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EVA KOPECKÁ AND SIMEON REICH

Received 17 August 2005; Accepted 22 August 2005

We first characterize ρ-monotone mappings on the Hilbert ball by using their resolvents
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1. Introduction

Monotone operator theory has been intensively developed with many applications to
Convex and Nonlinear Analysis, Partial Differential Equations, and Optimization. In this
note we intend to apply the concept of (hyperbolic) monotonicity to Complex Analysis.
As we will see, this application involves the generation theory of one-parameter continu-
ous semigroups of holomorphic mappings.

Let (H ,〈·,·〉) be a complex Hilbert space with inner product 〈·,·〉 and norm | · |, and
let B := {x ∈H : |x| < 1} be its open unit ball. The hyperbolic metric ρ on B×B [5, page
98] is defined by

ρ(x, y) := argtanh
(
1− σ(x, y)

)1/2
, (1.1)

where

σ(x, y) :=
(
1−|x|2)(1−|y|2)
∣
∣1−〈x, y〉∣∣2

, x, y ∈ B. (1.2)

A mapping g : B→ B is said to be ρ-nonexpansive if

ρ
(
g(x),g(y)

)≤ ρ(x, y) (1.3)

for all x, y ∈ B. It is known (see, for instance, [5, page 91]) that each holomorphic self-
mapping of B is ρ-nonexpansive.
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2 Hyperbolic monotonicity in the Hilbert ball

Recall that if C is a subset ofH , then a (single-valued) mapping f : C→H is said to be
monotone if

Re
〈
x− y, f (x)− f (y)

〉≥ 0, x, y ∈ C. (1.4)

Equivalently, f is monotone if

Re
[〈
x, f (x)

〉
+
〈
y, f (y)

〉]≥ Re
[〈
y, f (x)

〉
+
〈
x, f (y)

〉]
, x, y ∈ C. (1.5)

It is also not difficult to see that f is monotone if and only if

|x− y| ≤ ∣∣x+ r f (x)− (y + r f (y)
)∣∣, x, y ∈ C, (1.6)

for all (small enough) r > 0.
Let I denote the identity operator. A mapping f : C → H is said to satisfy the range

condition if

(I + r f )(C)⊃ C, r > 0. (1.7)

If f is monotone and satisfies the range condition, then the mapping Jr : C → C, well-
defined for positive r by Jr := (I + r f )−1, is called a (nonlinear) resolvent of f . It is clearly
nonexpansive, that is, 1-Lipschitz:

∣
∣Jrx− Jr y

∣
∣≤ |x− y|, x, y ∈ C. (1.8)

As a matter of fact, this resolvent is even firmly nonexpansive:

∣
∣Jrx− Jr y

∣
∣≤ ∣∣Jrx− Jr y + s

(
x− Jrx−

(
y− Jr y

))∣∣ (1.9)

for all x and y in C and for all positive s.
This is a direct consequence of (1.6) because x− Jrx = r f (Jrx) and y− Jr y = r f (Jr y)

for all x and y in C. We remark in passing that, conversely, each firmly nonexpansive
mapping is a resolvent of a (possibly set-valued) monotone operator. To see this, let T :
C→ C be firmly nonexpansive. Then the operator

M :=
⋃{

[Tx,x−Tx] : x ∈ C
}

(1.10)

is monotone because T satisfies (1.9).
We now turn to the concept of hyperbolic monotonicity which was introduced in [19,

page 244]; there it was called ρ-monotonicity. In the present paper we will use both terms
interchangeably.

We say that a mapping f : B→H is ρ-monotone on B if for each pair of points (x, y)∈
B×B,

ρ(x, y)≤ ρ
(
x+ r f (x), y + r f (y)

)
(1.11)

for all r > 0 such that the points x+ r f (x) and y + r f (y) belong to B.
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We say that f : B→H satisfies the range condition if

(I + r f )(B)⊃ B, r > 0. (1.12)

If a ρ-monotone f satisfies the range condition (1.12), then for each r > 0, the resolvent
Jr := (I + r f )−1 is a single-valued, ρ-nonexpansive self-mapping of B. As a matter of fact,
this resolvent is firmly nonexpansive of the second kind in the sense of [5, page 129] (see
Lemma 4.2 below). We remark in passing that this resolvent is different from the one
introduced in [17] which is firmly nonexpansive of the first kind [5, page 124].

Our first aim in this note is to establish the following characterization of ρ-monotone
mappings. Recall that a subset of B is said to lie strictly inside B if its distance from the
boundary of B (the unit sphere of H) is positive.

Theorem 1.1. Let B be the open unit ball in a complex Hilbert space H , and let f : B→H
be a continuous mapping which is bounded on each subset strictly inside B (equivalently, on
each ρ-ball). Then f is ρ-monotone if and only if for each r > 0, its resolvent Jr := (I + r f )−1

is a single-valued, ρ-nonexpansive self-mapping of B.

This result shows that in some cases the hyperbolic monotonicity of f : B→H already
implies the range condition (1.12). This is in analogy with the Euclidean Hilbert space
case, where it is known that if f : H → H is continuous and monotone, then the range
R(I + r f ) =H for all r > 0. To see this, we may first note that a continuous and mono-
tone f :H →H is maximal monotone and then invoke Minty’s classical theorem [11] to
conclude that R(I + r f ) is indeed all of H for all positive r.

However, as pointed out on [14, page 393], Minty’s theorem is equivalent to the
Kirszbraun-Valentine extension theorem which is no longer valid, generally speaking,
outside Hilbert space, or for the Hilbert ball of dimension larger than 1 [8, 9]. On the
other hand, it is known [10] that if E is any Banach space and f : E→ E is continuous and
accretive, then f ism-accretive, that is, R(I + r f )= E for all r > 0.

Our proof of Theorem 1.1 uses finite dimensional projections. The separable case is
due to Itai Shafrir (see [19, Theorem 2.3]). This proof is presented in Section 3, which
also contains a discussion of continuous semigroups of holomorphic mappings and their
(infinitesimal) generators (see Corollary 3.2). It is preceded by three preliminary results
in Section 2. In Section 4, the last section of our note, we study the asymptotic behavior
of compositions and convex combinations of resolvents of ρ-monotone mappings (see
Theorems 4.14 and 4.15). Theorem 4.14, in particular, provides two methods for finding
a common null point of finitely many (continuous) ρ-monotone mappings.

2. Preliminaries

We precede the proof of Theorem 1.1 with the following three preliminary results.
Given z ∈ B, let {uα : α∈�} be a complete orthonormal system in H which contains

z/|z| if z 	= 0. Let Γ be the set of all finite dimensional subspaces ofH which contain z and
are spanned by vectors from {uα : α ∈�}, ordered by containment. For each F ∈ Γ, let
PF :H → F be the orthogonal projection of H onto F.

Lemma 2.1. For each y ∈H , the net {PF y}F∈Γ converges to y.
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Proof. Let y =∑∞
i=1〈y,uαi〉uαi and let ε > 0. There is N =N(ε) such that if n≥N , then

∣
∣
∣
∣
∣

n∑

i=1

〈
y,uαi

〉
uαi − y

∣
∣
∣
∣
∣

2

=
∣
∣
∣
∣
∣

∞∑

i=n+1

〈
y,uαi

〉
uαi

∣
∣
∣
∣
∣

2

=
∞∑

i=n+1

∣
∣〈y,uαi

〉∣∣2 < ε2. (2.1)

Let F0 := span{uα1 ,uα2 , . . . ,uαN }.
If F ∈ Γ, F ⊃ F0, and F = span{uα1 , . . . ,uαN ,v1, . . . ,vm}, then |PF y − y|2 = |∑N

i=1〈y,
uαi〉uαi +

∑m
j=1〈y,vj〉vj − y|2. If 〈y,vj〉 	= 0, then vj ∈ {uαi : i ≥ N + 1} and therefore

|PF y− y|2 ≤∑∞
i=N+1 |〈y,uαi〉|2 < ε2. �

Next, we recall a characterization ([19, Theorem 2.1]) of ρ-monotone mappings in
terms of the inner product of H .

Proposition 2.2. A mapping f : B→H is ρ-monotone if and only if for each x, y ∈ B,

Re
〈
x, f (x)

〉

1−|x|2 +
Re
〈
y, f (y)

〉

1−|y|2 ≥ Re

{〈
y, f (x)

〉
+
〈
x, f (y)

〉

1−〈x, y〉

}

. (2.2)

Note that (2.2) is the hyperbolic analog of the Euclidean (1.5).
Finally, we recall a fixed point theoremwhich will be used in the proof of Theorem 1.1.
Let C be a subset of a vector space E and let the point x belong to C. Recall that the

inward set IC(x) of x with respect to C is defined by

IC(x) :=
{
z ∈ E : z = x+ a(y− x) for some y ∈ C, a≥ 0

}
. (2.3)

If E is a topological vector space, then a mapping f : C→ E is said to be weakly inward
if f (x) belongs to the closure of IC(x) for each x ∈ C.

Theorem 2.3. Let C be a nonempty, compact and convex subset of a locally convex, Haus-
dorff topological vector space E. If a continuous f : C → E is weakly inward, then it has a
fixed point.

This theorem is due to Halpern and Bergman [6]. A simple proof can be found in [13].

3. The range condition

We begin this section with the proof of Theorem 1.1.

Proof of Theorem 1.1. One direction is clear: if Jr is ρ-nonexpansive, and the points x, y,
x+ r f (x), y + r f (y) all belong to B, then

ρ(x, y)= ρ
(
Jr
(
x+ r f (x)

)
, Jr
(
y + r f (y)

))≤ ρ
(
x+ r f (x), y + r f (y)

)
. (3.1)

Thus, it is enough to prove that if f is ρ-monotone, then for each z ∈ B and r > 0, there
exists a solution x ∈ B to the equation x + r f (x) = z. Fix z ∈ B and consider the corre-
sponding directed set Γ of finite dimensional subspaces of H .

For each F ∈ Γ, let BF := B∩ F and denote the composition PF ◦ f by fF . The (re-
stricted) mapping fF : BF → F is also ρ-monotone because when x, y ∈ BF , we have
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〈x,PF f (x)〉 = 〈x, f (x)〉 and 〈y,PF f (x)〉 = 〈y, f (x)〉, and fF is seen to be ρ-monotone
by the characterization (2.2).

Now we want to show that there is a point wF ∈ BF such that

wF + r fF
(
wF
)= z. (3.2)

Indeed, consider the mapping h : BF → F defined by

hF(x) := z− r fF(x), x ∈ BF . (3.3)

Using (2.2) with y = 0, we get

Re
〈
fF(x),x

〉≥ (1−|x|2)Re〈x, fF(0)
〉

(3.4)

for all x ∈ BF . Hence

Re
〈
hF(x),x

〉= Re〈z,x〉− rRe
〈
fF(x),x

〉≤ |z||x|− r
(
1−|x|2)Re〈x, fF(0)

〉
. (3.5)

Since | fF(0)| = |PF f (0)| ≤ | f (0)|, it follows that there is |z| < s < 1 (independent of F)
such that Re〈hF(x),x〉 ≤ |x|2 for all x ∈ F with |x| = s. Thus hF is weakly inward on {x ∈
F : |x| ≤ s} by [12, Proposition 2] (alternatively, it satisfies the Leray-Schauder condition
on {x ∈ F : |x| = s}) and therefore has a fixed point by Theorem 2.3. This fixed point
wF ∈ BF(0,s)⊂ B(0,s) is a solution of (3.2).

Let {vE : E ∈ Δ} be a subnet of {wF : F ∈ Γ} which converges weakly to v ∈ B(0,s).
We can assume that {|vE|}E∈Δ converges to t, with |v| ≤ t ≤ s < 1. Since f is bounded on
B(0,s), we can also assume that { f (vE)}E∈Δ converges weakly to p ∈H .

Our next claim is that |v| = t.
To see this, note first that

〈
vE, y

〉
+
〈
rgE
(
vE
)
, y
〉= 〈z, y〉 (3.6)

for all E ∈ Δ and y ∈H , where {gE}E∈Δ is a subnet of { fF}F∈Γ.
Also, if ϕ : Δ→ Γ is the mapping associated with the subnet {vE : E ∈ Δ}, then gE =

fϕ(E) and 〈gE(vE), y〉 = 〈 fϕ(E)(vE), y〉 = 〈Pϕ(E) f (vE), y〉 = 〈 f (vE),Pϕ(E)y〉 = 〈 f (vE), y〉 +
〈 f (vE),Pϕ(E)y− y〉 → 〈p, y〉 because { f (vE)}E∈Δ is bounded and {PEy}E∈Δ converges to
y by Lemma 2.1. Hence 〈v, y〉+ r〈p, y〉 = 〈z, y〉 for all y ∈H , and v+ r p = z.

Writing (2.2) with x := v and y := vE, we see that

Re
{〈

v, f (v)
〉
/
(
1−|v|2)+ 〈vE, f

(
vE
)〉
/
(
1−∣∣vE

∣
∣2
)}

≥ Re
{(〈

v, f
(
vE
)〉

+
〈
f (v),vE

〉)
/
(
1− 〈v,vE

〉)}
.

(3.7)

Also, 〈vE,vE〉+ r〈gE(vE),vE〉 = 〈z,vE〉. Hence (letting QF = I −PF),
〈
vE, f

(
vE
)〉= 〈wϕ(E),Pϕ(E) f

(
vE
)
+Qϕ(E) f

(
vE
)〉= 〈wϕ(E),Pϕ(E) f

(
vE
)〉

= 〈vE,gE
(
vE
)〉=

(〈
vE,z

〉−∣∣vE
∣
∣2
)
/r,

Rer
〈
vE, f

(
vE
)〉= Re

{〈
vE,z

〉−∣∣vE
∣
∣2
}
.

(3.8)
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Thus,

Re
{
r
〈
v, f (v)

〉
/
(
1−|v|2)+

(〈
vE,z

〉−∣∣vE
∣
∣2
)
/
(
1−∣∣vE

∣
∣2
)}

≥ Re
{(
r
〈
v, f

(
vE
)〉

+ r
〈
f (v),vE

〉)
/
(
1− 〈v,vE

〉)}
.

(3.9)

Taking limits, we get

Re
{
r
〈
v, f (v)

〉
/
(
1−|v|2)+ (〈v,z〉− t2

)
/
(
1− t2

)}

≥ Re
{(
r〈v, p〉+ r

〈
f (v),v

〉)
/
(
1−|v|2)}.

(3.10)

Now 〈v,v〉+ r〈p,v〉 = 〈z,v〉. Therefore,

Re〈v,z〉/(1− t2
)− t2

1− t2
≥ Re

{〈z,v〉− |v|2
1−|v|2

}
,

Re〈v,z〉
{

1
1− t2

− 1
1−|v|2

}
≥ t2

1− t2
− |v|2
1−|v|2 .

(3.11)

If |v| < t, then this inequality yields Re〈v,z〉 ≥ 1. But Re〈v,z〉 ≤ |v||z| ≤ t ≤ s < 1, a con-
tradiction. Hence |v| = t, as claimed.

Since {vE}E∈Δ converges weakly to v and {|vE|}E∈Δ converges to t = |v|, {vE}E∈Δ con-
verges strongly to v. Since f is continuous, f (vE)→ f (v) and p = f (v). Hence v+ r f (v)=
z and the proof is complete. �

Why is it important to know that in certain cases a ρ-monotone mapping already sat-
isfies the range condition? To answer this question, let D be a domain (open, connected
subset) in a complex Banach space X , and recall that a holomorphic mapping f :D→ X
is said to be a semi-complete vector field on D if the Cauchy problem

∂u(t,z)
∂t

+ f
(
u(t,z)

)= 0

u(0,z)= z
(3.12)

has a unique global solution {u(t,z) : t ≥ 0} ⊂ D for each z ∈ D. It is known (see, e.g.,
[1, 18]) that if a holomorphic f : D→ X is semi-complete, then the family S f = {Ft}t≥0
defined by

Ft(z) := u(t,z), t ≥ 0, z ∈D, (3.13)

is a one-parameter (nonlinear) semigroup (semiflow) of holomorphic self-mappings of
D, that is,

Ft+s = Ft ◦Fs, t,s≥ 0,

F0 = I ,
(3.14)

where I denotes the restriction of the identity operator on X to D. In addition,

lim
t→0+

Ft(z)= z, z ∈D, (3.15)

uniformly on each ball which is strictly inside D.
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A semigroup {Ft}t≥0 is said to be generated if, for each z ∈ D, there exists the strong
limit

f (z) := lim
t→0+

[
z−Ft(z)

]
/t. (3.16)

This mapping f is called the (infinitesimal) generator of the semigroup. It is, of course,
a semi-complete vector field. Analogous definitions apply to (continuous) semigroups of
ρ-nonexpansive mappings, where ρ is a pseudometric assigned to D by a Schwarz-Pick
system [5, page 91].

When is a mapping f : D → X a generator? An answer to this question is provided
by the following result [19, page 239]. Recall that if D is a convex domain, then all the
pseudometrics assigned to D by Schwarz-Pick systems coincide. If D is also bounded,
then this common pseudometric is, in fact, a metric, which we call the hyperbolic metric
of D.

Theorem 3.1. Let D be a bounded convex domain in a complex Banach space X , and let ρ
denote its hyperbolic metric. Suppose that f :D→ X is bounded and uniformly continuous
on each ρ-ball inD. Then f is a generator of a ρ-nonexpansive semigroup onD if and only if,
for each r > 0, the mapping Jr := (I + r f )−1 is a well-defined ρ-nonexpansive self-mapping
of D.

If, in the setting of this theorem, f : D→ X is a generator of a ρ-nonexpansive semi-
group {Ft}t≥0, then the following exponential formula holds:

Ft(z)= lim
n→∞

(
I +

t

n
f
)−n

z, z ∈D. (3.17)

Combining Theorems 1.1 and 3.1, we obtain the following corollary.

Corollary 3.2. Let f : B→H be bounded and uniformly continuous on each ρ-ball in B.
Then f is the generator of a ρ-nonexpansive semigroup on B if and only if f is ρ-monotone.

If follows from the Cauchy inequalities that this corollary applies, in particular, to
holomorphic mappings which are bounded on each ρ-ball.

Note that all the mappings of the form f = I − T , where I is the identity operator
and T : B→ B is ρ-nonexpansive (in particular, holomorphic), are generators of semi-
groups of ρ-nonexpansive (resp., holomorphic) mappings. More applications of hyper-
bolic monotonicity and, in particular, of the characterizations provided by Proposition
2.2 and Corollary 3.2, can be found in [2].

4. Asymptotic behavior

In this section we study the asymptotic behavior of compositions and convex combina-
tions of resolvents of ρ-monotone mappings.

Consider the function ψ : [0,δ]→ [0,∞) defined by

ψ(t) := σ(x+ tu, y + tv), (4.1)
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where x, y, u and v are any four points in B and δ > 0 is sufficiently small. We begin by
recalling [19, Lemma 2.2]. Note that ψ is differentiable at the origin by Lemma 2.1 there.
See also [20, Proposition 4.3].

Lemma 4.1. Let the function ψ be defined by (4.1). Then the following are equivalent:
(a) ψ(t)≤ ψ(0), 0≤ t ≤ δ;
(b) ψ decreases on [0,δ];
(c) ψ′(0)≤ 0.

Let D be a subset of the Hilbert ball B. Recall that a mapping T : D → B is said to
be firmly nonexpansive of the second kind [5, page 129] if the function ϕ : [0,1]→ [0,∞)
defined by

ϕ(s) := ρ
(
(1− s)x+ sTx, (1− s)y + sT y

)
, 0≤ s≤ 1, (4.2)

is decreasing for all points x and y in D.
We denote the family of firmly nonexpansive mappings of the second kind by FN2.

Lemma 4.2. Any resolvent of a ρ-monotone mapping is firmly nonexpansive of the second
kind.

Proof. Fix a positive r and let Jr be a resolvent of a ρ-monotone mapping f : B→H . Let
x and y be any two points in the domain of Jr . To show that the function ρ(tx + (1−
t)Jrx, ty + (1− t)Jr y) increases on [0,1], we have to show that the function ψ : [0,1]→
[0,∞) defined by

ψ(t) := σ
(
Jrx+ t

(
x− Jrx

)
, Jr y + t

(
y− Jr y

))
, 0≤ t ≤ 1, (4.3)

decreases on [0,1]. To this end, it suffices, according to Lemma 4.1, to check that ψ(t)≤
ψ(0) for all 0≤ t ≤ 1.

Indeed, since f is ρ-monotone, x − Jrx = r f (Jrx), and y − Jr y = r f (Jr y), we know
that, by (1.11),

ρ
(
Jrx, Jr y

)≤ ρ
(
Jrx+ s f

(
Jrx
)
, Jr y + s f

(
Jrx
))

= ρ
(
Jrx+ (s/r)

(
x− Jrx

)
, Jr y + (s/r)

(
y− Jr y

)) (4.4)

for all 0≤ s≤ r. In other words,

ψ(0)= σ
(
Jrx, Jr y

)≥ σ
(
Jrx+ t

(
x− Jrx

)
, Jr y + t

(
y− Jr y

))= ψ(t) (4.5)

for all 0≤ t ≤ 1, as required. �

We now turn to the class of strongly nonexpansive mappings.
Let T :D→ B be a ρ-nonexpansivemapping with a nonempty fixed point set F(T). Re-

call that such a mapping is called strongly nonexpansive ([4, 16]) if for any ρ-bounded se-
quence {xn : n= 1,2,3, . . .} ⊂D and every y ∈ F(T), the condition ρ(xn, y)− ρ(Txn, y)→
0 implies that ρ(xn,Txn)→ 0.

To define this concept for fixed point free mappings, we first recall two notations.
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If the point b belongs to the boundary of B, let the function ϕb : B→ (0,∞) be defined
by

ϕb(x) :=
∣
∣1−〈x,b〉∣∣2/(1−|x|2), (4.6)

and for positive r consider the ellipsoids E(b,r) := {x ∈ B : ϕb(x) < r}.
Now we recall [5, page 126] that if a ρ-nonexpansive mapping T : B→ B is fixed point

free, then there exists a unique point e = e(T) of norm one (the sink point of T) such
that all the ellipsoids E(e,r), r > 0, are invariant under T . We say that such a mapping
is strongly nonexpansive if for any sequence {xn : n = 1,2, . . .} ⊂ B such that {ϕe(xn)} is
bounded, the condition ϕe(xn)−ϕe(Txn)→ 0 implies that xn−Txn→ 0.

Proofs of the following two lemmas can be found in [15].

Lemma 4.3. Let {xn} and {zn} be two sequences in B. Suppose that for some y in B,
limsupn→∞ ρ(xn, y) ≤M, limsupn→∞ ρ(zn, y) ≤M, and liminfn→∞ ρ((xn + zn)/2, y) ≥M.
Then limn→∞ |xn− zn| = 0.

Lemma 4.4. Let the point b belong to the boundary of B, and let {xn} and {zn} be two
sequences in B. Suppose that limsupn→∞ϕb(xn) ≤ M, limsupn→∞ϕb(zn) ≤ M, and
liminfn→∞ϕb((xn + zn)/2)≥M. Then limn→∞ |xn− zn| = 0.

Our interest in strongly nonexpansive mappings stems from the following two facts.

Lemma 4.5. If a mapping T ∈ FN2 has a fixed point, then it is strongly nonexpansive.

Proof. Suppose that the sequence {xn} is ρ-bounded, y ∈ F(T), and ρ(xn, y)− ρ(Txn,
y)→ 0. In order to prove that ρ(xn,Txn)→ 0, we may assume without loss of generality
that limn→∞ ρ(xn, y)= limn→∞ ρ(Txn, y)= d > 0. Since T ∈ FN2, we also have

ρ
(
Txn, y

)≤ ρ
((
xn +Txn

)
/2, y

)≤ ρ
(
xn, y

)
. (4.7)

Hence limn→∞ ρ((xn + Txn)/2, y) = d, too. Now we can invoke Lemma 4.3 to conclude
that xn−Txn→ 0. Since {xn} is ρ-bounded, it follows that ρ(xn,Txn)→ 0 as well. �

Lemma 4.6. If a mapping T : B→ B belongs to FN2 and is fixed point free, then it is strongly
nonexpansive.

Proof. Let e be the sink point of T and let {xn : n= 1,2, . . .} ⊂ B be a sequence such that
{ϕe(xn)} is bounded and ϕe(xn)−ϕe(Txn)→ 0. In order to prove that xn−Txn → 0, we
may assume that ϕe(xn)→M. Hence ϕe(Txn)→M, too. Since T ∈ FN2, we know by [5,
Lemma 30.7 on page 142] that the function g : [0,1]→ (0,∞) defined by

g(s) := ϕe
(
(1− s)x+ sTx

)
, 0≤ s≤ 1, (4.8)

is decreasing for each x ∈ B. Hence

ϕe
(
Txn

)≤ ϕe

(
xn +Txn

2

)
≤ ϕe

(
xn
)

(4.9)

for each n= 1,2, . . . .
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Thus limn→∞ϕe((xn +Txn)/2)=M, too, and hence limn→∞(xn−Txn) = 0 by Lemma
4.4. �

Next, we recall [16] the following weak convergence result.

Proposition 4.7. If T : B→ B has a fixed point and is strongly nonexpansive, then for each
point x in B, the sequence of iterates {Tnx} converges weakly to a fixed point of T .

In view of Lemma 4.5, this result applies, in particular, to all those mappings T : B→ B
in FN2 which have a fixed point.

It follows from [8, 9] that in the setting of Proposition 4.7, strong convergence does
not hold in general. However, our next result shows that when a strongly nonexpansive
mapping is fixed point free, its iterates do converge strongly.

Proposition 4.8. If T : B→ B is strongly nonexpansive and fixed point free, then for each
point x in B, the sequence of iterates {Tnx} converges strongly to the sink point of T .
Proof. Let e be the sink point of T and denote Tnx by xn, n = 1,2, . . . . Since ϕe(Tx) ≤
ϕe(x) for all x ∈ B, the sequences {ϕe(xn)} and {ϕe(Txn)} decrease to the same limit
M. Since T is strongly nonexpansive, it follows that xn−Txn → 0. Since T is fixed point
free, this implies that {xn} cannot have a ρ-bounded subsequence. Thus limn→∞ |xn| = 1,
〈xn,e〉 → 1, and xn→ e, as asserted. �

Now we consider compositions and convex combinations of strongly nonexpansive
mappings.

The following result is proved in [16].

Lemma 4.9. Let the mappings Tj : B→ B, 1 ≤ j ≤ m, be strongly nonexpansive, and let
T = TmTm−1 ···T1. If F =∩{F(Tj) : 1≤ j ≤m} is not empty, then F = F(T) and T is also
strongly nonexpansive.

Here is an analog of this result for the fixed point free case.

Lemma 4.10. If the fixed point free mappings Tj : B→ B, 1 ≤ j ≤m, have a common sink
point and are strongly nonexpansive, then T = TmTm−1 ···T1 is also strongly nonexpansive.

Proof. Let T1 and T2 be two fixed point free and strongly nonexpansive mappings with
a common sink point e = e(T1)= e(T2). We first note that the composition T = T2T1 is
also fixed point free. Indeed, let x ∈ B and consider the iterates xn = Tnx, n = 1,2, . . . .
Since the decreasing sequence {ϕe(xn)} converges, we see that

0≤ ϕe
(
xn
)−ϕe

(
T1xn

)≤ ϕe
(
xn
)−ϕe

(
Txn

)−→ 0, (4.10)

and therefore xn−T1xn→ 0.
If {xn}were ρ-bounded, then its asymptotic center [5, page 116] would be a fixed point

of T1. Hence {xn} is ρ-unbounded and T is fixed point free, as claimed. Thus e = e(T)
is also the sink point of T . To show that T is strongly nonexpansive, let {xn} ⊂ B be a
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sequence such that {ϕe(xn)} is bounded and ϕe(xn)−ϕe(Txn)→ 0. Then

0≤ ϕe
(
xn
)−ϕe

(
T1xn

)≤ ϕe
(
xn
)−ϕe

(
T2T1xn

)
,

0≤ ϕe
(
T1xn

)−ϕe
(
T2T1xn

)≤ ϕe
(
xn
)−ϕe

(
T2T1xn

)
.

(4.11)

Hence

lim
n→∞

(
xn−T1xn

)= lim
n→∞

(
T1xn−T2T1xn

)= 0, (4.12)

and so limn→∞(xn−T2T1xn)= 0, too.
The proof can now be completed by using induction onm. �

Turning to convex combinations, we first note the following fact. It is a consequence
of [4, Theorem 9.5 (ii)].

Lemma 4.11. Let the mappings Tj : B→ B, 1 ≤ j ≤m, be strongly nonexpansive, and let
T =∑m

j=1 λjTj , where 0 < λj < 1 and
∑m

j=1 λj = 1. If

F =∩{F(Tj
)
: 1≤ j ≤m

}
(4.13)

is not empty, then F = F(T) and T is also strongly nonexpansive.

We now formulate an analog of this fact for the fixed point free case.

Lemma 4.12. If the fixed point free mappings Tj : B→ B, 1 ≤ j ≤m, have a common sink
point and are strongly nonexpansive, then T =∑m

j=1 λjTj , where 0 < λj < 1 and
∑m

j=1 λj = 1,
is also strongly nonexpansive.

Proof. Once again, let T1 and T2 be two fixed point free and strongly nonexpansive map-
pings with a common sink point e = e(T1) = e(T2). We claim that the convex combi-
nation T = λ1T1 + λ2T2, where 0 < λ1, λ2 < 1 and λ1 + λ2 = 1, is also fixed point free.
To see this, let x ∈ B and consider the iterates xn = Tnx, n = 1,2, . . . . Note that ϕe(xn)−
ϕe(Txn)→ 0 because the decreasing sequence {ϕe(xn)} is convergent. Assume that {xn}
has a ρ-bounded subsequence. Passing to a further subsequence and relabeling, if neces-
sary, we may assume without loss of generality that

ϕe
(
T1xn

)=max
{
ϕe
(
T1xn

)
,ϕe
(
T2xn

)}
. (4.14)

Since all the ellipsoids E(e,r) are convex, it follows that ϕe(Txn)≤ ϕe(T1xn) and therefore

0≤ ϕ
(
xn
)−ϕe

(
T1xn

)≤ ϕe
(
xn
)−ϕe

(
Txn

)−→ 0. (4.15)

Thus xn −T1xn → 0 and the asymptotic center of {xn} is a fixed point of T1, a contra-
diction. Hence {xn} does not have a ρ-bounded subsequence, T is fixed point free, as
asserted, and e = e(T) is also the sink point of T .

To show that T is strongly nonexpansive, let {xn} ⊂ B be a sequence such that {ϕe(xn)}
is bounded and ϕe(xn)− ϕe(Txn)→ 0. We have to show that xn −Txn → 0. If this were
false, we would obtain by passing to subsequences and relabeling (if necessary), numbers
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ε > 0 andM ≥ 0 such that
∣
∣xn−Txn

∣
∣≥ ε, n= 1,2, . . .

ϕe
(
T1xn

)=max
{
ϕe
(
T1xn

)
,ϕe
(
T2xn

)}
, n= 1,2, . . . ,

ϕe
(
xn
)−→M as n−→∞.

(4.16)

Since T1 is strongly nonexpansive and

0≤ ϕe
(
xn
)−ϕe

(
T1xn

)≤ ϕ
(
xn
)−ϕe

(
Txn

)
, (4.17)

we also see that

lim
n→∞ϕe

(
T1xn

)= lim
n→∞ϕe

(
Txn

)=M (4.18)

and that

lim
n→∞

(
xn−T1xn

)= 0. (4.19)

Consider now the two sequences {un} and {vn} determined by the following proper-
ties:

un ∈ co
{
T1xn,Txn

}
, vn ∈ co

{
Txn,T2xn

}
,

∣
∣un−Txn

∣
∣= ∣∣vn−Txn

∣
∣=min

{∣∣T1xn−Txn
∣
∣,
∣
∣T2xn−Txn

∣
∣}.

(4.20)

Then (un + vn)/2= Txn and

∣
∣T1xn−T2xn

∣
∣= ∣∣un− vn

∣
∣/
(
2min

{
λ1,λ2

})
. (4.21)

We have

ϕe
(
un
)≤max

{
ϕe
(
T1xn

)
,ϕe
(
Txn

)}= ϕe
(
T1xn

)
,

ϕe
(
vn
)≤max

{
ϕe
(
T2xn

)
,ϕe
(
Txn

)}≤ ϕe
(
T1xn

) (4.22)

for all n.
Thus

limsup
n→∞

ϕe
(
un
)≤M, limsup

n→∞
ϕe
(
vn
)≤M, lim

n→∞ϕe
((
un + vn

)
/2
)=M. (4.23)

Lemma 4.4 now implies that limn→∞(un− vn)= 0. Hence (see (4.19))

lim
n→∞

(
T1xn−T2xn

)= 0, lim
n→∞

(
xn−T2xn

)= 0, lim
n→∞

(
xn−Txn

)= 0, (4.24)

a contradiction. Thus T is indeed strongly nonexpansive.
The proof can now be finished by using induction onm. �
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We continue with a known fact [7].

Lemma 4.13. Let {xn} and {yn} be two ρ-bounded sequences in B. If {xn} converges weakly
to x and {yn} converges weakly to y, then

ρ(x, y)≤ liminf
n→∞ ρ

(
xn, yn

)
. (4.25)

We are now ready to formulate and prove the main result of this section.

Theorem 4.14. For each 1 ≤ j ≤m, let f j : B→H be a continuous ρ-monotone mapping
which is bounded on each ρ-ball. Let r j be positive and denote the resolvent (I + r j f j)−1 of f j
by Rj . Furthermore, let 0 < λj < 1 satisfy

∑m
j=1 λj = 1. If the common null point set

Z :=∩{ f −1j (0) : 1≤ j ≤m
}

(4.26)

of { f j : 1 ≤ j ≤m} is not empty, then the weak limn→∞(RmRm−1 ···R1)nx = P1x and the
weak limn→∞(

∑m
j=1 λjRj)nx = P2x exist and define ρ-nonexpansive retractions of B onto Z.

Proof. For each 1 ≤ j ≤m, the resolvent Rj is well-defined on all of B by Theorem 1.1,
and its fixed point set F(Rj) coincides with the null point set f −1j (0) of f j . Furthermore,
each Rj is firmly nonexpansive of the second kind by Lemma 4.2 and strongly nonex-
pansive by Lemma 4.5. The composition RmRm−1 ···R1 and the convex combination
∑m

j=1 λjRj are also strongly nonexpansive by Lemmas 4.9 and 4.11, respectively, and their
fixed point sets coincide with Z. The existence of the limits P1 : B→ Z and P2 : B→ Z is
now seen to follow from Proposition 4.7. Both P1 and P2 are ρ-nonexpansive retractions
by Lemma 4.13. �

When a continuous ρ-monotone mapping f : B→H is bounded on each ρ-ball and
has no null point, then its resolvents (I + r f )−1, r > 0, which are well-defined on all of
B by Theorem 1.1, are fixed point free and all of them share the same sink point on the
boundary ∂B of B. (This follows from the resolvent identity.) We will refer to this point
as the sink point of f .

Theorem 4.15. For each 1 ≤ j ≤ m, let f j : B→ H be a continuous ρ-monotone map-
ping which is bounded on each ρ-ball and has no null point. Let r j be positive and let
0 < λj < 1 satisfy

∑m
j=1 λj = 1. Consider the resolvents Rj = (I + r j f )−1. If the mappings { f j}

have a common sink point e ∈ ∂B, then the strong limn→∞(RmRm−1 ···R1)nx = the strong
limn→∞(

∑m
j=1 λjRj)nx = e.

Proof. Each one of the resolvents Rj : B→ B, 1 ≤ j ≤m, is firmly nonexpansive of the
second kind by Lemma 4.2 and strongly nonexpansive by Lemma 4.6.

The composition RmRm−1 ···R1 and the convex combination
∑m

j=1 λjRj are also
strongly nonexpansive by Lemmas 4.10 and 4.12, respectively. The existence of the strong
limn→∞(RmRm−1 ···R1)nx and the strong limn→∞(

∑m
j=1 λjRj)nx is now seen to follow

from Proposition 4.8. �

Theorems 4.14 and 4.15 provide certain Hilbert ball analogs of [3, Theorems 3.3 and
3.5]. These latter theorems are concerned with the asymptotic behavior of the composi-
tion of two resolvents of maximal monotone operators in Hilbert space.
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