
shown that the Mann iteration converges faster than the Ishikawa iteration to the fixed
point of T .
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stricted use, distribution, and reproduction in any medium, provided the original work
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1. Introduction

By approximation of fixed points of certain classes of operators which satisfy weak con-
tractive-type conditions that do not guarantee the convergence of Picard iteration [2,
Example 2.1, page 76], certain mean value fixed point iterations, namely, Krasnoselskij,
Mann, and Ishikawa iteration methods are useful to approximate fixed points. For more
details on these iterations and further literature, see Berinde [3].

When, for a certain class of mappings, two or more fixed point iteration procedures
can be used to approximate their fixed points, it is of theoretical and practical importance
to compare the rate of convergence of these iterations, and to find out, if possible, which
one of them converges faster. Recent works in this direction are [1, 4, 5].

Verma [9] approximated fixed points of Lipschitzian and generalized pseudocontrac-
tive operators in Hilbert spaces by both Krasnoselskij and Mann iteration, and Berinde
[4] established that, for any Mann iteration, there is a Krasnoselskij iteration which con-
verges faster to the fixed point of such an operator.

Chidume and Osilike [7] approximated fixed points of Lipschitzian strongly pseudo-
contractive maps in Banach spaces, using both Mann and Ishikawa iterations.
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Now, the interest of this paper is to compare the fastness of the convergence to the fixed
point among the Krasnoselskij, Mann, and Ishikawa iterations for the class of Lipschitz,
strongly pseudocontractive operators in arbitrary real Banach spaces.

2. Preliminaries and known results

Suppose that E is a real Banach space with dual E∗, we denote by J , the normalized duality
map from E to 2E

∗
defined by

J(x)=
{
f ∗ ∈ E∗ :

〈
x, f ∗

〉= ‖x‖2 = ∥∥ f ∗∥∥2
}
, (2.1)

where 〈·,·〉 denotes the generalized duality pairing.
A mapping T with domain D(T) and range R(T) in E is called Lipschitz, if there exists

L > 0 such that for each x, y ∈D(T),

‖Tx−Ty‖ ≤ L‖x− y‖. (2.2)

A mapping T with domain D(T) and range R(T) in E is called strongly pseudocontrac-
tive if and only if for any x, y ∈D(T), there exists t > 1 such that

‖x− y‖ ≤ ∥∥(1+ r)(x− y)− rt(Tx−Ty)
∥∥ (2.3)

for any r > 0. If t = 1 in (2.3), then T is called pseudocontractive.
It follows from [8, Lemma 1.1] that T is strongly pseudocontractive if and only if the

following condition holds: there exists j(x− y)∈ J(x− y) such that

〈
(I −T)(x)− (I −T)(y), j(x− y)

〉≥ k‖x− y‖2 (2.4)

for each x, y in E, where k = (t− 1)/t ∈ (0,1).
Again by using [8, Lemma 1.1] and inequality (2.4) (Bogin [6]) it follows that T is

strongly pseudocontractive if and only if the following inequality holds:

‖x− y‖ ≤ ∥∥x− y + s
[
(I −T − kI)(x)− (I −T − kI)(y)

]∥∥ (2.5)

for all x, y ∈D(T) and s > 0.

Notation 2.1. Throughout this paper, E denotes a real Banach space, K a closed con-
vex (not necessarily bounded) subset of E, and LS(K) the class of all Lipschitz, strongly
pseudocontractive maps on K . For any T ∈ LS(K), we assume that the Lipschitz constant
L≥ 1 and pseudocontractive constant k ∈ (0,1).

Let x0 ∈ E be arbitrary.
(i) For any λ∈ (0,1), the sequence {xn}∞n=0 ⊆ E defined by

xn+1 = Tλxn = (1− λ)xn + λTxn, n= 0,1,2, . . . , (2.6)

is called the Krasnoselskij iteration. We denote it by K(x0,λ,T).
(ii) The sequence {xn}∞n=0 ⊆ E defined by

xn+1 =
(
1−αn

)
xn +αnTxn, n= 0,1,2, . . . , (2.7)
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where {αn}∞n=0 is a real sequence satisfying 0 ≤ αn < 1, n = 0,1,2, . . . , is called the Mann
iteration, and is denoted byM(x0,αn,T).

(iii) The sequence {xn}∞n=0 ⊆ E defined by

xn+1 =
(
1−αn

)
xn +αnTyn, n= 0,1,2, . . . ,

yn =
(
1−βn

)
xn +βnTxn, n= 0,1,2, . . . ,

(2.8)

where {αn}∞n=0, {βn}∞n=0 are sequences of reals satisfying 0 ≤ αn, βn < 1, is called the
Ishikawa iteration, and is denote by I(x0,αn,βn,T).

Chidume and Osilike [7] established the strong convergence of Mann and Ishikawa it-
erations to the fixed point of T ∈ LS(K). Now, the following question arises: for a member
T of LS(K) which one of the following, namely, Krasnoselskij, Mann, and Ishikawa iterations
converges faster to the fixed point of T?

To answer this question, we use the following definitions introduced by Berinde [5].

Definition 2.2 [5]. Let {an}∞n=0 and {bn}∞n=0 be two sequences of real numbers that con-
verge to a and b, respectively. Assume that there exists a real number l such that

lim
n→∞

∣∣an− a
∣∣

∣∣bn− b
∣∣ = l. (2.9)

(i) If l = 0, then {an}∞n=0 is said to converge faster to a than {bn}∞n=0 to b.
(ii) If 0 < l <∞, then {an}∞n=0 and {bn}∞n=0 are said to have the same rate of convergence.

Definition 2.3 [5]. Suppose that for two fixed point iteration procedures {un}∞n=0 and
{vn}∞n=0 both converging to the same fixed point p (say) with error estimates

∥∥un− p
∥∥≤ an, n= 0,1,2, . . . ,

∥∥vn− p
∥∥≤ bn, n= 0,1,2, . . . ,

(2.10)

where {an}∞n=0 and {bn}∞n=0 are two sequences of positive numbers converging to zero. If
{an}∞n=0 converges faster than {bn}∞n=0, then {un}∞n=0 is said to converge faster than {vn}∞n=0
to p.

For more details on definitions, we refer, Berinde [4].

3. Results on the comparison of fastness of the convergence

Theorem 3.1. If T ∈ LS(K), then the following hold:
(a) for any x0 ∈ K and ε ∈ (0,k/2M]∩ (0,1), the Krasnoselskij iteration {xn}∞n=0 de-

fined by K(x0,ε,T) converges strongly to the fixed point x∗ of T , whereM = 1+ (2−
k+L)(L+1);

(b) for any x0 ∈ K , the Mann iteration {xn}∞n=0 defined byM(x0,αn,T) with {αn}∞n=0 ⊂
[0,1) satisfying (i) limn→∞αn = 0 and (ii) Σ∞n=0αn =∞ converges strongly to the fixed
point x∗ of T ;
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(c) for any x0 ∈ K and for any Mann iteration {xn}∞n=0 defined by M(x0,αn,T) with
{αn}∞n=0 ⊂ [0,1) satisfying (i) and (ii) of (b), converging to the fixed point x∗ of
T , there is an ε0 ∈ (0,1) such that the Krasnoselskij iteration K(x0,ε0,T) converges
faster to the fixed point x∗ of T . Moreover, x∗ is unique.

Proof. From [7, Corollary 1], (b) follows. In order to establish (c), we need the following
estimates, through which (a) follows.

Using Mann iterationM(x0,αn,T), from (2.7), we have

xn = xn+1 +αnxn−αnTxn =
(
1+αn

)
xn+1 +αn(I −T − kI)xn+1

− (2− k)αnxn+1 +αnxn +αn
(
Txn+1−Txn

) (3.1)

so that

xn− x∗ = (1+αn
)(
xn+1− x∗

)
+αn(I −T − kI)

(
xn+1− x∗

)

− (1− k)αn
(
xn− x∗

)
+ (2− k)α2n

(
xn−Txn

)
+αn

(
Txn+1−Txn

)
.

(3.2)

Thus from (2.5), we get
∥∥xn− x∗

∥∥≥ (1+αn
)∥∥xn+1− x∗

∥∥− (1− k)αn
∥∥xn− x∗

∥∥

− (2− k)α2n
∥∥xn−Txn

∥∥−αn
∥∥Txn+1−Txn

∥∥.
(3.3)

Thus
(
1+αn

)∥∥xn+1− x∗
∥∥

≤ [1+ (1− k)αn
]∥∥xn− x∗

∥∥+ (2− k)α2n
∥∥xn−Txn

∥∥+αn
∥∥Txn+1−Txn

∥∥.
(3.4)

We have
∥∥xn−Txn

∥∥≤ ∥∥xn− x∗
∥∥+

∥∥x∗ −Txn
∥∥≤ (1+L)

∥∥xn− x∗
∥∥,

∥∥Txn+1−Txn
∥∥≤ L

∥∥xn+1− xn
∥∥= L

∥∥(1−αn
)
xn +αnTxn− xn

∥∥≤ L(1+L)αn
∥∥xn− x∗

∥∥.
(3.5)

Thus from (3.4), (3.5), we have

(
1+αn

)∥∥xn+1− x∗
∥∥≤ [1+ (1− k)αn + (2− k)α2n(1+L) +α2nL(1+L)

] ·∥∥xn− x∗
∥∥.
(3.6)

Now

∥∥xn+1− x∗
∥∥≤

[
1+ (1− k)αn

1+αn
+ (2− k)α2n(1+L) +α2nL(1+L)

]
·∥∥xn− x∗

∥∥

≤ [1− kαn +α2n +α2n(1+L)(2− k+L)
] ·∥∥xn− x∗

∥∥

= [1− kαn +α2n
(
1+ (2− k+L)(1+L)

)] ·∥∥xn− x∗
∥∥.

(3.7)
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Therefore,

∥∥xn+1− x∗
∥∥≤ [1− kαn +α2nM

] ·∥∥xn− x∗
∥∥, (3.8)

whereM = 1+ (2− k+L)(1+L).
On replacing αn by ε in (3.8), we get the following estimate for the Krasnoselskij iter-

ation K(x0,ε,T):
∥∥xn+1− x∗

∥∥≤ [1− kε+ ε2M
] ·∥∥xn− x∗

∥∥. (3.9)

Here we observe that 1− kε+ ε2M < 1 for any ε < k/M. Thus (a) follows.
From the elementary calculus, the function f defined on [0,1] by f (ε) = [1− kε +

ε2M] has the minimum value at ε = ε0, where ε0 = k/2M.
In particular, for this ε0 > 0, from (3.9), we have the following estimate for the Kras-

noselskij iteration:

∥∥xn+1− x∗
∥∥≤ θ0 ·

∥∥xn− x∗
∥∥, (3.10)

where θ0 = 1− (kε0/2) (< 1).
Thus, inductively it follows that

∥∥xn+1− x∗
∥∥≤ θn0 ·

∥∥x1− x∗
∥∥. (3.11)

Let η =min{k/2M,kε20/2}.
Since αn → 0 as n→∞, then there is a positive integer N0 such that αn < η for all

n≥N0.
Then from (3.8), we have

∥∥xn+1− x∗
∥∥ < [1− kαn +αnηM

] ·∥∥xn− x∗
∥∥ ∀n≥N0

≤
[
1− kαn +αn

k

2M
M
]
·∥∥xn− x∗

∥∥ ∀n≥N0

=
[
1− kαn

2

]
·∥∥xn− x∗

∥∥ ∀n≥N0.

(3.12)

On repeating this process, we get

∥∥xn+1− x∗
∥∥ <

n∏

i=N0

[
1− kαi

2

]
·∥∥xN0 − x∗

∥∥ ∀n≥N0. (3.13)

On comparing the coefficients of the inequalities (3.11) and (3.13) obtained through
K(x0,ε0,T) andM(x0,αn,T), respectively, we have, for n≥N0,

θn0∏n
i=N0

[
1− kαi/2

] ≤ 1
(
1+ kε0/2

)n−N0
−→ 0 as n−→∞. (3.14)

Thus by Definition 2.2, the Krasnoselskij iteration converges faster than the Mann itera-
tion to the fixed point x∗ of T . This proves (c). �



6 Comparison of fastness of the convergence

Table 3.1

xn K
(
x0,ε0,T

)
K
(
x0,ε,T

)

x0 1.9 1.9

x1 1.875900277 1.887950139

x2 1.852341980 1.876035445

x3 1.829315930 1.864254774

x4 1.806813062 1.852606990

x5 1.784824424 1.841090963

x6 1.763341175 1.829705570

x7 1.742354579 1.818449697

x8 1.721856008 1.807322234

x9 1.701836931 1.796322080

x10 1.682288851 1.785448141

Remark 3.2. From (3.10) of Theorem 3.1, it follows that for any ε ∈ (0,1) with ε < ε0, the
Krasnoselskij iteration K(x0,ε0,T) converges faster than K(x0,ε,T) to the fixed point x∗

of T for any x0 ∈ K . This observation also is numerically shown in Table 3.1.

Theorem 3.3. Let E, K , and T be as in Theorem 3.1. Suppose that {αn}∞n=0 and {βn}∞n=0
are real sequences in [0,1) such that Σ∞n=0αn =∞ and limn→∞αn = limn→∞βn = 0. Then

(a) for any x0 ∈ K , the Ishikawa iteration I(x0,αn,βn,T) converges strongly to the fixed
point x∗ of T , and

(b) the Mann iterationM(x0,αn,T) converges faster than the Ishikawa iteration I(x0,αn,
βn,T) to the fixed point x∗ of T .

Proof. (a) follows from [7, Theorem 1].
We now prove (b). Since T ∈ LS(K), from I(x0,αn,βn,T) defined by (2.8), we have

xn = xn+1 +αnxn−αnTyn =
(
1+αn

)
xn+1 +αn(I −T − kI)xn+1

− (2− k)αnxn+1 +αnxn +αn
(
Txn+1−Tyn

)

= (1+αn
)
xn+1 +αn(I −T − kI)xn+1− (1− k)αnxn

+ (2− k)α2n
(
xn−Tyn

)
+αn

(
Txn+1−Tyn

)
.

(3.15)

Hence

xn− x∗ = (1+αn
)(
xn+1− x∗

)
+αn(I −T − kI)

(
xn+1− x∗

)

− (1− k)αn
(
xn− x∗

)
+ (2− k)α2n

(
xn−Tyn

)
+αn

(
Txn+1−Tyn

)
.

(3.16)

Thus from (2.5), we get

∥∥xn− x∗
∥∥≥ (1+αn

)∥∥xn+1− x∗
∥∥− (1− k)αn

∥∥xn− x∗
∥∥

− (2− k)α2n
∥∥xn−Tyn

∥∥−αn
∥∥Txn+1−Tyn

∥∥.
(3.17)
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Then
(
1+αn

)∥∥xn+1− x∗
∥∥

≤ [1+ (1− k)αn
]∥∥xn− x∗

∥∥+ (2− k)α2n
∥∥xn−Tyn

∥∥+αn
∥∥Txn+1−Tyn

∥∥.
(3.18)

We have the following estimates:

∥∥yn− x∗
∥∥≤ (1−βn

)∥∥xn− x∗
∥∥+βn

∥∥Txn− x∗
∥∥≤ [1+ (L− 1)βn

]∥∥xn− x∗
∥∥, (3.19)

∥∥xn−Tyn
∥∥≤ ∥∥xn− x∗

∥∥+
∥∥x∗ −Tyn

∥∥≤ ∥∥xn− x∗
∥∥+L

∥∥x∗ − yn
∥∥

≤ [1+L
(
1+ (L− 1)βn

)]∥∥xn− x∗
∥∥.

(3.20)

Also,

∥∥Txn+1−Txn
∥∥≤ L

∥∥xn+1− yn
∥∥≤ L

[(
1−αn

)∥∥xn− yn
∥∥+αn

∥∥Tyn− yn
∥∥]. (3.21)

Now
∥∥Tyn− yn

∥∥≤ ∥∥Tyn− x∗
∥∥+

∥∥x∗ − yn
∥∥≤ (1+L)

∥∥yn− x∗
∥∥,

∥∥xn− yn
∥∥= βn

∥∥xn−Txn
∥∥≤ (1+L)βn

∥∥xn− x∗
∥∥.

(3.22)

Now on substituting (3.22) in (3.21) and using (3.19), we have

∥∥Txn+1−Tyn
∥∥≤ L

[
(1+L)

(
1−αn

)
βn +αn(1+L)

(
1+ (L− 1)βn

)]∥∥xn− x∗
∥∥

= L(1+L)
[(
1−αn

)
βn +αn

(
1+ (L− 1)βn

)]∥∥xn− x∗
∥∥.

(3.23)

On using (3.20) and (3.23) in (3.18), we get

(
1+αn

)∥∥xn+1− x∗
∥∥≤ [1+ (1− k)αn +α2n(2− k)

[
1+L

(
1+ (L− 1)βn

)]

+αnL(1+L)
[(
1−αn

)
βn +αn

(
1+ (L− 1)βn

)]]∥∥xn− x∗
∥∥

<
[
1+ (1− k)αn +α2n(2− k+L)(1+L) + γ

(
αn,βn,L,k

)]∥∥xn− x∗
∥∥,

(3.24)

where

γ
(
αn,βn,L,k

)= αnβnL
[
(2− k)(L− 1)+ (L+1)

(
1−αn

)
+ (1+L)(L− 1)

]∥∥xn− x∗
∥∥.
(3.25)

Thus

∥∥xn+1− x∗
∥∥≤

[
1+ (1− k)αn

1+αn
+α2n(2− k+L)(1+L) + γ

(
αn,βn,L,k

)]∥∥xn− x∗
∥∥

= [1− kαn +α2n +α2n(2− k+L)(1+L) + γ
(
αn,βn,L,k

)]∥∥xn− x∗
∥∥

= [1− kαn +α2n
(
1+ (2− k+L)(1+L)

)
+ γ
(
αn,βn,L,k

)]∥∥xn− x∗
∥∥.

(3.26)
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DefineM1 = (3− k+L)(1+L).
Since

1+ (2− k+L)(1+L)≤M1,

(2− k)(L− 1)+ (L+1)
(
1−αn

)
+ (1+L)(L− 1)≤M1,

(3.27)

we have

γ
(
αn,βn,L,k

)≤ αnβnLM1. (3.28)

Now (3.26) becomes

∥∥xn+1− x∗
∥∥≤ [1− kαn +α2nM1 +αnβnLM1

]∥∥xn− x∗
∥∥

= [1− kαn +αn
(
αn +βnL

)
M1
]∥∥xn− x∗

∥∥.
(3.29)

Since αn→ 0 as n→∞, there is a positive integer N0 such that

αn <
kε0
2M1

∀n≥N0, (3.30)

and since βn→ 0 as n→∞, there is a positive integer N1 such that

βn <
kε0
2M1L

∀n≥N1. (3.31)

Write N =max{N0,N1}. Now for any n≥N , (3.29) becomes

∥∥xn+1− x∗
∥∥ <

[
1− kαn +αn

(
kε0
2M1

+
kε0
2M1L

L
)
M1

]∥∥xn− x∗
∥∥

= [1− kαn
(
1− ε0

)]∥∥xn− x∗
∥∥.

(3.32)

On repeating this process, we get

∥∥xn+1− x∗
∥∥ <

{ n∏

i=N

[
1− kαi

(
1− ε0

)]
}∥∥xN − x∗

∥∥ ∀n≥N , (3.33)

which is an estimation for the Ishikawa iteration I(x0,αn,βn,T).
On choosing βn = 0 for all n, in (3.29), we get the following estimate for Mann itera-

tionM(x0,αn,T):

∥∥xn+1− x∗
∥∥≤ [1− kαn +α2nM1

]∥∥xn− x∗
∥∥

<
[
1− kαn +αnM1

kε0
2M1

]∥∥xn− x∗
∥∥ ∀n≥N

=
[
1− kαn

(
1− ε0

2

)]∥∥xn− x∗
∥∥ ∀n≥N.

(3.34)
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On repeating process, we get

∥∥xn+1− x∗
∥∥ <

{ n∏

i=N

[
1− kαi

(
1− ε0

2

)]}∥∥xN − x∗
∥∥. (3.35)

On comparing the coefficients of the inequalities (3.33) and (3.35), we get that for any
n≥N ,

∏n
i=N
[
1− kαi

(
1− ε0/2

)]
∏n

i=N
[
1− kαi

(
1− ε0

)] ≤
n∏

i=N

[
1− kαi

ε0
2

]
. (3.36)

Since Σ∞n=0αn = ∞, we have limn→∞
∏n

i=N [1− kαi(ε0/2)] = 0. Thus the Mann iteration
M(x0,αn,T) converges faster than the Ishikawa iteration I(x0,αn,βn,T) to the fixed point
of T . �

Remark 3.4. Under the assumptions of Theorem 3.1, it follows that for any Mann iter-
ation M(x0,αn,T) there is a Krasnoselskij iteration K(x0,ε0,T) converges faster to the
fixed point of T ; and from Theorem 3.3 it follows that the Mann iteration M(x0,αn,T)
converges faster than the Ishikawa iteration I(x0,αn,βn,T) to the fixed point of T . Hence
we conclude that the Krasnoselskij iteration converges faster than both the Mann and
Ishikawa iterations to the fixed point of T ∈ LS(K).

4. Numerical examples

The following examples show the fastness of the movement of the first 10 iterates towards
the fixed point.

Example 4.1 [4]. Let X = [1/2,2] and T : X → X given by Tx = 1/x for all x ∈ X . Then T
is Lipschitz with Lipschitzian constant L= 4; and is strongly pseudocontractive with any
positive constant k ∈ (0,1).

We note that Picard iteration does not converge for any x0 �= 1 in X .

From Theorems 3.1 and 3.3, we have the following.
(i) The Krasnoselskij iteration K(x0,ε0,T) converges to the fixed point x∗ = 1, where

ε0 = k/2M, in which k ∈ (0,1) andM = 31− 5k. Choosing k = 62/67, we have ε0 = 1/57.
For this ε0, the Krasnoselskij iteration K(x0,ε0,T) is given by

xn+1 = 1
57

(
56xn + x−1n

)
, n= 0,1,2, . . . , (4.1)

which converges to the fixed point x∗ = 1.
(ii) Also with αn = 1/(n+58), n= 0,1,2, . . . , the corresponding Mann iteration M(x0,

αn,T) is given by

xn+1 = 1
n+58

[
(n+57)xn + x−1n

]
, n= 0,1,2, . . . , (4.2)

which converges to x∗ = 1.
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Table 4.1

xn K
(
x0,ε0,T

)
M
(
x0,αn,T

)
I
(
x0,αn,αn,T

)

x0 1.9 1.9 1.9

x1 1.875900277 1.876315789 1.876430333

x2 1.852341980 1.853547036 1.853770048

x3 1.829315930 1.831646354 1.831972078

x4 1.806813062 1.810569477 1.810992457

x5 1.784824424 1.790275008 1.790790067

x6 1.763341175 1.770724189 1.771324237

x7 1.742354579 1.751880697 1.752563291

x8 1.721856008 1.733710457 1.734471166

x9 1.701836931 1.716181474 1.717016088

x10 1.682288851 1.699263676 1.700168192

(iii) The Ishikawa iteration I(x0,αn,βn,T) converges to x∗=1 with αn=βn=1/(n+58),
n≥ 0. In this case, the sequence I(xn,αn,αn,T) is given by

xn+1 = n+57
n+58

xn +
xn

(n+57)x2n +1
, n= 0,1,2, . . . . (4.3)

(iv) The comparison of the fastness of first 10 iterates of the Krasnoselskij, Mann,
and Ishikawa iterations to the fixed point x∗ = 1 is given in Table 4.1 with x0 = 1.9, and
αn = 1/(n+58) with ε0 = 1/57.

From Table 4.1, we observe that the Krasnoselskij iteration moves faster towards the
fixed point x∗ = 1.

(v) Table 3.1 shows the comparison of first 10 iterates of Krasnoselskij iterations K(x0,
ε,T) and K(x0,ε0,T), where ε = 1/114, ε0 = 1/57, and x0 = 1.9. Here we observe that
K(x0,ε0,T) moves faster than K(x0,ε,T) to the fixed point x∗ = 1 of T (see Remark 3.2).

Example 4.2. Let X = [0,1] and T : X → X given by Tx = 1− x2 for all x ∈ X . Then T is
Lipschitz, with Lipschitzian constant L = 2, and is strongly pseudocontractive with any
positive constant k ∈ (0,1).

(i) From Theorem 3.1, the Krasnoselskij iteration K(x0,ε0,T) converges to x∗ =
(
√
5− 1)/2, where ε0 = k/2M, k ∈ (0,1), andM = 13− 3k.
Let x0 = 0.9. Now for k = 26/27, we have ε0 = 1/21; thus the Krasnoselskij iter-

ation K(x0,ε0,T) is given by

xn+1 = 1
21

[
1+ xn

(
20− xn

)]
, n= 0,1,2, . . . . (4.4)

(ii) The Mann iterationM(x0,αn,T) converges to x∗ = (
√
5− 1)/2, where αn = 1/(n+

22), n= 0,1,2, . . . , and the Mann iterationM(x0,αn,T) is given by

xn+1 = 1
n+22

[
1+ xn

(
n+21− xn

)]
, n= 0,1,2, . . . . (4.5)
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Table 4.2

xn K
(
x0,ε0,T

)
M
(
x0,αn,T

)
I
(
x0,αn,αn,T

)

x0 0.9 0.9 0.9

x1 0.866190476 0.867727272 0.870320426

x2 0.836834456 0.840741276 0.848058999

x3 0.811257010 0.817925143 0.826070151

x4 0.788904869 0.798448075 0.807059203

x5 0.769320309 0.781680098 0.790510886

x6 0.752121544 0.767135510 0.776017193

x7 0.736987546 0.754434352 0.763251561

x8 0.723647632 0.743275540 0.751950035

x9 0.711870797 0.733417737 0.741897348

x10 0.701459805 0.724665501 0.732916484

(iii) The Ishikawa iteration I(x0,αn,βn,T) converges to the fixed point x∗=(
√
5−1)/2

by Theorem 3.3 with αn = βn = 1/(n+22), n = 0,1,2, . . . . The Ishikawa iteration
I(x0,αn,αn,T) is given by

xn+1 =
(
n+21
n+22

)
xn +

1
n+22

[
1−

(
1

n+22

(
1+ xn

(
n+21− xn

)))2]
, n= 0,1,2, . . . .

(4.6)

(iv) Comparison of Krasnoselskij, Mann, and Ishikawa iterations is given for first 10
iterates in Table 4.2 for x0 = 0.9, and αn = 1/(n+22) with ε0 = 1/21.
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