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Using the concept of P-η-proximal mapping, we study the existence and sensitivity anal-
ysis of solution of a parametric general variational-like inequality problem in uniformly
smooth Banach space. The approach used may be treated as an extension and unification
of approaches for studying sensitivity analysis for various important classes of variational
inequalities given by many authors in this direction.
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1. Introduction

Variational inequality theory has become a very effective and powerful tool for studying a
wide range of problems arising inmechanics, contact problems in elasticity, optimization,
and control, management science, operation research, general equilibrium problems in
economics and transportation, unilateral obstacle, moving boundary-valued problems,
and so forth, see, for example, [3, 12, 15]. Variational inequalities have been generalized
and extended in different directions using novel and innovative techniques.

In recent years, much attention has been given to develop general methods for the sen-
sitivity analysis of solution set of various classes of variational inequalities (inclusions).
From the mathematical and engineering point of view, sensitivity properties of various
classes of variational inequalities can provide new insight concerning the problems being
studied and can stimulate ideas for solving problems. The sensitivity analysis of solu-
tion set for variational inequalities has been studied extensively by many authors using
quite different methods. By using the projection technique, Dafermos [4], Mukherjee
and Verma [17], Noor [18], and Yên [23] studied the sensitivity analysis of solution of
some classes of variational inequalities with single-valued mappings. By using the im-
plicit function approach that makes use of normal mappings, Robinson [22] studied the
sensitivity analysis of solutions for variational inequalities in finite-dimensional spaces.
By using proximal (resolvent) mapping technique, Adly [1], M. A. Noor and K. I. Noor
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[19], and Agarwal et al. [2] studied the sensitivity analysis of solution of some classes of
quasi-variational inclusions with single-valued mappings.

Recently, by using projection and proximal techniques, Ding and Luo [9], Liu et al.
[16], Park and Jeong [21], and Ding [8] have studied the behaviour and sensitivity analy-
sis of solution set for some classes of generalized variational inequalities (inclusions) with
set-valuedmappings. It is worthmentioning that most of the results in this direction have
been obtained in the setting of Hilbert space.

Inspired by recent research works going on in this area, in this paper, we consider
a parametric general variational-like inequality problem (PGVLIP) in uniformly smooth
Banach space. Further, using P-η-proximal mapping, we study the existence and sensitiv-
ity analysis of the solution of PGVLIP. The method presented in this paper can be used
to generalize and improve the results given by many authors, see, for example, [1–3, 7–
9, 16–19, 21–23].

2. Preliminaries

Let E be a real Banach space equipped with the norm ‖ · ‖. Let 〈·,·〉 denote the dual pair
between E and its dual space E∗ and let J : E→ 2E

∗
be the normalized duality mapping

defined by

J(u)= { f ∈ E∗, 〈 f ,u〉 = ‖u‖2, ‖u‖ = ‖ f ‖E∗
}
, ∀u∈ E. (2.1)

It is well known that if E is smooth, then J is single valued and if E ≡H , aHilbert space,
then J is an identity mapping.

The following concepts and results are needed in the sequel.

Definition 2.1 (see [14]). Let P : E→ E∗, g : E→ E, and η : E× E→ E be single-valued
mappings, then

(i) P is said to be α-strongly η-monotone, if there exists a constant α > 0 such that

〈
P(u)−P(v),η(u,v)

〉≥ α‖u− v‖2, ∀u,v ∈ E, (2.2)

(ii) g is said to be k-strongly accretive, if there exists a constant k > 0 and for any u,v ∈
E, j(u− v)∈ J(u− v) such that

〈
g(u)− g(v), j(u− v)

〉≥ k‖u− v‖2, (2.3)

where j is a selection of set-valued mapping J ,
(iii) η is said to be τ-Lipschitz continuous, if there exists a constant τ > 0 such that

∥
∥η(u,v)

∥
∥≤ τ‖u− v‖, ∀u,v ∈ E. (2.4)

Example 2.2. If E ≡ (−∞,+∞), P(u)≡−u, η(u,v)≡−(1/2)(u− v), for all u,v ∈ E, then
P is 1/2-strongly η-monotone and η is 1/2-Lipschitz continuous.

Definition 2.3 (see [5]). Let η : E× E→ E be a single-valued mapping. A proper func-
tional φ : E→ R∪{+∞} is said to be η-subdifferentiable at a point u∈ E if there exists a
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point f ∗ ∈ E∗ such that

φ(v)−φ(u)≥ 〈 f ∗,η(v,u)〉, ∀v ∈ E, (2.5)

where f ∗ is called η-subgradient of φ at u. The set of all η-subgradients of φ at u is denoted
by ∂ηφ(u). The mapping ∂ηφ : E→ 2E

∗
defined by

∂ηφ(u)=
{
f ∗ ∈ E∗ : φ(v)−φ(u)≥ 〈 f ∗,η(v,u)〉, ∀v ∈ E

}
(2.6)

is said to be η-subdifferential of φ at u.

Definition 2.4 (see [13]). A functional f : E× E→ R∪ {+∞} is said to be 0-diagonally
quasi-concave (0-DQCV) in u, if for any finite set {u1, . . . ,un} ⊂ E and for any v =∑n

i=1 λiui
with λi ≥ 0 and

∑n
i=1 λi = 1, min1≤i≤n f (ui,v)≤ 0 holds.

Definition 2.5 (see [14]). Let η : E×E→ E be a single-valued mapping. Let φ : E→ R∪
{+∞} be a lower semicontinuous, η-subdifferentiable (may not be convex) and proper
functional and let P : E→ E∗ be a nonlinear mapping. If for any given point u∗ ∈ E∗ and
ρ > 0, there exists a unique point u∈ E satisfying

〈
P(u)−u∗,η(v,u)

〉
+ ρφ(v)− ρφ(u)≥ 0, ∀v ∈ E, (2.7)

then the mapping u∗ → u, denoted by P
∂ηφ
ρ (u∗), is called P-η-proximal mapping of φ.

Clearly, u∗ −P(u)∈ ρ∂ηφ(u) and then it follows that

P
∂ηφ
ρ
(
u∗
)= (P + ρ∂ηφ

)−1(
u∗
)
. (2.8)

Remark 2.6 (see [14]). (i) If η(v,u) ≡ v− u for all u,v ∈ E and φ is a lower semicontin-
uous and proper functional on E, then the P-η-proximal mapping of φ reduces to the
P-proximal mapping of φ discussed by Ding and Xia [11].

(ii) If E ≡H , a Hilbert space, η(v,u) ≡ v− u for all u,v ∈H and φ is a convex, lower
semicontinuous and proper functional on E, and P is the identity mapping on H , then
the P-proximal mapping of φ reduces to the usual proximal (resolvent) mapping of φ on
Hilbert space.

Lemma 2.7 (see [14]). Let E be a real reflexive Banach space; let η : E× E→ E be a con-
tinuous mapping such that η(v,v′) + η(v′,v) = 0 for all v,v′ ∈ E; let P : E → E∗ be α-
strongly η-monotone continuous mapping; let, for any given u∗ ∈ E∗, the function h(v,u)=
〈u∗ − P(u),η(v,u)〉 be 0-DQCV in v and let φ : E→ R∪{+∞} be a lower semicontinu-
ous, η-subdifferentiable and proper functional on E. Then for any given constant ρ > 0 and
u∗ ∈ E∗, there exists a unique u∈ E such that

〈
P(u)−u∗,η(v,u)

〉≥ ρφ(u)− ρφ(v), ∀v ∈ E, (2.9)

that is, u= Pρ
∂ηφ(u∗).
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Example 2.8 (see [10]). Let E =R be real line; let P :R→R be defined by P(u)= u, and
let η :R×R→R be defined by

η(u,v)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u− v if |uv| < 1,

|uv|(u− v) if 1≤ |uv| < 2,

2(u− v) if 2≤ |uv|.
(2.10)

Then it is easy to see that
(i) 〈η(u,v),u− v〉 ≥ |u− v|2 for all u,v ∈ E, that is, η is 1-strongly monotone,
(ii) η(u,v)=−η(v,u) for all u,v ∈R,
(iii) |η(u,v)| ≤ 2|u− v| for all u,v ∈R, that is, η is 2-Lipschitz continuous,
(iv) for any given u ∈ E, the function h(v,x) = 〈u− x,η(v,x)〉 = (u− x)η(v,x) is 0-

DQCV in v.
If it is false, then there exist a finite set {v1, . . . ,vn} and w =∑n

i=1 λivi with λi ≥ 0 and
∑n

i=1 λi = 1 such that for each i= 1, . . . ,n,

0 < h
(
vi,w

)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(u−w)(v−w) if
∣
∣viw

∣
∣ < 1,

(u−w)
∣
∣viw

∣
∣(v−w) if 1≤ ∣∣viw

∣
∣ < 2,

2(u−w)(v−w) if 2≤ ∣∣viw
∣
∣.

(2.11)

It follows that (u−w)(vi−w) > 0 for each i= 1, . . . ,n, and hence we have

0 <
n∑

i=1
λi(u−w)

(
vi−w

)= (u−w)(w−w)= 0, (2.12)

which is impossible. This proves that for any given u∈R, the function h(v,x) is 0-DQCV
in v. Therefore, η satisfies all assumptions in Lemma 2.7.

Remark 2.9 (see [14]). Lemma 2.7 shows that for any strongly monotone continuous

mapping P : E→ E∗ and ρ > 0, the P-η-proximal mapping P
∂ηφ
ρ : E∗ → E of a lower semi-

continuous, η-subdifferentiable and proper functional φ is well defined and for each

u∗ ∈ E∗, u= P
∂ηφ
ρ (u∗) is the unique solution of the problem (2.9).

Lemma 2.10 (see [14]). Let E be a real reflexive Banach space and let η : E× E → E be
τ-Lipschitz continuous such that η(v,v′) + η(v′,v)= 0 for all v,v′ ∈ E; let P : E→ E∗ be α-
strongly η-monotone continuous mapping; let, for any given u∗ ∈ E∗, the function h(v,u)=
〈u∗ −P(u),η(v,u)〉 be 0-DQCV in v; let φ : E→R∪{+∞} be a lower semicontinuous, η-
subdifferentiable and proper functional on E and let ρ > 0 be any given constant. Then the

P-η-proximal mapping P
∂ηφ
ρ of φ is τ/α-Lipschitz continuous.

Throughout the rest of the paper unless otherwise stated, let E be a real uniformly
smooth Banach space with ρE(t)≤ ct2 for some c > 0, where ρE is themodulus of smooth-
ness defined below.
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Lemma 2.11 (see [5]). Let E be a real uniformly smooth Banach space and let J : E→ E∗ be
the normalized duality mapping. Then, for all u,v ∈ E,

(i) ‖u+ v‖2 ≤ ‖u‖2 + 2〈v, J(u+ v)〉,
(ii) 〈u−v, Ju−Jv〉≤2d2ρE(4‖u−v‖/d), where d=

√
(‖u‖2+‖v‖2)/2, ρE(t)=sup{(‖u‖+

‖v‖)/2− 1 : ‖u‖ = 1, ‖v‖ = t} is called the modulus of smoothness of E.

Let T ,A : E→E∗, g : E→E, η : E×E→E,N : E∗×E∗→E∗ be the given nonlinear map-
pings and let φ : E×E→R∪{+∞} be a lower semicontinuous, η-subdifferentiable (may
not be convex) and proper functional such that g(u)∈ ∂ηφ(u,z), for all u,z ∈ E, then we
consider the following general variational-like inequality problem (GVLIP): find u ∈ E
such that

〈
N
(
T(u),A(u)

)
,η
(
v,g(u)

)〉
+φ(v,u)−φ

(
g(u),u

)≥ 0, ∀v ∈ E. (2.13)

Some special cases of GVLIP (2.13).
(i) If N(T(u),A(u))≡M(Tu,Au)−w∗, for all u∈ E, whereM : E∗ ×E∗ → E∗ and

w∗ ∈ E∗ fixed, and g ≡ I , identity mapping, then GVLIP (2.13) reduces to the
following problem. Find u∈ E such that

〈
M(Tu,Au)−w∗,η(u,v)

〉
+φ(u,v)−φ(u,u)≥ 0, ∀v ∈ E. (2.14)

This problem has been studied by Ding [6].
(ii) If N(T(u),A(u))≡ T(u)−A(u), for all u∈ E, then GVLIP (2.13) reduces to the

following problem: find u∈ E such that

〈
T(u)−A(u),η(v,g(u)

)〉
+φ(v,u)−φ

(
g(u),u

)≥ 0, ∀v ∈ E. (2.15)

This problem has been studied by Ding and Luo [10] in the setting of Hilbert
space.

(iii) If N(T(u),A(u)) ≡ S(u), for all u ∈ E, where S : E→ E∗, g ≡ I , and φ(u,v) ≡ 0,
for all u,v ∈ E, then GVLIP (2.13) reduces to the following problem: find u∈ E
such that

〈
S(u),η(v,u)

〉≥ 0, ∀v ∈ E. (2.16)

This problem has been studied by Parida et al. [20] in the setting of Euclidean
space.

(iv) If N(T(u),A(u))≡ S(u), for all u∈ E, η(u,v)≡ u− v, for all u,v ∈ E, g ≡ I , then
GVLIP (2.13) reduces to the following problem: find u∈ E such that

〈
S(u),v−u

〉
+φ(v,u)−φ(u,u)≥ 0, ∀v ∈ E. (2.17)

This problem has been studied by M. A. Noor and K. I. Noor [19] in the setting
of Hilbert space.

(v) If, in problem (2.17), φ(u,v)≡ φ(u), for all u,v ∈ E, then problem (2.17) reduces
to the following problem: find u∈ E such that

〈
T(u),v−u

〉
+φ(v)−φ(u)≥ 0, ∀v ∈ E. (2.18)
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Problems (2.13)–(2.18) have many significant applications in physical, mathe-
matical, pure and applied sciences, see [3, 6, 10, 12, 15, 20].

Next, we consider the parametric problem corresponding to GVLIP (2.13).
Let M be a nonempty open subset of E in which the parameter λ takes the values.

Let T ,A : E ×M → E∗, g : E ×M → E, η : E × E → E, N : E∗ × E∗ ×M → E∗ be given
single-valued mappings and let φ : E× E×M → R∪{+∞} be a lower semicontinuous,
η-subdifferentiable and proper functional such that g(u,λ)∈ ∂ηφ(u,v,λ), for all u,v ∈ E,
λ∈M. We consider the following parametric general variational-like inequality problem
(PGVLIP): find u∈ E such that

〈
N
(
T(u,λ),A(u,λ),λ

)
,η
(
v,g(u,λ)

)〉
+φ(v,u,λ)−φ

(
g(u,λ),u,λ

)≥ 0, ∀v ∈ E. (2.19)

3. Existence of solution and sensitivity analysis

First, we prove the following technical result.

Proposition 3.1. u∈ E is the solution of PGVLIP (2.19) if and only if it satisfies the relation

g(u,λ)= P
∂ηφ(·,u,λ)
ρ [P ◦ g(u,λ)− ρN(T(u,λ),A(u,λ),λ)], (3.1)

where P
∂ηφ(·,u,λ)
ρ = (P + ρ∂ηφ(·,u,λ))−1 is the P-η-proximal mapping of φ for each fixed

u∈ E, λ∈M, P : E→ E∗, P ◦ g(·,λ) denotes P composition g(·,λ), and ρ > 0 is a constant.

Proof. Assume that u∈ E satisfies (3.1), that is,

g(u,λ)= P
∂ηφ(·,u,λ)
ρ

[
P ◦ g(u,λ)− ρN

(
T(u,λ),A(u,λ),λ

)]
. (3.2)

Since P
∂ηφ(·,u,λ)
ρ = (P + ρ∂ηφ(·,u,λ))−1, the above relation holds if and only if

P ◦ g(u,λ)− ρN
(
T(u,λ),A(u,λ),λ

)∈ P ◦ g(u,λ) + ρ∂ηφ
(
g(u,λ),u,λ

)
. (3.3)

By the definition of η-subdifferential of φ(g(u,λ),u,λ), the above inclusion holds if
and only if

φ(v,u,λ)−φ
(
g(u,λ),u,λ

)≥ 〈N(T(u,λ),A(u,λ),λ),η(v,g(u,λ))〉, ∀v ∈ E, (3.4)

that is, u∈ E is the solution of PGVLIP (2.19). This completes the proof. �

Now, assume that for some λ∈M, PGVLIP (2.19) has a solution u and K is a closed
sphere in E centered at u. We are interested in investigating those conditions under which,
for each λ in a neighborhood of λ, PGVLIP (2.19) has a unique solution u(λ) near u and
the solution u(λ) is Lipschitz continuous.

Next, we give the following concepts.

Definition 3.2. The mapping g : K ×M→ E is said to be
(i) locally k-strongly accretive, if there exists a constant k > 0 such that

〈
g(u,λ)− g(v,λ), J(u− v)

〉≥ k‖u− v‖2, (3.5)
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(ii) locally (σ1,σ2)- Lipschitz continuous, if there exist constants σ1,σ2 > 0 such that

∥
∥g(u,λ)− g(v, λ̃)

∥
∥≤ σ1‖u− v‖+ σ2‖λ− λ̃‖, ∀u,v ∈ K , λ, λ̃∈M. (3.6)

Definition 3.3. Let P : E→ E∗, g : K ×M→ E, T ,A : K ×M→ E∗,N : E∗ ×E∗ ×M→ E∗,
then N is said to be

(i) locally α-strongly P ◦ g-accretive with respect to T and A, if there exists a constant
α > 0 such that

〈
N
(
T(u,λ),A(u,λ),λ

)−N
(
T(v,λ),A(v,λ),λ

)
,

J∗
(
P ◦ g(u,λ)−P ◦ g(v,λ))〉≥ α‖u− v‖2, ∀u,v ∈ K , λ∈M,

(3.7)

where J∗ : E∗ → E is a normalized duality mapping,
(ii) locally (β1,β2,β3)- Lipschitz continuous, if there exist constants β1,β2,β3 > 0 such

that

∥
∥N
(
u1,v1,λ

)−N
(
u2,v2, λ̃

)∥∥

≤ β1
∥
∥u1−u2

∥
∥+β2

∥
∥v1− v2

∥
∥+β3‖λ− λ̃‖, ∀u1,u2,v1,v2 ∈ K , λ, λ̃∈M.

(3.8)

Using the technique of Daformos [4], we consider the mapping F(·,λ) : K ×M → E
defined by

F(u,λ) := u− g(u,λ) +P
∂ηφ(·,u,λ)
ρ

[
P ◦ g(u,λ)− ρN

(
T(u,λ),A(u,λ),λ

)]
. (3.9)

Remark 3.4. It follows from Proposition 3.1 that the fixed point of the mapping F defined
by (3.9) is the solution of PGVLIP (2.19).

Now, we show that the mapping F(u,λ) defined by (3.9) is a contractionmapping with
respect to u uniformly in λ∈M.

Theorem 3.5. Let the mapping g : K ×M → E be locally k-strongly accretive and locally
(σ1,σ2)-Lipschitz continuous; let T ,A : K ×M → E∗ be locally ε-Lipschitz continuous and
locally ξ-Lipschitz continuous, respectively; let η : E×E→ E be τ-Lipschitz continuous such
that η(u,v) + η(v,u) = 0, for all u,v ∈ E and let P : E → E∗ be δ-strongly η-monotone
continuous mapping; the fuction h(v,u) = 〈u∗ − P(u),η(u,v)〉 be 0-DQCV in v. Let φ :
E× E→ R∪ {+∞} be a lower semicontinuous, η-subdifferentiable and proper functional
such that g(u,λ) ∈ ∂ηφ(u,v,λ), for all u,v ∈ E, λ ∈M; let P ◦ g : K ×M → E∗ be locally
(γ1,γ2)-Lipschitz continuous and let N : E∗ × E∗ ×M → E∗ be locally α-strongly P ◦ g-
accretive with respect to T and A and locally (β1,β2,β3)-Lipschitz continuous. If there are
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some real constants ν1 > 0 and ρ > 0 such that

∥
∥
∥P

∂ηφ(·,u,λ)
ρ (z)−P

∂ηφ(·,v,λ)
ρ (z)

∥
∥
∥≤ ν1‖u− v‖, ∀u,v ∈ E, z ∈ E∗, λ∈M, (3.10)

∣
∣
∣
∣
∣ρ−

α

64c
(
β1ε+β2ξ

)2

∣
∣
∣
∣
∣ <

√
α2− 64c

(
β1ε+β2ξ

)2[
γ21 −

(
δ2/τ2

)(
1− l2

)]

64c
(
β1ε+β2ξ

)2 ,

α >
(
β1ε+β2ξ

)
√

64c
[
γ21 −

τ2

δ2
(1− l2)

]
, γ1 >

τ

δ

√
1− l2, l < 1,

(3.11)

where l = ν1 +
√
1− 2k+64cσ21 . Then, for each u1,u2 ∈ E, λ∈M,

∥
∥F
(
u1,λ

)−F
(
u2,λ

)∥∥≤ θ
∥
∥u1−u2

∥
∥, (3.12)

where θ=l+(τ/δ)t(ρ)∈ (0,1), t(ρ)=
√
γ21 − 2ρα+ ρ264c(β1ε+β2ξ)2, that is, F is θ-contraction

uniformly in λ∈M.

Proof. For all u1,u2 ∈ E, λ ∈M, using condition (3.10), locally (γ1,γ2)-Lipschitz conti-
nuity of P ◦ g and locally ε-Lipschitz continuity of T , we have

∥
∥F
(
u1,λ

)−F
(
u2,λ

)∥∥

=
∥
∥
∥u1− g

(
u1,λ

)
+P

∂ηφ(·,u1,λ)
ρ

[
P ◦ g(u1,λ

)− ρN
(
T
(
u1,λ

)
,A
(
u1,λ

)
,λ
)]

−
[
u2− g

(
u2,λ

)
+P

∂ηφ(·,u2,λ)
ρ

[
P ◦ g(u2,λ

)− ρN
(
T
(
u2,λ

)
,A
(
u2,λ

)
,λ
)]]∥∥
∥

≤ ∥∥u1−u2−
(
g(u1,λ

)− g
(
u2,λ

))∥∥

+
∥
∥
∥P

∂ηφ(·,u1,λ)
ρ

[
P ◦ g(u1,λ

)− ρN
(
T
(
u1,λ

)
,A
(
u1,λ

)
,λ
)]

−P
∂ηφ(·,u2,λ)
ρ

[
P ◦ g(u1,λ

)− ρN
(
T
(
u1,λ

)
,A
(
u1,λ

)
,λ
)]∥∥
∥

+
∥
∥
∥P

∂ηφ(·,u2,λ)
ρ

[
P ◦ g(u1,λ

)− ρN
(
T
(
u1,λ

)
,A
(
u1,λ

)
,λ
)]

−P
∂ηφ(·,u2,λ)
ρ

[
P ◦ g(u2,λ

)− ρN
(
T
(
u2,λ

)
,A
(
u2,λ

)
,λ
)]∥∥
∥

≤ ∥∥u1−u2−
(
g
(
u1,λ

)− g
(
u2,λ

))∥∥+ ν1
∥
∥u1−u2

∥
∥

+
τ

δ

[∥∥P ◦ g(u1,λ
)−P ◦ g(u2,λ

)

− ρ
[
N
(
T
(
u1,λ

)
,A
(
u1,λ

)
,λ
)−N

(
T
(
u2,λ

)
,A
(
u2,λ

)
,λ
)]∥∥].

(3.13)
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Using Lemma 2.11, locally k-strongly accretiveness and locally (σ1,σ2)-Lipschitz con-
tinuity of g, we have

∥
∥u1−u2−

(
g
(
u1,λ

)− g
(
u2,λ

))∥∥2

≤ ∥∥u1−u2
∥
∥2− 2

〈
g
(
u1,λ

)− g
(
u2,λ

)
, J
(
u1−u2−

(
g
(
u1,λ

)− g
(
u2,λ

)))〉

≤ ∥∥u1−u2
∥
∥2− 2

〈
g
(
u1,λ

)− g
(
u2,λ

)
, J
(
u1−u2

)〉

+2
〈
g
(
u1,λ

)− g
(
u2,λ

)
, J
(
u1−u2

)− J
(
u1−u2−

(
g
(
u1,λ

)− g
(
u2,λ

)))〉

≤ (1− 2k)
∥
∥u1−u2

∥
∥+64c

∥
∥g
(
u1,λ

)− g
(
u2,λ

)∥∥2 ≤ (1− 2k+64cσ21
)∥∥u1−u2

∥
∥2.

(3.14)

SinceN is locally α-strongly accretive and locally (β1,β2,β3)-Lipschitz continuous, and
T and A are locally ε-Lipschitz continuous and locally ξ-Lipschitz continuous, respec-
tively, we have

∥
∥N
(
T
(
u1,λ

)
,A
(
u1,λ

)
,λ
)−N

(
T
(
u2,λ

)
,A
(
u2,λ

)
,λ
)∥∥

≤ β1
∥
∥T
(
u1,λ

)−T
(
u2,λ

)∥∥+β2
∥
∥A
(
u1,λ

)−A
(
u2,λ

)∥∥

≤ (β1ε+β2ξ
)∥∥u1−u2

∥
∥.

(3.15)

Moreover, since P ◦ g is locally (γ1,γ2)-Lipschitz continuous, then using Lemma 2.11, we
have
∥
∥P ◦ g(u1,λ

)−P ◦ g(u2,λ
)− ρ

[
N
(
T(u1,λ

)
,A
(
u1,λ

)
,λ
)−N

(
T
(
u2,λ

)
,A
(
u2,λ

)
,λ
)]∥∥2

≤ ∥∥P ◦ g(u1,λ
)−P ◦ g(u2,λ

)∥∥2

− 2ρ
〈
N
(
T
(
u1,λ

)
,A
(
u1,λ

)
,λ
)−N

(
T
(
u2,λ

)
,A
(
u2,λ

)
,λ
)
,

J∗
(
P ◦ g(u1,λ

)−P ◦ g(u2,λ
))〉

+2ρ
〈
N
(
T
(
u1,λ

)
,A
(
u1,λ

)
,λ
)−N

(
T
(
u2,λ

)
,A
(
u2,λ

)
,λ
)
, J∗
(
P ◦ g(u1,λ

)

−P ◦ g(u2,λ
))− J∗

(
P ◦ g(u1,λ

)−P ◦ g(u2,λ
)−ρ[N(T(u1,λ

)
,A
(
u1,λ

)
,λ
)

−N
(
T
(
u2,λ

)
,A
(
u2,λ

)
,λ
)])〉

≤(γ21−2ρα
)∥∥u1−u2

∥
∥2 + 64cρ2

∥
∥N
(
T
(
u1,λ

)
,A
(
u1,λ

)
,λ
)−N(T(u2,λ

)
,A
(
u2,λ

)
,λ
)∥∥2.

(3.16)

Combining (3.13), (3.14), (3.15), and (3.16), we have
∥
∥F
(
u1,λ

)−F
(
u2,λ

)∥∥≤ θ
∥
∥u1−u2

∥
∥, (3.17)

where

θ := l+
τ

δ
t(ρ), l =

√
1− 2k+64cσ12 + ν1, t(ρ)=

√
γ21 − 2ρα+64cρ2

(
β1ε+β2ξ

)2
.

(3.18)
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Next, we have to show that θ < 1. It is clear that t(ρ) assumes its minimum value for

ρ̄ = α/64c(β1ε+β2ξ)2 with t(ρ̄)=
√
γ21 −α2/64c(β1ε+β2ξ)2.

For ρ = ρ̄, l+ (τ/δ)t(ρ) < 1→ l < 1, then it follows that θ < 1 for all ρ satisfying (3.11).
Hence, it follows that F defined by (3.9) is a θ-contraction mapping uniformly in λ∈M.
Therefore, invoking Banach contraction principle, F admits a unique fixed point, say
u(λ), which in turn is a solution of PGVLIP (2.19). This completes the proof. �

Remark 3.6. From Theorem 3.5, it is clear that the mapping F defined by (3.9) has a
unique fixed point u(λ), that is, u(λ)= F(u,λ).

It also follows from our assumption that the function ū for λ = λ̄ is a solution of
PGVLIP (2.19). Again, using Theorem 3.5, we observe that for λ= λ̄, ū is a fixed point of
F(u,λ) and it is a fixed point of F(u, λ̄). Consequently, we conclude that

u(λ̄)= ū= F
(
u(λ̄), λ̄

)
. (3.19)

Finally, using Theorem 3.5, we show the Lipschitz continuity of the solution of u(λ) of
PGVLIP (2.19).

Theorem 3.7. Let the mappings T , P, g, η, h, P ◦ g be the same as in Theorem 3.5 and

let conditions (3.10)-(3.11) of Theorem 3.5 hold. Suppose that λ→ P
∂ηφ(·,u,λ)
ρ is γ2-Lipschitz

continuous at λ= λ̄, then the function u(λ) is Lipschitz continuous at λ= λ̄.

Proof. For all λ∈M, using Theorem 3.5, we have

∥
∥u(λ)−u(λ̄)

∥
∥= ∥∥F(u(λ),λ)−F

(
u(λ̄), λ̄

)∥∥

≤ ∥∥F(u(λ),λ)−F
(
u(λ̄),λ

)∥∥+
∥
∥F
(
u(λ̄),λ

)−F
(
u(λ̄), λ̄

)∥∥

≤ θ
∥
∥u(λ)−u(λ̄)

∥
∥+

∥
∥F
(
u(λ̄),λ

)−F
(
u(λ̄), λ̄

)∥∥,

(3.20)

where θ is given by (3.18). Using (3.9) and using the conditions on the mappings T , P, g,

η, P ◦ g, and P
∂ηφ
φ (·,u,λ), we have

∥
∥F
(
u(λ̄),λ

)−F
(
u(λ̄), λ̄

)∥∥

=
∥
∥
∥u(λ̄)− g

(
u(λ̄),λ

)
+P

∂ηφ(·,u(λ̄),λ)
ρ

[
P ◦ g(u(λ̄),λ)− ρN

(
T(u(λ̄)

)
,A
(
u(λ̄)

)
,λ
)]

−
[
u(λ̄)− g

(
u(λ̄), λ̄

)
+P

∂ηφ(·,u(λ̄),λ̄)
ρ

[
P ◦ g(u(λ̄), λ̄)− ρN

(
T
(
u(λ̄)

)
,A
(
u(λ̄)

)
, λ̄
)]]∥∥
∥

≤ σ2‖λ− λ̄‖+ ν2‖λ− λ̄‖
+
τ

δ

[∥∥P ◦ g(u(λ̄),λ)−P ◦ g(u(λ̄), λ̄)∥∥

+ ρ
∥
∥N
(
T
(
u(λ̄)

)
,A
(
u(λ̄)

)
,λ
)−N

(
T(u(λ̄)

)
,A
(
u(λ̄)

)
, λ̄
)∥∥]

≤ (σ2 + ν2
)‖λ− λ̄‖+ τ

δ

[
γ2‖λ− λ̄‖+ ρβ3‖λ− λ̄‖]≤

[

σ2 + ν2 +

(
γ2 + ρβ3

)
τ

δ

]

‖λ− λ̄‖.
(3.21)
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Combining (3.20) and (3.21), we have

∥
∥u(λ)−u(λ̄)

∥
∥≤ θ

∥
∥u(λ)−u(λ̄)

∥
∥+

[
σ2 + ν2 +

(
γ2 + ρβ3

)
τ

δ

]
‖λ− λ̄‖, (3.22)

which implies

∥
∥u(λ)−u(λ̄)

∥
∥≤

[(
σ2 + ν2

)
δ +

(
γ2 + ρβ3

)
τ

δ(1− θ)

]
‖λ− λ̄‖. (3.23)

Since θ ∈ (0,1), by (3.11), a := ((σ2 + ν2)δ + (γ2 + ρβ3)τ)/δ(1− θ) > 0. Hence, it fol-
lows from (3.23) that u(λ) is a-Lipschitz continuous at λ = λ̄. This completes the proof.

�

Lemma 3.8. If the assumptions of Theorem 3.7 hold, then there exists a neighborhood N ⊂
M of λ̄ such that for λ ∈ N ,u(λ) is the unique solution of PGVLIP (2.19) in the interior of
K .

Proof. It follows by using similar arguments as given in the proof of Theorem 3.7. �

Theorem 3.9. Let ū be the solution of PGVLIP (2.19). Let the mappings η, h be the same as
in Theorem 3.5; let g be locally k-strongly accretive and locally (σ1,σ2)-Lipschitz continuous
at λ = λ̄; let T , A be locally ε-Lipschitz continuous and locally ξ-continuous, respectively;
let P be δ-strongly η-monotone continuous mapping; let P ◦ g be locally (γ1,γ2)-Lipschitz
continuous at λ = λ̄. Let N be locally α-strongly accretive with respect to T and A, and
locally (β1,β2,β3)-Lipschitz continuous at λ = λ̄, and let φ be a lower semicontinuous, η-
subdifferentiable functional such that g(u,λ) ∈ ∂ηφ(u,v,λ), for all u,v ∈ E, λ ∈M. If con-

ditions (3.10)-(3.11) of Theorem 3.5 hold and λ→ P
∂ηφ(·,u,λ)
ρ is γ2-Lipschitz continuous at

λ= λ̄, then there exists a neighborhood N ⊂M of λ̄ such that for λ∈N , u(λ) is the unique
solution of PGVLIP (2.19) in the interior of K , u(λ̄)= ū, and u(λ) is Lipschitz continuous at
λ= λ̄.

Proof. It follows from Theorems 3.5–3.7, Lemma 3.8, and Remark 3.6. �

Example 3.10. If E ≡ R, g(u,λ) ≡ 2u + λ, P(u) ≡ u, T(u,λ) ≡ u + 2λ, A(u,λ) ≡ 3u + λ,
N(u,v,λ)≡ 2u+ v+ λ, η(u,v)≡ u− v, for all u,v ∈R, λ∈M. Then

(i) g(u,λ) is 2-strongly monotone and (2,1)-Lipschitz continuous, that is,k =2, σ1=2,
σ2 = 1;

(ii) P is 1-strongly η-monotone and η is 1-Lipschitz continuous, that is, δ = 1, τ = 1;
(iii) P ◦ g is (2,1)-Lipschitz continuous, that is, γ1 = 2, γ2 = 1;
(iv) T and A are (1,2)-Lipschitz continuous and (3,1)-Lipschitz continuous, that is,

ε = 1, ξ = 3;
(v) N is 10-strongly P ◦ g-monotone with respect to T and A, and (2,1,1)-Lipschitz

continuous, that is, α= 10, β1 = 2, β2 = β3 = 1.
If ν1=ν2=0.1, then after simple calculation, we have |ρ−1.6/3| < 1/3⇒ ρ ∈ (0.2,0.8).

For ρ = 0.75, θ ≈ 0.66.
Further, it is easily observed that a= ((σ2 + ν2)δ + (γ2 + ρβ3)τ)/δ(1− θ) > 0.
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