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We introduce an iteration scheme for nonexpansive mappings in a Hilbert space and
prove that the iteration converges strongly to common fixed points of the mappings with-
out commutativity assumption.
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1. Introduction

Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H . A
mapping T of C into itself is said to be nonexpansive if

‖Tx−Ty‖ ≤ ‖x− y‖, (1.1)

for each x, y ∈ C. For a mapping T of C into itself, we denote by F(T) the set of fixed
points of T . We also denote by N and R+ the set of positive integers and nonnegative real
numbers, respectively.

Baillon [1] proved the first nonlinear ergodic theorem. Let C be a nonempty bounded
convex closed subset of a Hilbert spaceH and let T be a nonexpansive mapping of C into
itself. Then, for an arbitrary x ∈ C, {(1/(n+1))

∑n
i=0Tix}∞n=0 converges weakly to a fixed

point of T . Wittmann [9] studied the following iteration scheme, which has first been
considered by Halpern [3]:

x0 = x ∈ C,

xn+1 = αn+1x+
(
1−αn+1

)
Txn, n≥ 0,

(1.2)

where a sequence {αn} in [0,1] is chosen so that limn→∞αn = 0,
∑∞

n=1αn =∞, and
∑∞

n=1
|αn+1 − αn| <∞; see also Reich [7]. Wittmann proved that for any x ∈ C, the sequence
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2 Nonexpansive mappings without commutativity assumption

{xn} defined by (1.2) converges strongly to the unique element Px ∈ F(T), where P is the
metric projection of H onto F(T).

Recall that two mappings S and T of H into itself are called commutative if

ST = TS, (1.3)

for all x, y ∈H .
Recently, Shimizu and Takahashi [8] have first considered an iteration scheme for two

commutative nonexpansive mappings S and T and proved that the iterations converge
strongly to a common fixed point of S and T . They obtained the following result.

Theorem 1.1 (see [8]). Let H be a Hilbert space, and let C be a nonempty closed convex
subset of H . Let S and T be nonexpansive mappings of C into itself such that ST = TS and
F(S)

⋂
F(T) is nonempty. Suppose that {αn}∞n=0 ⊆ [0,1] satisfies

(i) limn→∞αn = 0, and
(ii)

∑∞
n=0αn =∞.

Then, for an arbitrary x ∈ C, the sequence {xn}∞n=0 generated by x0 = x and

xn+1 = αnx+
(
1−αn

) 2
(n+1)(n+2)

n∑

k=0

∑

i+ j=k
SiT jxn, n≥ 0, (1.4)

converges strongly to a common fixed point Px of S and T , where P is the metric projection
of H onto F(S)

⋂
F(T).

Remark 1.2. At this point, we note that the authors have imposed the commutativity on
the mappings S and T . But there are many mappings, that do not satisfy ST = TS. For
example, if X = [−1/2,1/2], and S and T of X into itself are defined by

S= x2, T = sinx, (1.5)

then ST = sin2 x, whereas TS= sinx2.

In this paper, we deal with the strong convergence to common fixed points of two
nonexpansive mappings in a Hilbert space. We consider an iteration scheme for non-
expansive mappings without commutativity assumption and prove that the iterations
converge strongly to a common fixed point of the mappings Ti, i= 1,2.

2. Preliminaries

Let C be a closed convex subset of a Hilbert space H and let S and T be nonexpansive
mappings of C into itself. Then we consider the iteration scheme

x0 = x ∈ C,

xn+1 = αnx+
(
1−αn

) 2
(n+1)(n+2)

n∑

k=0

∑

i+ j=k
SiT j yn,

yn = βnxn +
(
1−βn

) 2
(n+1)(n+2)

n∑

k=0

∑

i+ j=k
TiSjxn, n≥ 0,

(2.1)
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where {αn} and {βn} are two sequences in [0,1]. We know that a Hilbert spaceH satisfies
Opial’s condition [6], that is, if a sequence {xn} inH converges weakly to an element y of
H and y 	= z, then

liminf
n→∞

∥
∥xn− y

∥
∥ < liminf

n→∞
∥
∥xn− z

∥
∥. (2.2)

In what follows, we will use PC to denote the metric projection fromH onto C; that is,
for each x ∈H , PC is the only point in C with the property

∥
∥x−PCx

∥
∥=min

u∈C
‖u− x‖. (2.3)

It is known that PC is nonexpansive and characterized by the following inequality: given
x ∈H and v ∈H , then v = PCx if and only if

〈x− v,v− y〉 ≥ 0, y ∈ C. (2.4)

Now, we introduce several lemmas for our main result in this paper. The first lemma
can be found in [4, 5, 10].

Lemma 2.1. Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1− γn

)
an + δn, (2.5)

where {γn} is a sequence in (0,1) and {δn} is a sequence such that
(1)

∑∞
n=1 γn =∞;

(2) limsupn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| <∞.
Then limn→∞ an = 0.

Lemma 2.2. Let C be a nonempty bounded closed convex subset of a Hilbert H , and let S,T
be nonexpansive mappings of C into itself. For x ∈ C and n∈N∪{0}, put

Gn(x)= 2
(n+1)(n+2)

n∑

k=0

∑

i+ j=k
SiT jx,

Gn(x)= 2
(n+1)(n+2)

n∑

k=0

∑

i+ j=k
TiSjx.

(2.6)

Then

lim
n→∞

sup
x∈C

∥
∥Gn(x)− SGn(x)

∥
∥= 0,

lim
n→∞

sup
x∈C

∥
∥Gn(x)−TGn(x)

∥
∥= 0.

(2.7)
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Proof. We first prove limn→∞ supx∈C ‖Gn(x)− SGn(x)‖ = 0.
By an idea in [2], for {xi, j}∞i, j=0, {xi, j}∞i, j=0 ⊆ C and zn = (1/ln)

∑n
k=0

∑
i+ j=k xi, j , zn =

(1/ln)
∑n

k=0
∑

i+ j=k xi, j ∈ C, with ln = (n+1)(n+2)/2, we have

∥
∥zn− v

∥
∥2 = 1

ln

n∑

k=0

∑

i+ j=k

∥
∥xi, j − v

∥
∥2− 1

ln

n∑

k=0

∑

i+ j=k

∥
∥xi, j − zn

∥
∥2 (2.8)

for each v ∈ H . For x ∈ C, put xi, j = SiT jx,xi, j = TiSjx and v = Szn,v = Tzn. Then, we
have

∥
∥Gn(x)− SGn(x)

∥
∥2 = 1

ln

n∑

k=0

∑

i+ j=k

∥
∥SiT jx− Szn

∥
∥2− 1

ln

n∑

k=0

∑

i+ j=k

∥
∥SiT jx− zn

∥
∥2

= 1
ln

n∑

k=0

∥
∥Tkx− Szn

∥
∥2 +

1
ln

n∑

k=1

∑

i+ j=k, i≥1

∥
∥SiT jx− Szn

∥
∥2

− 1
ln

n∑

k=0

∑

i+ j=k

∥
∥SiT jx− zn

∥
∥2

≤ 1
ln

n∑

k=0

∥
∥Tkx− Szn

∥
∥2 +

1
ln

n∑

k=1

∑

i+ j=k, i≥1

∥
∥Si−1T jx− zn

∥
∥2

− 1
ln

n∑

k=0

∑

i+ j=k

∥
∥SiT jx− zn

∥
∥2

= 1
ln

n∑

k=0

∥
∥Tkx− Szn

∥
∥2 +

1
ln

n−1∑

k=0

∑

i+ j=k

∥
∥SiT jx− zn

∥
∥2

− 1
ln

n∑

k=0

∑

i+ j=k

∥
∥SiT jx− zn

∥
∥2

= 1
ln

n∑

k=0

∥
∥Tkx− Szn

∥
∥2− 1

ln

∑

i+ j=n

∥
∥SiT jx− zn

∥
∥2

≤ 1
ln

n∑

k=0

∥
∥Tkx− Szn

∥
∥2 ≤ 2

n+2

{
diam(C)

}2
,

(2.9)

where diam(C) is the diameter of C. So, we have, for each n∈N∪{0},

sup
x∈C

∥
∥Gn(x)− SGn(x)

∥
∥2 ≤ 2

n+2

{
diam(C)

}2
, (2.10)

and hence

lim
n→∞

sup
x∈C

∥
∥Gn(x)− SGn(x)

∥
∥= 0. (2.11)
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Similarly, we have

lim
n→∞

sup
x∈C

∥
∥Gn(x)−TGn(x)

∥
∥= 0. (2.12)

�

3. Convergence theorem

Now we can prove a strong convergence theorem in a Hilbert space.

Theorem 3.1. LetH be a Hilbert space, and let C be a nonempty closed convex subset ofH .
Let S and T be nonexpansive mappings of C into itself such that F(S)

⋂
F(T) is nonempty.

Suppose that {αn}∞n=0 and {βn}∞n=1 are two sequences in [0,1] satisfying the following condi-
tions:

(i) limn→∞αn = 0, and

(ii)
∑∞

n=0αn =∞.
For an arbitrary x ∈ C, the sequence {xn}∞n=0 is generated by x0 = x and

xn+1 = αnx+
(
1−αn

) 2
(n+1)(n+2)

n∑

k=0

∑

i+ j=k
SiT j yn,

yn = βnxn +
(
1−βn

) 2
(n+1)(n+2)

n∑

k=0

∑

i+ j=k
TiSjxn, n≥ 0.

(3.1)

Let

zn = 2
(n+1)(n+2)

n∑

k=0

∑

i+ j=k
SiT j yn, zn = 2

(n+1)(n+2)

n∑

k=0

∑

i+ j=k
TiSjxn, (3.2)

for each n∈N∪{0}. If there exist subsequences {zni}∞i=0 of {zn}∞n=0 and {znj}∞j=0 of {zn}∞n=0,
respectively, which converge weakly to some common point z in some bounded subset D of C,
then the sequence {xn}∞n=0 defined by (3.1) converges strongly to PF(S)∩F(T)x.
Proof. Let x ∈ C and w ∈ F(S)

⋂
F(T). Putting r = ‖x−w‖, then the set

D = {y ∈H : ‖y−w‖ ≤ r
}∩C (3.3)

is a nonempty bounded closed convex subset of C which is S- and T-invariant and con-
tains x0 = x. So we may assume, without loss of generality, that S and T are the mappings
of D into itself. Since P is the metric projection of H onto F(S)∩F(T), we have

〈y−Px,x−Px〉 ≤ 0 (3.4)

for each y ∈ F(S)
⋂
F(T).
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From (3.4), we have

limsup
n→∞

〈
zn−Px,x−Px

〉≤ 0, limsup
n→∞

〈
zn−Px,x−Px

〉≤ 0. (3.5)

In fact, assume that, there exist two positive real numbers r0 and r1 such that

limsup
n→∞

〈
zn−Px,x−Px

〉
> r0, limsup

n→∞

〈
zn−Px,x−Px

〉
> r1. (3.6)

Since {zn}∞n=0 and {zn}∞n=0 ⊆ D are bounded, from (3.6), there exist subsequences
{zni}∞i=0 of {zn}∞n=0 and {znj}∞j=0 of {zn}∞n=0, respectively, such that

limsup
n→∞

〈
zn−Px,x−Px

〉= lim
i→∞

〈
zni −Px,x−Px

〉
> r0,

limsup
n→∞

〈
zn−Px,x−Px

〉= lim
j→∞

〈
znj −Px,x−Px

〉
> r1.

(3.7)

By the assumption, we know that {zni}∞i=0 and {znj}∞j=0 converge weakly to some com-
mon point z ∈D. Thus from Lemma 2.2 and Opial’s condition, we have z ∈ F(S)

⋂
F(T).

In fact, if z 	= Sz, we have

liminf
i→∞

∥
∥zni − z

∥
∥ < liminf

i→∞
∥
∥zni − Sz

∥
∥

≤ liminf
i→∞

(∥
∥zni − Szni

∥
∥+

∥
∥Szni − Sz

∥
∥
)

≤ liminf
i→∞

∥
∥zni − z

∥
∥.

(3.8)

This is a contradiction. Therefore, we have z = Sz.
Similarly, we have z = Tz. So, we have

〈z−Px,x−Px〉 ≤ 0. (3.9)

On the other hand, since {zni} converges weakly to z, we obtain

〈z−Px,x−Px〉 ≥ r0. (3.10)

This is a contradiction. Hence, we have

limsup
n→∞

〈
zn−Px,x−Px

〉≤ 0, limsup
n→∞

〈
zn−Px,x−Px

〉≤ 0. (3.11)
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Since

∥
∥zn−Px

∥
∥≤

{
2

(n+1)(n+2)

n∑

k=0

∑

i+ j=k

∥
∥TiSjxn−Px

∥
∥

}2

≤
{

2
(n+1)(n+2)

n∑

k=0

∑

i+ j=k

∥
∥xn−Px

∥
∥

}2

= ∥∥xn−Px
∥
∥2,

∥
∥yn−Px

∥
∥2 = ∥∥βnxn +

(
1−βn

)
zn−Px

∥
∥2

= ∥∥βn
(
xn−Px

)
+
(
1−βn

)(
zn−Px

)∥
∥2

= β2n
∥
∥xn−Px

∥
∥2 + 2βn

(
1−βn

)(
xn−Px,zn−Px

)
+
(
1−βn

)2∥∥zn−Px
∥
∥2

≤ β2n
∥
∥xn−Px

∥
∥2 + 2βn

(
1−βn

)
∥
∥xn−Px

∥
∥2 +

∥
∥zn−Px

∥
∥2

2

+
(
1−βn

)2∥∥zn−Px
∥
∥2 ≤ ∥∥xn−Px

∥
∥2.

(3.12)

Then, we have

∥
∥xn+1−Px

∥
∥2 = ∥∥αnx+

(
1−αn

)
zn−Px

∥
∥2

= α2n‖x−Px‖2 + (1−αn
)2∥∥zn−Px

∥
∥2 + 2αn

(
1−αn

)〈
zn−Px,x−Px

〉

≤ (1−αn
)2
{

2
(n+1)(n+2)

n∑

k=0

∑

i+ j=k

∥
∥SiT j yn−Px

∥
∥

}2

+α2n‖x−Px‖2 + 2αn
(
1−αn

)〈
zn−Px,x−Px

〉

≤ (1−αn
)2
{

2
(n+1)(n+2)

n∑

k=0

∑

i+ j=k

∥
∥yn−Px

∥
∥

}2

+α2n‖x−Px‖2 + 2αn
(
1−αn

)〈
zn−Px,x−Px

〉

= (1−αn
)2∥∥yn−Px

∥
∥2 +α2n‖x−Px‖2 + 2αn

(
1−αn

)〈
zn−Px,x−Px

〉

≤ (1−αn
)∥
∥xn−Px

∥
∥2 +αn

{
αn‖x−Px‖2 + 2

(
1−αn

)〈
zn−Px,x−Px

〉}
.

(3.13)

Putting an = ‖xn−Px‖2, from (3.13), we have

an+1 ≤
(
1−αn

)
an + δn, (3.14)

where δn = αn{αn‖x−Px‖2 + 2(1−αn)〈zn−Px, x−Px〉}.
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It is easily seen that

limsup
n→∞

δn/αn = limsup
n→∞

{
αn‖x−Px‖2 + 2

(
1−αn

)〈
zn−Px, x−Px

〉}≤ 0. (3.15)

Now applying Lemma 2.1 with (3.15) to (3.14) concludes that ‖xn−Px‖→ 0 as n→∞.
This completes the proof. �
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